summaryrefslogtreecommitdiffstats
path: root/drivers/dma/mediatek/mtk-uart-apdma.c
blob: a1517ef1f4a0185700343797ef05d8ef6810ed0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
// SPDX-License-Identifier: GPL-2.0
/*
 * MediaTek UART APDMA driver.
 *
 * Copyright (c) 2019 MediaTek Inc.
 * Author: Long Cheng <long.cheng@mediatek.com>
 */

#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include "../virt-dma.h"

/* The default number of virtual channel */
#define MTK_UART_APDMA_NR_VCHANS	8

#define VFF_EN_B		BIT(0)
#define VFF_STOP_B		BIT(0)
#define VFF_FLUSH_B		BIT(0)
#define VFF_4G_EN_B		BIT(0)
/* rx valid size >=  vff thre */
#define VFF_RX_INT_EN_B		(BIT(0) | BIT(1))
/* tx left size >= vff thre */
#define VFF_TX_INT_EN_B		BIT(0)
#define VFF_WARM_RST_B		BIT(0)
#define VFF_RX_INT_CLR_B	(BIT(0) | BIT(1))
#define VFF_TX_INT_CLR_B	0
#define VFF_STOP_CLR_B		0
#define VFF_EN_CLR_B		0
#define VFF_INT_EN_CLR_B	0
#define VFF_4G_SUPPORT_CLR_B	0

/*
 * interrupt trigger level for tx
 * if threshold is n, no polling is required to start tx.
 * otherwise need polling VFF_FLUSH.
 */
#define VFF_TX_THRE(n)		(n)
/* interrupt trigger level for rx */
#define VFF_RX_THRE(n)		((n) * 3 / 4)

#define VFF_RING_SIZE	0xffff
/* invert this bit when wrap ring head again */
#define VFF_RING_WRAP	0x10000

#define VFF_INT_FLAG		0x00
#define VFF_INT_EN		0x04
#define VFF_EN			0x08
#define VFF_RST			0x0c
#define VFF_STOP		0x10
#define VFF_FLUSH		0x14
#define VFF_ADDR		0x1c
#define VFF_LEN			0x24
#define VFF_THRE		0x28
#define VFF_WPT			0x2c
#define VFF_RPT			0x30
/* TX: the buffer size HW can read. RX: the buffer size SW can read. */
#define VFF_VALID_SIZE		0x3c
/* TX: the buffer size SW can write. RX: the buffer size HW can write. */
#define VFF_LEFT_SIZE		0x40
#define VFF_DEBUG_STATUS	0x50
#define VFF_4G_SUPPORT		0x54

struct mtk_uart_apdmadev {
	struct dma_device ddev;
	struct clk *clk;
	bool support_33bits;
	unsigned int dma_requests;
};

struct mtk_uart_apdma_desc {
	struct virt_dma_desc vd;

	dma_addr_t addr;
	unsigned int avail_len;
};

struct mtk_chan {
	struct virt_dma_chan vc;
	struct dma_slave_config	cfg;
	struct mtk_uart_apdma_desc *desc;
	enum dma_transfer_direction dir;

	void __iomem *base;
	unsigned int irq;

	unsigned int rx_status;
};

static inline struct mtk_uart_apdmadev *
to_mtk_uart_apdma_dev(struct dma_device *d)
{
	return container_of(d, struct mtk_uart_apdmadev, ddev);
}

static inline struct mtk_chan *to_mtk_uart_apdma_chan(struct dma_chan *c)
{
	return container_of(c, struct mtk_chan, vc.chan);
}

static inline struct mtk_uart_apdma_desc *to_mtk_uart_apdma_desc
	(struct dma_async_tx_descriptor *t)
{
	return container_of(t, struct mtk_uart_apdma_desc, vd.tx);
}

static void mtk_uart_apdma_write(struct mtk_chan *c,
			       unsigned int reg, unsigned int val)
{
	writel(val, c->base + reg);
}

static unsigned int mtk_uart_apdma_read(struct mtk_chan *c, unsigned int reg)
{
	return readl(c->base + reg);
}

static void mtk_uart_apdma_desc_free(struct virt_dma_desc *vd)
{
	kfree(container_of(vd, struct mtk_uart_apdma_desc, vd));
}

static void mtk_uart_apdma_start_tx(struct mtk_chan *c)
{
	struct mtk_uart_apdmadev *mtkd =
				to_mtk_uart_apdma_dev(c->vc.chan.device);
	struct mtk_uart_apdma_desc *d = c->desc;
	unsigned int wpt, vff_sz;

	vff_sz = c->cfg.dst_port_window_size;
	if (!mtk_uart_apdma_read(c, VFF_LEN)) {
		mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
		mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
		mtk_uart_apdma_write(c, VFF_THRE, VFF_TX_THRE(vff_sz));
		mtk_uart_apdma_write(c, VFF_WPT, 0);
		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);

		if (mtkd->support_33bits)
			mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B);
	}

	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
	if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
		dev_err(c->vc.chan.device->dev, "Enable TX fail\n");

	if (!mtk_uart_apdma_read(c, VFF_LEFT_SIZE)) {
		mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
		return;
	}

	wpt = mtk_uart_apdma_read(c, VFF_WPT);

	wpt += c->desc->avail_len;
	if ((wpt & VFF_RING_SIZE) == vff_sz)
		wpt = (wpt & VFF_RING_WRAP) ^ VFF_RING_WRAP;

	/* Let DMA start moving data */
	mtk_uart_apdma_write(c, VFF_WPT, wpt);

	/* HW auto set to 0 when left size >= threshold */
	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
	if (!mtk_uart_apdma_read(c, VFF_FLUSH))
		mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
}

static void mtk_uart_apdma_start_rx(struct mtk_chan *c)
{
	struct mtk_uart_apdmadev *mtkd =
				to_mtk_uart_apdma_dev(c->vc.chan.device);
	struct mtk_uart_apdma_desc *d = c->desc;
	unsigned int vff_sz;

	vff_sz = c->cfg.src_port_window_size;
	if (!mtk_uart_apdma_read(c, VFF_LEN)) {
		mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
		mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
		mtk_uart_apdma_write(c, VFF_THRE, VFF_RX_THRE(vff_sz));
		mtk_uart_apdma_write(c, VFF_RPT, 0);
		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);

		if (mtkd->support_33bits)
			mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B);
	}

	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_RX_INT_EN_B);
	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
	if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
		dev_err(c->vc.chan.device->dev, "Enable RX fail\n");
}

static void mtk_uart_apdma_tx_handler(struct mtk_chan *c)
{
	mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
}

static void mtk_uart_apdma_rx_handler(struct mtk_chan *c)
{
	struct mtk_uart_apdma_desc *d = c->desc;
	unsigned int len, wg, rg;
	int cnt;

	mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);

	if (!mtk_uart_apdma_read(c, VFF_VALID_SIZE))
		return;

	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);

	len = c->cfg.src_port_window_size;
	rg = mtk_uart_apdma_read(c, VFF_RPT);
	wg = mtk_uart_apdma_read(c, VFF_WPT);
	cnt = (wg & VFF_RING_SIZE) - (rg & VFF_RING_SIZE);

	/*
	 * The buffer is ring buffer. If wrap bit different,
	 * represents the start of the next cycle for WPT
	 */
	if ((rg ^ wg) & VFF_RING_WRAP)
		cnt += len;

	c->rx_status = d->avail_len - cnt;
	mtk_uart_apdma_write(c, VFF_RPT, wg);
}

static void mtk_uart_apdma_chan_complete_handler(struct mtk_chan *c)
{
	struct mtk_uart_apdma_desc *d = c->desc;

	if (d) {
		list_del(&d->vd.node);
		vchan_cookie_complete(&d->vd);
		c->desc = NULL;
	}
}

static irqreturn_t mtk_uart_apdma_irq_handler(int irq, void *dev_id)
{
	struct dma_chan *chan = (struct dma_chan *)dev_id;
	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
	if (c->dir == DMA_DEV_TO_MEM)
		mtk_uart_apdma_rx_handler(c);
	else if (c->dir == DMA_MEM_TO_DEV)
		mtk_uart_apdma_tx_handler(c);
	mtk_uart_apdma_chan_complete_handler(c);
	spin_unlock_irqrestore(&c->vc.lock, flags);

	return IRQ_HANDLED;
}

static int mtk_uart_apdma_alloc_chan_resources(struct dma_chan *chan)
{
	struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
	unsigned int status;
	int ret;

	ret = pm_runtime_resume_and_get(mtkd->ddev.dev);
	if (ret < 0) {
		pm_runtime_put_noidle(chan->device->dev);
		return ret;
	}

	mtk_uart_apdma_write(c, VFF_ADDR, 0);
	mtk_uart_apdma_write(c, VFF_THRE, 0);
	mtk_uart_apdma_write(c, VFF_LEN, 0);
	mtk_uart_apdma_write(c, VFF_RST, VFF_WARM_RST_B);

	ret = readx_poll_timeout(readl, c->base + VFF_EN,
			  status, !status, 10, 100);
	if (ret)
		goto err_pm;

	ret = request_irq(c->irq, mtk_uart_apdma_irq_handler,
			  IRQF_TRIGGER_NONE, KBUILD_MODNAME, chan);
	if (ret < 0) {
		dev_err(chan->device->dev, "Can't request dma IRQ\n");
		ret = -EINVAL;
		goto err_pm;
	}

	if (mtkd->support_33bits)
		mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_CLR_B);

err_pm:
	pm_runtime_put_noidle(mtkd->ddev.dev);
	return ret;
}

static void mtk_uart_apdma_free_chan_resources(struct dma_chan *chan)
{
	struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);

	free_irq(c->irq, chan);

	tasklet_kill(&c->vc.task);

	vchan_free_chan_resources(&c->vc);

	pm_runtime_put_sync(mtkd->ddev.dev);
}

static enum dma_status mtk_uart_apdma_tx_status(struct dma_chan *chan,
					 dma_cookie_t cookie,
					 struct dma_tx_state *txstate)
{
	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
	enum dma_status ret;

	ret = dma_cookie_status(chan, cookie, txstate);
	if (!txstate)
		return ret;

	dma_set_residue(txstate, c->rx_status);

	return ret;
}

/*
 * dmaengine_prep_slave_single will call the function. and sglen is 1.
 * 8250 uart using one ring buffer, and deal with one sg.
 */
static struct dma_async_tx_descriptor *mtk_uart_apdma_prep_slave_sg
	(struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sglen, enum dma_transfer_direction dir,
	unsigned long tx_flags, void *context)
{
	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
	struct mtk_uart_apdma_desc *d;

	if (!is_slave_direction(dir) || sglen != 1)
		return NULL;

	/* Now allocate and setup the descriptor */
	d = kzalloc(sizeof(*d), GFP_NOWAIT);
	if (!d)
		return NULL;

	d->avail_len = sg_dma_len(sgl);
	d->addr = sg_dma_address(sgl);
	c->dir = dir;

	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
}

static void mtk_uart_apdma_issue_pending(struct dma_chan *chan)
{
	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
	struct virt_dma_desc *vd;
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);
	if (vchan_issue_pending(&c->vc) && !c->desc) {
		vd = vchan_next_desc(&c->vc);
		c->desc = to_mtk_uart_apdma_desc(&vd->tx);

		if (c->dir == DMA_DEV_TO_MEM)
			mtk_uart_apdma_start_rx(c);
		else if (c->dir == DMA_MEM_TO_DEV)
			mtk_uart_apdma_start_tx(c);
	}

	spin_unlock_irqrestore(&c->vc.lock, flags);
}

static int mtk_uart_apdma_slave_config(struct dma_chan *chan,
				   struct dma_slave_config *config)
{
	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);

	memcpy(&c->cfg, config, sizeof(*config));

	return 0;
}

static int mtk_uart_apdma_terminate_all(struct dma_chan *chan)
{
	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
	unsigned long flags;
	unsigned int status;
	LIST_HEAD(head);
	int ret;

	mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);

	ret = readx_poll_timeout(readl, c->base + VFF_FLUSH,
			  status, status != VFF_FLUSH_B, 10, 100);
	if (ret)
		dev_err(c->vc.chan.device->dev, "flush: fail, status=0x%x\n",
			mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));

	/*
	 * Stop need 3 steps.
	 * 1. set stop to 1
	 * 2. wait en to 0
	 * 3. set stop as 0
	 */
	mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_B);
	ret = readx_poll_timeout(readl, c->base + VFF_EN,
			  status, !status, 10, 100);
	if (ret)
		dev_err(c->vc.chan.device->dev, "stop: fail, status=0x%x\n",
			mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));

	mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_CLR_B);
	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);

	if (c->dir == DMA_DEV_TO_MEM)
		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
	else if (c->dir == DMA_MEM_TO_DEV)
		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);

	synchronize_irq(c->irq);

	spin_lock_irqsave(&c->vc.lock, flags);
	vchan_get_all_descriptors(&c->vc, &head);
	spin_unlock_irqrestore(&c->vc.lock, flags);

	vchan_dma_desc_free_list(&c->vc, &head);

	return 0;
}

static int mtk_uart_apdma_device_pause(struct dma_chan *chan)
{
	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&c->vc.lock, flags);

	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);

	synchronize_irq(c->irq);

	spin_unlock_irqrestore(&c->vc.lock, flags);

	return 0;
}

static void mtk_uart_apdma_free(struct mtk_uart_apdmadev *mtkd)
{
	while (!list_empty(&mtkd->ddev.channels)) {
		struct mtk_chan *c = list_first_entry(&mtkd->ddev.channels,
			struct mtk_chan, vc.chan.device_node);

		list_del(&c->vc.chan.device_node);
		tasklet_kill(&c->vc.task);
	}
}

static const struct of_device_id mtk_uart_apdma_match[] = {
	{ .compatible = "mediatek,mt6577-uart-dma", },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mtk_uart_apdma_match);

static int mtk_uart_apdma_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct mtk_uart_apdmadev *mtkd;
	int bit_mask = 32, rc;
	struct mtk_chan *c;
	unsigned int i;

	mtkd = devm_kzalloc(&pdev->dev, sizeof(*mtkd), GFP_KERNEL);
	if (!mtkd)
		return -ENOMEM;

	mtkd->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(mtkd->clk)) {
		dev_err(&pdev->dev, "No clock specified\n");
		rc = PTR_ERR(mtkd->clk);
		return rc;
	}

	if (of_property_read_bool(np, "mediatek,dma-33bits"))
		mtkd->support_33bits = true;

	if (mtkd->support_33bits)
		bit_mask = 33;

	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(bit_mask));
	if (rc)
		return rc;

	dma_cap_set(DMA_SLAVE, mtkd->ddev.cap_mask);
	mtkd->ddev.device_alloc_chan_resources =
				mtk_uart_apdma_alloc_chan_resources;
	mtkd->ddev.device_free_chan_resources =
				mtk_uart_apdma_free_chan_resources;
	mtkd->ddev.device_tx_status = mtk_uart_apdma_tx_status;
	mtkd->ddev.device_issue_pending = mtk_uart_apdma_issue_pending;
	mtkd->ddev.device_prep_slave_sg = mtk_uart_apdma_prep_slave_sg;
	mtkd->ddev.device_config = mtk_uart_apdma_slave_config;
	mtkd->ddev.device_pause = mtk_uart_apdma_device_pause;
	mtkd->ddev.device_terminate_all = mtk_uart_apdma_terminate_all;
	mtkd->ddev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
	mtkd->ddev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
	mtkd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	mtkd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
	mtkd->ddev.dev = &pdev->dev;
	INIT_LIST_HEAD(&mtkd->ddev.channels);

	mtkd->dma_requests = MTK_UART_APDMA_NR_VCHANS;
	if (of_property_read_u32(np, "dma-requests", &mtkd->dma_requests)) {
		dev_info(&pdev->dev,
			 "Using %u as missing dma-requests property\n",
			 MTK_UART_APDMA_NR_VCHANS);
	}

	for (i = 0; i < mtkd->dma_requests; i++) {
		c = devm_kzalloc(mtkd->ddev.dev, sizeof(*c), GFP_KERNEL);
		if (!c) {
			rc = -ENODEV;
			goto err_no_dma;
		}

		c->base = devm_platform_ioremap_resource(pdev, i);
		if (IS_ERR(c->base)) {
			rc = PTR_ERR(c->base);
			goto err_no_dma;
		}
		c->vc.desc_free = mtk_uart_apdma_desc_free;
		vchan_init(&c->vc, &mtkd->ddev);

		rc = platform_get_irq(pdev, i);
		if (rc < 0)
			goto err_no_dma;
		c->irq = rc;
	}

	pm_runtime_enable(&pdev->dev);
	pm_runtime_set_active(&pdev->dev);

	rc = dma_async_device_register(&mtkd->ddev);
	if (rc)
		goto rpm_disable;

	platform_set_drvdata(pdev, mtkd);

	/* Device-tree DMA controller registration */
	rc = of_dma_controller_register(np, of_dma_xlate_by_chan_id, mtkd);
	if (rc)
		goto dma_remove;

	return rc;

dma_remove:
	dma_async_device_unregister(&mtkd->ddev);
rpm_disable:
	pm_runtime_disable(&pdev->dev);
err_no_dma:
	mtk_uart_apdma_free(mtkd);
	return rc;
}

static int mtk_uart_apdma_remove(struct platform_device *pdev)
{
	struct mtk_uart_apdmadev *mtkd = platform_get_drvdata(pdev);

	of_dma_controller_free(pdev->dev.of_node);

	mtk_uart_apdma_free(mtkd);

	dma_async_device_unregister(&mtkd->ddev);

	pm_runtime_disable(&pdev->dev);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int mtk_uart_apdma_suspend(struct device *dev)
{
	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);

	if (!pm_runtime_suspended(dev))
		clk_disable_unprepare(mtkd->clk);

	return 0;
}

static int mtk_uart_apdma_resume(struct device *dev)
{
	int ret;
	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);

	if (!pm_runtime_suspended(dev)) {
		ret = clk_prepare_enable(mtkd->clk);
		if (ret)
			return ret;
	}

	return 0;
}
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM
static int mtk_uart_apdma_runtime_suspend(struct device *dev)
{
	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);

	clk_disable_unprepare(mtkd->clk);

	return 0;
}

static int mtk_uart_apdma_runtime_resume(struct device *dev)
{
	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);

	return clk_prepare_enable(mtkd->clk);
}
#endif /* CONFIG_PM */

static const struct dev_pm_ops mtk_uart_apdma_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(mtk_uart_apdma_suspend, mtk_uart_apdma_resume)
	SET_RUNTIME_PM_OPS(mtk_uart_apdma_runtime_suspend,
			   mtk_uart_apdma_runtime_resume, NULL)
};

static struct platform_driver mtk_uart_apdma_driver = {
	.probe	= mtk_uart_apdma_probe,
	.remove	= mtk_uart_apdma_remove,
	.driver = {
		.name		= KBUILD_MODNAME,
		.pm		= &mtk_uart_apdma_pm_ops,
		.of_match_table = of_match_ptr(mtk_uart_apdma_match),
	},
};

module_platform_driver(mtk_uart_apdma_driver);

MODULE_DESCRIPTION("MediaTek UART APDMA Controller Driver");
MODULE_AUTHOR("Long Cheng <long.cheng@mediatek.com>");
MODULE_LICENSE("GPL v2");