summaryrefslogtreecommitdiffstats
path: root/drivers/fmc/fmc-sdb.c
blob: 74fb326f4af17e4f633130581dd90cafdf1ba458 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*
 * Copyright (C) 2012 CERN (www.cern.ch)
 * Author: Alessandro Rubini <rubini@gnudd.com>
 *
 * Released according to the GNU GPL, version 2 or any later version.
 *
 * This work is part of the White Rabbit project, a research effort led
 * by CERN, the European Institute for Nuclear Research.
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fmc.h>
#include <linux/sdb.h>
#include <linux/err.h>
#include <linux/fmc-sdb.h>
#include <asm/byteorder.h>

static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address,
			int convert)
{
	uint32_t res = fmc_readl(fmc, address);
	if (convert)
		return __be32_to_cpu(res);
	return res;
}

static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc,
					     unsigned long sdb_addr,
					     unsigned long reg_base, int level)
{
	uint32_t onew;
	int i, j, n, convert = 0;
	struct sdb_array *arr, *sub;

	onew = fmc_readl(fmc, sdb_addr);
	if (onew == SDB_MAGIC) {
		/* Uh! If we are little-endian, we must convert */
		if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC))
			convert = 1;
	} else if (onew == __be32_to_cpu(SDB_MAGIC)) {
		/* ok, don't convert */
	} else {
		return ERR_PTR(-ENOENT);
	}
	/* So, the magic was there: get the count from offset 4*/
	onew = __sdb_rd(fmc, sdb_addr + 4, convert);
	n = __be16_to_cpu(*(uint16_t *)&onew);
	arr = kzalloc(sizeof(*arr), GFP_KERNEL);
	if (arr) {
		arr->record = kzalloc(sizeof(arr->record[0]) * n, GFP_KERNEL);
		arr->subtree = kzalloc(sizeof(arr->subtree[0]) * n, GFP_KERNEL);
	}
	if (!arr || !arr->record || !arr->subtree) {
		kfree(arr->record);
		kfree(arr->subtree);
		kfree(arr);
		return ERR_PTR(-ENOMEM);
	}
	arr->len = n;
	arr->level = level;
	arr->fmc = fmc;
	for (i = 0; i < n; i++) {
		union  sdb_record *r;

		for (j = 0; j < sizeof(arr->record[0]); j += 4) {
			*(uint32_t *)((void *)(arr->record + i) + j) =
				__sdb_rd(fmc, sdb_addr + (i * 64) + j, convert);
		}
		r = &arr->record[i];
		arr->subtree[i] = ERR_PTR(-ENODEV);
		if (r->empty.record_type == sdb_type_bridge) {
			struct sdb_component *c = &r->bridge.sdb_component;
			uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child);
			uint64_t newbase = __be64_to_cpu(c->addr_first);

			subaddr += reg_base;
			newbase += reg_base;
			sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase,
						  level + 1);
			arr->subtree[i] = sub; /* may be error */
			if (IS_ERR(sub))
				continue;
			sub->parent = arr;
			sub->baseaddr = newbase;
		}
	}
	return arr;
}

int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address)
{
	struct sdb_array *ret;
	if (fmc->sdb)
		return -EBUSY;
	ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0);
	if (IS_ERR(ret))
		return PTR_ERR(ret);
	fmc->sdb = ret;
	return 0;
}
EXPORT_SYMBOL(fmc_scan_sdb_tree);

static void __fmc_sdb_free(struct sdb_array *arr)
{
	int i, n;

	if (!arr)
		return;
	n = arr->len;
	for (i = 0; i < n; i++) {
		if (IS_ERR(arr->subtree[i]))
			continue;
		__fmc_sdb_free(arr->subtree[i]);
	}
	kfree(arr->record);
	kfree(arr->subtree);
	kfree(arr);
}

int fmc_free_sdb_tree(struct fmc_device *fmc)
{
	__fmc_sdb_free(fmc->sdb);
	fmc->sdb = NULL;
	return 0;
}
EXPORT_SYMBOL(fmc_free_sdb_tree);

/* This helper calls reprogram and inizialized sdb as well */
int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw,
			 int sdb_entry)
{
	int ret;

	ret = fmc->op->reprogram(fmc, d, gw);
	if (ret < 0)
		return ret;
	if (sdb_entry < 0)
		return ret;

	/* We are required to find SDB at a given offset */
	ret = fmc_scan_sdb_tree(fmc, sdb_entry);
	if (ret < 0) {
		dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
			sdb_entry);
		return -ENODEV;
	}
	fmc_dump_sdb(fmc);
	return 0;
}
EXPORT_SYMBOL(fmc_reprogram);

static void __fmc_show_sdb_tree(const struct fmc_device *fmc,
				const struct sdb_array *arr)
{
	int i, j, n = arr->len, level = arr->level;
	const struct sdb_array *ap;

	for (i = 0; i < n; i++) {
		unsigned long base;
		union  sdb_record *r;
		struct sdb_product *p;
		struct sdb_component *c;
		r = &arr->record[i];
		c = &r->dev.sdb_component;
		p = &c->product;
		base = 0;
		for (ap = arr; ap; ap = ap->parent)
			base += ap->baseaddr;
		dev_info(&fmc->dev, "SDB: ");

		for (j = 0; j < level; j++)
			printk(KERN_CONT "   ");
		switch (r->empty.record_type) {
		case sdb_type_interconnect:
			printk(KERN_CONT "%08llx:%08x %.19s\n",
			       __be64_to_cpu(p->vendor_id),
			       __be32_to_cpu(p->device_id),
			       p->name);
			break;
		case sdb_type_device:
			printk(KERN_CONT "%08llx:%08x %.19s (%08llx-%08llx)\n",
			       __be64_to_cpu(p->vendor_id),
			       __be32_to_cpu(p->device_id),
			       p->name,
			       __be64_to_cpu(c->addr_first) + base,
			       __be64_to_cpu(c->addr_last) + base);
			break;
		case sdb_type_bridge:
			printk(KERN_CONT "%08llx:%08x %.19s (bridge: %08llx)\n",
			       __be64_to_cpu(p->vendor_id),
			       __be32_to_cpu(p->device_id),
			       p->name,
			       __be64_to_cpu(c->addr_first) + base);
			if (IS_ERR(arr->subtree[i])) {
				printk(KERN_CONT "(bridge error %li)\n",
				       PTR_ERR(arr->subtree[i]));
				break;
			}
			__fmc_show_sdb_tree(fmc, arr->subtree[i]);
			break;
		case sdb_type_integration:
			printk(KERN_CONT "integration\n");
			break;
		case sdb_type_repo_url:
			printk(KERN_CONT "repo-url\n");
			break;
		case sdb_type_synthesis:
			printk(KERN_CONT "synthesis-info\n");
			break;
		case sdb_type_empty:
			printk(KERN_CONT "empty\n");
			break;
		default:
			printk(KERN_CONT "UNKNOWN TYPE 0x%02x\n",
			       r->empty.record_type);
			break;
		}
	}
}

void fmc_show_sdb_tree(const struct fmc_device *fmc)
{
	if (!fmc->sdb)
		return;
	__fmc_show_sdb_tree(fmc, fmc->sdb);
}
EXPORT_SYMBOL(fmc_show_sdb_tree);

signed long fmc_find_sdb_device(struct sdb_array *tree,
				uint64_t vid, uint32_t did, unsigned long *sz)
{
	signed long res = -ENODEV;
	union  sdb_record *r;
	struct sdb_product *p;
	struct sdb_component *c;
	int i, n = tree->len;
	uint64_t last, first;

	/* FIXME: what if the first interconnect is not at zero? */
	for (i = 0; i < n; i++) {
		r = &tree->record[i];
		c = &r->dev.sdb_component;
		p = &c->product;

		if (!IS_ERR(tree->subtree[i]))
			res = fmc_find_sdb_device(tree->subtree[i],
						  vid, did, sz);
		if (res >= 0)
			return res + tree->baseaddr;
		if (r->empty.record_type != sdb_type_device)
			continue;
		if (__be64_to_cpu(p->vendor_id) != vid)
			continue;
		if (__be32_to_cpu(p->device_id) != did)
			continue;
		/* found */
		last = __be64_to_cpu(c->addr_last);
		first = __be64_to_cpu(c->addr_first);
		if (sz)
			*sz = (typeof(*sz))(last + 1 - first);
		return first + tree->baseaddr;
	}
	return res;
}
EXPORT_SYMBOL(fmc_find_sdb_device);