1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
|
/*
* TI EDMA DMA engine driver
*
* Copyright 2012 Texas Instruments
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/edma.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/platform_data/edma.h>
#include "dmaengine.h"
#include "virt-dma.h"
/*
* This will go away when the private EDMA API is folded
* into this driver and the platform device(s) are
* instantiated in the arch code. We can only get away
* with this simplification because DA8XX may not be built
* in the same kernel image with other DaVinci parts. This
* avoids having to sprinkle dmaengine driver platform devices
* and data throughout all the existing board files.
*/
#ifdef CONFIG_ARCH_DAVINCI_DA8XX
#define EDMA_CTLRS 2
#define EDMA_CHANS 32
#else
#define EDMA_CTLRS 1
#define EDMA_CHANS 64
#endif /* CONFIG_ARCH_DAVINCI_DA8XX */
/*
* Max of 20 segments per channel to conserve PaRAM slots
* Also note that MAX_NR_SG should be atleast the no.of periods
* that are required for ASoC, otherwise DMA prep calls will
* fail. Today davinci-pcm is the only user of this driver and
* requires atleast 17 slots, so we setup the default to 20.
*/
#define MAX_NR_SG 20
#define EDMA_MAX_SLOTS MAX_NR_SG
#define EDMA_DESCRIPTORS 16
struct edma_pset {
u32 len;
dma_addr_t addr;
struct edmacc_param param;
};
struct edma_desc {
struct virt_dma_desc vdesc;
struct list_head node;
enum dma_transfer_direction direction;
int cyclic;
int absync;
int pset_nr;
struct edma_chan *echan;
int processed;
/*
* The following 4 elements are used for residue accounting.
*
* - processed_stat: the number of SG elements we have traversed
* so far to cover accounting. This is updated directly to processed
* during edma_callback and is always <= processed, because processed
* refers to the number of pending transfer (programmed to EDMA
* controller), where as processed_stat tracks number of transfers
* accounted for so far.
*
* - residue: The amount of bytes we have left to transfer for this desc
*
* - residue_stat: The residue in bytes of data we have covered
* so far for accounting. This is updated directly to residue
* during callbacks to keep it current.
*
* - sg_len: Tracks the length of the current intermediate transfer,
* this is required to update the residue during intermediate transfer
* completion callback.
*/
int processed_stat;
u32 sg_len;
u32 residue;
u32 residue_stat;
struct edma_pset pset[0];
};
struct edma_cc;
struct edma_chan {
struct virt_dma_chan vchan;
struct list_head node;
struct edma_desc *edesc;
struct edma_cc *ecc;
int ch_num;
bool alloced;
int slot[EDMA_MAX_SLOTS];
int missed;
struct dma_slave_config cfg;
};
struct edma_cc {
int ctlr;
struct dma_device dma_slave;
struct edma_chan slave_chans[EDMA_CHANS];
int num_slave_chans;
int dummy_slot;
};
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
return container_of(d, struct edma_cc, dma_slave);
}
static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
return container_of(c, struct edma_chan, vchan.chan);
}
static inline struct edma_desc
*to_edma_desc(struct dma_async_tx_descriptor *tx)
{
return container_of(tx, struct edma_desc, vdesc.tx);
}
static void edma_desc_free(struct virt_dma_desc *vdesc)
{
kfree(container_of(vdesc, struct edma_desc, vdesc));
}
/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
struct virt_dma_desc *vdesc;
struct edma_desc *edesc;
struct device *dev = echan->vchan.chan.device->dev;
int i, j, left, nslots;
/* If either we processed all psets or we're still not started */
if (!echan->edesc ||
echan->edesc->pset_nr == echan->edesc->processed) {
/* Get next vdesc */
vdesc = vchan_next_desc(&echan->vchan);
if (!vdesc) {
echan->edesc = NULL;
return;
}
list_del(&vdesc->node);
echan->edesc = to_edma_desc(&vdesc->tx);
}
edesc = echan->edesc;
/* Find out how many left */
left = edesc->pset_nr - edesc->processed;
nslots = min(MAX_NR_SG, left);
edesc->sg_len = 0;
/* Write descriptor PaRAM set(s) */
for (i = 0; i < nslots; i++) {
j = i + edesc->processed;
edma_write_slot(echan->slot[i], &edesc->pset[j].param);
edesc->sg_len += edesc->pset[j].len;
dev_vdbg(echan->vchan.chan.device->dev,
"\n pset[%d]:\n"
" chnum\t%d\n"
" slot\t%d\n"
" opt\t%08x\n"
" src\t%08x\n"
" dst\t%08x\n"
" abcnt\t%08x\n"
" ccnt\t%08x\n"
" bidx\t%08x\n"
" cidx\t%08x\n"
" lkrld\t%08x\n",
j, echan->ch_num, echan->slot[i],
edesc->pset[j].param.opt,
edesc->pset[j].param.src,
edesc->pset[j].param.dst,
edesc->pset[j].param.a_b_cnt,
edesc->pset[j].param.ccnt,
edesc->pset[j].param.src_dst_bidx,
edesc->pset[j].param.src_dst_cidx,
edesc->pset[j].param.link_bcntrld);
/* Link to the previous slot if not the last set */
if (i != (nslots - 1))
edma_link(echan->slot[i], echan->slot[i+1]);
}
edesc->processed += nslots;
/*
* If this is either the last set in a set of SG-list transactions
* then setup a link to the dummy slot, this results in all future
* events being absorbed and that's OK because we're done
*/
if (edesc->processed == edesc->pset_nr) {
if (edesc->cyclic)
edma_link(echan->slot[nslots-1], echan->slot[1]);
else
edma_link(echan->slot[nslots-1],
echan->ecc->dummy_slot);
}
if (edesc->processed <= MAX_NR_SG) {
dev_dbg(dev, "first transfer starting on channel %d\n",
echan->ch_num);
edma_start(echan->ch_num);
} else {
dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
echan->ch_num, edesc->processed);
edma_resume(echan->ch_num);
}
/*
* This happens due to setup times between intermediate transfers
* in long SG lists which have to be broken up into transfers of
* MAX_NR_SG
*/
if (echan->missed) {
dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
edma_clean_channel(echan->ch_num);
edma_stop(echan->ch_num);
edma_start(echan->ch_num);
edma_trigger_channel(echan->ch_num);
echan->missed = 0;
}
}
static int edma_terminate_all(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&echan->vchan.lock, flags);
/*
* Stop DMA activity: we assume the callback will not be called
* after edma_dma() returns (even if it does, it will see
* echan->edesc is NULL and exit.)
*/
if (echan->edesc) {
int cyclic = echan->edesc->cyclic;
/*
* free the running request descriptor
* since it is not in any of the vdesc lists
*/
edma_desc_free(&echan->edesc->vdesc);
echan->edesc = NULL;
edma_stop(echan->ch_num);
/* Move the cyclic channel back to default queue */
if (cyclic)
edma_assign_channel_eventq(echan->ch_num,
EVENTQ_DEFAULT);
}
vchan_get_all_descriptors(&echan->vchan, &head);
spin_unlock_irqrestore(&echan->vchan.lock, flags);
vchan_dma_desc_free_list(&echan->vchan, &head);
return 0;
}
static int edma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct edma_chan *echan = to_edma_chan(chan);
if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
return -EINVAL;
memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
return 0;
}
static int edma_dma_pause(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
if (!echan->edesc)
return -EINVAL;
edma_pause(echan->ch_num);
return 0;
}
static int edma_dma_resume(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
edma_resume(echan->ch_num);
return 0;
}
/*
* A PaRAM set configuration abstraction used by other modes
* @chan: Channel who's PaRAM set we're configuring
* @pset: PaRAM set to initialize and setup.
* @src_addr: Source address of the DMA
* @dst_addr: Destination address of the DMA
* @burst: In units of dev_width, how much to send
* @dev_width: How much is the dev_width
* @dma_length: Total length of the DMA transfer
* @direction: Direction of the transfer
*/
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
enum dma_slave_buswidth dev_width, unsigned int dma_length,
enum dma_transfer_direction direction)
{
struct edma_chan *echan = to_edma_chan(chan);
struct device *dev = chan->device->dev;
struct edmacc_param *param = &epset->param;
int acnt, bcnt, ccnt, cidx;
int src_bidx, dst_bidx, src_cidx, dst_cidx;
int absync;
acnt = dev_width;
/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
if (!burst)
burst = 1;
/*
* If the maxburst is equal to the fifo width, use
* A-synced transfers. This allows for large contiguous
* buffer transfers using only one PaRAM set.
*/
if (burst == 1) {
/*
* For the A-sync case, bcnt and ccnt are the remainder
* and quotient respectively of the division of:
* (dma_length / acnt) by (SZ_64K -1). This is so
* that in case bcnt over flows, we have ccnt to use.
* Note: In A-sync tranfer only, bcntrld is used, but it
* only applies for sg_dma_len(sg) >= SZ_64K.
* In this case, the best way adopted is- bccnt for the
* first frame will be the remainder below. Then for
* every successive frame, bcnt will be SZ_64K-1. This
* is assured as bcntrld = 0xffff in end of function.
*/
absync = false;
ccnt = dma_length / acnt / (SZ_64K - 1);
bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
/*
* If bcnt is non-zero, we have a remainder and hence an
* extra frame to transfer, so increment ccnt.
*/
if (bcnt)
ccnt++;
else
bcnt = SZ_64K - 1;
cidx = acnt;
} else {
/*
* If maxburst is greater than the fifo address_width,
* use AB-synced transfers where A count is the fifo
* address_width and B count is the maxburst. In this
* case, we are limited to transfers of C count frames
* of (address_width * maxburst) where C count is limited
* to SZ_64K-1. This places an upper bound on the length
* of an SG segment that can be handled.
*/
absync = true;
bcnt = burst;
ccnt = dma_length / (acnt * bcnt);
if (ccnt > (SZ_64K - 1)) {
dev_err(dev, "Exceeded max SG segment size\n");
return -EINVAL;
}
cidx = acnt * bcnt;
}
epset->len = dma_length;
if (direction == DMA_MEM_TO_DEV) {
src_bidx = acnt;
src_cidx = cidx;
dst_bidx = 0;
dst_cidx = 0;
epset->addr = src_addr;
} else if (direction == DMA_DEV_TO_MEM) {
src_bidx = 0;
src_cidx = 0;
dst_bidx = acnt;
dst_cidx = cidx;
epset->addr = dst_addr;
} else if (direction == DMA_MEM_TO_MEM) {
src_bidx = acnt;
src_cidx = cidx;
dst_bidx = acnt;
dst_cidx = cidx;
} else {
dev_err(dev, "%s: direction not implemented yet\n", __func__);
return -EINVAL;
}
param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
/* Configure A or AB synchronized transfers */
if (absync)
param->opt |= SYNCDIM;
param->src = src_addr;
param->dst = dst_addr;
param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
param->a_b_cnt = bcnt << 16 | acnt;
param->ccnt = ccnt;
/*
* Only time when (bcntrld) auto reload is required is for
* A-sync case, and in this case, a requirement of reload value
* of SZ_64K-1 only is assured. 'link' is initially set to NULL
* and then later will be populated by edma_execute.
*/
param->link_bcntrld = 0xffffffff;
return absync;
}
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long tx_flags, void *context)
{
struct edma_chan *echan = to_edma_chan(chan);
struct device *dev = chan->device->dev;
struct edma_desc *edesc;
dma_addr_t src_addr = 0, dst_addr = 0;
enum dma_slave_buswidth dev_width;
u32 burst;
struct scatterlist *sg;
int i, nslots, ret;
if (unlikely(!echan || !sgl || !sg_len))
return NULL;
if (direction == DMA_DEV_TO_MEM) {
src_addr = echan->cfg.src_addr;
dev_width = echan->cfg.src_addr_width;
burst = echan->cfg.src_maxburst;
} else if (direction == DMA_MEM_TO_DEV) {
dst_addr = echan->cfg.dst_addr;
dev_width = echan->cfg.dst_addr_width;
burst = echan->cfg.dst_maxburst;
} else {
dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
return NULL;
}
if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
return NULL;
}
edesc = kzalloc(sizeof(*edesc) + sg_len *
sizeof(edesc->pset[0]), GFP_ATOMIC);
if (!edesc) {
dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
return NULL;
}
edesc->pset_nr = sg_len;
edesc->residue = 0;
edesc->direction = direction;
edesc->echan = echan;
/* Allocate a PaRAM slot, if needed */
nslots = min_t(unsigned, MAX_NR_SG, sg_len);
for (i = 0; i < nslots; i++) {
if (echan->slot[i] < 0) {
echan->slot[i] =
edma_alloc_slot(EDMA_CTLR(echan->ch_num),
EDMA_SLOT_ANY);
if (echan->slot[i] < 0) {
kfree(edesc);
dev_err(dev, "%s: Failed to allocate slot\n",
__func__);
return NULL;
}
}
}
/* Configure PaRAM sets for each SG */
for_each_sg(sgl, sg, sg_len, i) {
/* Get address for each SG */
if (direction == DMA_DEV_TO_MEM)
dst_addr = sg_dma_address(sg);
else
src_addr = sg_dma_address(sg);
ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
dst_addr, burst, dev_width,
sg_dma_len(sg), direction);
if (ret < 0) {
kfree(edesc);
return NULL;
}
edesc->absync = ret;
edesc->residue += sg_dma_len(sg);
/* If this is the last in a current SG set of transactions,
enable interrupts so that next set is processed */
if (!((i+1) % MAX_NR_SG))
edesc->pset[i].param.opt |= TCINTEN;
/* If this is the last set, enable completion interrupt flag */
if (i == sg_len - 1)
edesc->pset[i].param.opt |= TCINTEN;
}
edesc->residue_stat = edesc->residue;
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long tx_flags)
{
int ret;
struct edma_desc *edesc;
struct device *dev = chan->device->dev;
struct edma_chan *echan = to_edma_chan(chan);
if (unlikely(!echan || !len))
return NULL;
edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
if (!edesc) {
dev_dbg(dev, "Failed to allocate a descriptor\n");
return NULL;
}
edesc->pset_nr = 1;
ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
if (ret < 0)
return NULL;
edesc->absync = ret;
/*
* Enable intermediate transfer chaining to re-trigger channel
* on completion of every TR, and enable transfer-completion
* interrupt on completion of the whole transfer.
*/
edesc->pset[0].param.opt |= ITCCHEN;
edesc->pset[0].param.opt |= TCINTEN;
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long tx_flags)
{
struct edma_chan *echan = to_edma_chan(chan);
struct device *dev = chan->device->dev;
struct edma_desc *edesc;
dma_addr_t src_addr, dst_addr;
enum dma_slave_buswidth dev_width;
u32 burst;
int i, ret, nslots;
if (unlikely(!echan || !buf_len || !period_len))
return NULL;
if (direction == DMA_DEV_TO_MEM) {
src_addr = echan->cfg.src_addr;
dst_addr = buf_addr;
dev_width = echan->cfg.src_addr_width;
burst = echan->cfg.src_maxburst;
} else if (direction == DMA_MEM_TO_DEV) {
src_addr = buf_addr;
dst_addr = echan->cfg.dst_addr;
dev_width = echan->cfg.dst_addr_width;
burst = echan->cfg.dst_maxburst;
} else {
dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
return NULL;
}
if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
return NULL;
}
if (unlikely(buf_len % period_len)) {
dev_err(dev, "Period should be multiple of Buffer length\n");
return NULL;
}
nslots = (buf_len / period_len) + 1;
/*
* Cyclic DMA users such as audio cannot tolerate delays introduced
* by cases where the number of periods is more than the maximum
* number of SGs the EDMA driver can handle at a time. For DMA types
* such as Slave SGs, such delays are tolerable and synchronized,
* but the synchronization is difficult to achieve with Cyclic and
* cannot be guaranteed, so we error out early.
*/
if (nslots > MAX_NR_SG)
return NULL;
edesc = kzalloc(sizeof(*edesc) + nslots *
sizeof(edesc->pset[0]), GFP_ATOMIC);
if (!edesc) {
dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
return NULL;
}
edesc->cyclic = 1;
edesc->pset_nr = nslots;
edesc->residue = edesc->residue_stat = buf_len;
edesc->direction = direction;
edesc->echan = echan;
dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
__func__, echan->ch_num, nslots, period_len, buf_len);
for (i = 0; i < nslots; i++) {
/* Allocate a PaRAM slot, if needed */
if (echan->slot[i] < 0) {
echan->slot[i] =
edma_alloc_slot(EDMA_CTLR(echan->ch_num),
EDMA_SLOT_ANY);
if (echan->slot[i] < 0) {
kfree(edesc);
dev_err(dev, "%s: Failed to allocate slot\n",
__func__);
return NULL;
}
}
if (i == nslots - 1) {
memcpy(&edesc->pset[i], &edesc->pset[0],
sizeof(edesc->pset[0]));
break;
}
ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
dst_addr, burst, dev_width, period_len,
direction);
if (ret < 0) {
kfree(edesc);
return NULL;
}
if (direction == DMA_DEV_TO_MEM)
dst_addr += period_len;
else
src_addr += period_len;
dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
dev_vdbg(dev,
"\n pset[%d]:\n"
" chnum\t%d\n"
" slot\t%d\n"
" opt\t%08x\n"
" src\t%08x\n"
" dst\t%08x\n"
" abcnt\t%08x\n"
" ccnt\t%08x\n"
" bidx\t%08x\n"
" cidx\t%08x\n"
" lkrld\t%08x\n",
i, echan->ch_num, echan->slot[i],
edesc->pset[i].param.opt,
edesc->pset[i].param.src,
edesc->pset[i].param.dst,
edesc->pset[i].param.a_b_cnt,
edesc->pset[i].param.ccnt,
edesc->pset[i].param.src_dst_bidx,
edesc->pset[i].param.src_dst_cidx,
edesc->pset[i].param.link_bcntrld);
edesc->absync = ret;
/*
* Enable period interrupt only if it is requested
*/
if (tx_flags & DMA_PREP_INTERRUPT)
edesc->pset[i].param.opt |= TCINTEN;
}
/* Place the cyclic channel to highest priority queue */
edma_assign_channel_eventq(echan->ch_num, EVENTQ_0);
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}
static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
{
struct edma_chan *echan = data;
struct device *dev = echan->vchan.chan.device->dev;
struct edma_desc *edesc;
struct edmacc_param p;
edesc = echan->edesc;
/* Pause the channel for non-cyclic */
if (!edesc || (edesc && !edesc->cyclic))
edma_pause(echan->ch_num);
switch (ch_status) {
case EDMA_DMA_COMPLETE:
spin_lock(&echan->vchan.lock);
if (edesc) {
if (edesc->cyclic) {
vchan_cyclic_callback(&edesc->vdesc);
} else if (edesc->processed == edesc->pset_nr) {
dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
edesc->residue = 0;
edma_stop(echan->ch_num);
vchan_cookie_complete(&edesc->vdesc);
edma_execute(echan);
} else {
dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
/* Update statistics for tx_status */
edesc->residue -= edesc->sg_len;
edesc->residue_stat = edesc->residue;
edesc->processed_stat = edesc->processed;
edma_execute(echan);
}
}
spin_unlock(&echan->vchan.lock);
break;
case EDMA_DMA_CC_ERROR:
spin_lock(&echan->vchan.lock);
edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
/*
* Issue later based on missed flag which will be sure
* to happen as:
* (1) we finished transmitting an intermediate slot and
* edma_execute is coming up.
* (2) or we finished current transfer and issue will
* call edma_execute.
*
* Important note: issuing can be dangerous here and
* lead to some nasty recursion when we are in a NULL
* slot. So we avoid doing so and set the missed flag.
*/
if (p.a_b_cnt == 0 && p.ccnt == 0) {
dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
echan->missed = 1;
} else {
/*
* The slot is already programmed but the event got
* missed, so its safe to issue it here.
*/
dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
edma_clean_channel(echan->ch_num);
edma_stop(echan->ch_num);
edma_start(echan->ch_num);
edma_trigger_channel(echan->ch_num);
}
spin_unlock(&echan->vchan.lock);
break;
default:
break;
}
}
/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
struct device *dev = chan->device->dev;
int ret;
int a_ch_num;
LIST_HEAD(descs);
a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
echan, EVENTQ_DEFAULT);
if (a_ch_num < 0) {
ret = -ENODEV;
goto err_no_chan;
}
if (a_ch_num != echan->ch_num) {
dev_err(dev, "failed to allocate requested channel %u:%u\n",
EDMA_CTLR(echan->ch_num),
EDMA_CHAN_SLOT(echan->ch_num));
ret = -ENODEV;
goto err_wrong_chan;
}
echan->alloced = true;
echan->slot[0] = echan->ch_num;
dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
return 0;
err_wrong_chan:
edma_free_channel(a_ch_num);
err_no_chan:
return ret;
}
/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
struct device *dev = chan->device->dev;
int i;
/* Terminate transfers */
edma_stop(echan->ch_num);
vchan_free_chan_resources(&echan->vchan);
/* Free EDMA PaRAM slots */
for (i = 1; i < EDMA_MAX_SLOTS; i++) {
if (echan->slot[i] >= 0) {
edma_free_slot(echan->slot[i]);
echan->slot[i] = -1;
}
}
/* Free EDMA channel */
if (echan->alloced) {
edma_free_channel(echan->ch_num);
echan->alloced = false;
}
dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
}
/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
struct edma_chan *echan = to_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&echan->vchan.lock, flags);
if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
edma_execute(echan);
spin_unlock_irqrestore(&echan->vchan.lock, flags);
}
static u32 edma_residue(struct edma_desc *edesc)
{
bool dst = edesc->direction == DMA_DEV_TO_MEM;
struct edma_pset *pset = edesc->pset;
dma_addr_t done, pos;
int i;
/*
* We always read the dst/src position from the first RamPar
* pset. That's the one which is active now.
*/
pos = edma_get_position(edesc->echan->slot[0], dst);
/*
* Cyclic is simple. Just subtract pset[0].addr from pos.
*
* We never update edesc->residue in the cyclic case, so we
* can tell the remaining room to the end of the circular
* buffer.
*/
if (edesc->cyclic) {
done = pos - pset->addr;
edesc->residue_stat = edesc->residue - done;
return edesc->residue_stat;
}
/*
* For SG operation we catch up with the last processed
* status.
*/
pset += edesc->processed_stat;
for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
/*
* If we are inside this pset address range, we know
* this is the active one. Get the current delta and
* stop walking the psets.
*/
if (pos >= pset->addr && pos < pset->addr + pset->len)
return edesc->residue_stat - (pos - pset->addr);
/* Otherwise mark it done and update residue_stat. */
edesc->processed_stat++;
edesc->residue_stat -= pset->len;
}
return edesc->residue_stat;
}
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct edma_chan *echan = to_edma_chan(chan);
struct virt_dma_desc *vdesc;
enum dma_status ret;
unsigned long flags;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&echan->vchan.lock, flags);
if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
txstate->residue = edma_residue(echan->edesc);
else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
txstate->residue = to_edma_desc(&vdesc->tx)->residue;
spin_unlock_irqrestore(&echan->vchan.lock, flags);
return ret;
}
static void __init edma_chan_init(struct edma_cc *ecc,
struct dma_device *dma,
struct edma_chan *echans)
{
int i, j;
for (i = 0; i < EDMA_CHANS; i++) {
struct edma_chan *echan = &echans[i];
echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
echan->ecc = ecc;
echan->vchan.desc_free = edma_desc_free;
vchan_init(&echan->vchan, dma);
INIT_LIST_HEAD(&echan->node);
for (j = 0; j < EDMA_MAX_SLOTS; j++)
echan->slot[j] = -1;
}
}
#define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
struct device *dev)
{
dma->device_prep_slave_sg = edma_prep_slave_sg;
dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
dma->device_alloc_chan_resources = edma_alloc_chan_resources;
dma->device_free_chan_resources = edma_free_chan_resources;
dma->device_issue_pending = edma_issue_pending;
dma->device_tx_status = edma_tx_status;
dma->device_config = edma_slave_config;
dma->device_pause = edma_dma_pause;
dma->device_resume = edma_dma_resume;
dma->device_terminate_all = edma_terminate_all;
dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
dma->dev = dev;
/*
* code using dma memcpy must make sure alignment of
* length is at dma->copy_align boundary.
*/
dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES;
INIT_LIST_HEAD(&dma->channels);
}
static int edma_probe(struct platform_device *pdev)
{
struct edma_cc *ecc;
int ret;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
if (!ecc) {
dev_err(&pdev->dev, "Can't allocate controller\n");
return -ENOMEM;
}
ecc->ctlr = pdev->id;
ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
if (ecc->dummy_slot < 0) {
dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
return ecc->dummy_slot;
}
dma_cap_zero(ecc->dma_slave.cap_mask);
dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
ret = dma_async_device_register(&ecc->dma_slave);
if (ret)
goto err_reg1;
platform_set_drvdata(pdev, ecc);
dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
return 0;
err_reg1:
edma_free_slot(ecc->dummy_slot);
return ret;
}
static int edma_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct edma_cc *ecc = dev_get_drvdata(dev);
dma_async_device_unregister(&ecc->dma_slave);
edma_free_slot(ecc->dummy_slot);
return 0;
}
static struct platform_driver edma_driver = {
.probe = edma_probe,
.remove = edma_remove,
.driver = {
.name = "edma-dma-engine",
},
};
bool edma_filter_fn(struct dma_chan *chan, void *param)
{
if (chan->device->dev->driver == &edma_driver.driver) {
struct edma_chan *echan = to_edma_chan(chan);
unsigned ch_req = *(unsigned *)param;
return ch_req == echan->ch_num;
}
return false;
}
EXPORT_SYMBOL(edma_filter_fn);
static int edma_init(void)
{
return platform_driver_register(&edma_driver);
}
subsys_initcall(edma_init);
static void __exit edma_exit(void)
{
platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");
|