summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/mediatek/mtk-sha.c
blob: a0806ba40c68deae338073635878e6140e0095d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
/*
 * Cryptographic API.
 *
 * Driver for EIP97 SHA1/SHA2(HMAC) acceleration.
 *
 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Some ideas are from atmel-sha.c and omap-sham.c drivers.
 */

#include <crypto/hmac.h>
#include <crypto/sha.h>
#include "mtk-platform.h"

#define SHA_ALIGN_MSK		(sizeof(u32) - 1)
#define SHA_QUEUE_SIZE		512
#define SHA_BUF_SIZE		((u32)PAGE_SIZE)

#define SHA_OP_UPDATE		1
#define SHA_OP_FINAL		2

#define SHA_DATA_LEN_MSK	cpu_to_le32(GENMASK(16, 0))
#define SHA_MAX_DIGEST_BUF_SIZE	32

/* SHA command token */
#define SHA_CT_SIZE		5
#define SHA_CT_CTRL_HDR		cpu_to_le32(0x02220000)
#define SHA_CMD0		cpu_to_le32(0x03020000)
#define SHA_CMD1		cpu_to_le32(0x21060000)
#define SHA_CMD2		cpu_to_le32(0xe0e63802)

/* SHA transform information */
#define SHA_TFM_HASH		cpu_to_le32(0x2 << 0)
#define SHA_TFM_SIZE(x)		cpu_to_le32((x) << 8)
#define SHA_TFM_START		cpu_to_le32(0x1 << 4)
#define SHA_TFM_CONTINUE	cpu_to_le32(0x1 << 5)
#define SHA_TFM_HASH_STORE	cpu_to_le32(0x1 << 19)
#define SHA_TFM_SHA1		cpu_to_le32(0x2 << 23)
#define SHA_TFM_SHA256		cpu_to_le32(0x3 << 23)
#define SHA_TFM_SHA224		cpu_to_le32(0x4 << 23)
#define SHA_TFM_SHA512		cpu_to_le32(0x5 << 23)
#define SHA_TFM_SHA384		cpu_to_le32(0x6 << 23)
#define SHA_TFM_DIGEST(x)	cpu_to_le32(((x) & GENMASK(3, 0)) << 24)

/* SHA flags */
#define SHA_FLAGS_BUSY		BIT(0)
#define	SHA_FLAGS_FINAL		BIT(1)
#define SHA_FLAGS_FINUP		BIT(2)
#define SHA_FLAGS_SG		BIT(3)
#define SHA_FLAGS_ALGO_MSK	GENMASK(8, 4)
#define SHA_FLAGS_SHA1		BIT(4)
#define SHA_FLAGS_SHA224	BIT(5)
#define SHA_FLAGS_SHA256	BIT(6)
#define SHA_FLAGS_SHA384	BIT(7)
#define SHA_FLAGS_SHA512	BIT(8)
#define SHA_FLAGS_HMAC		BIT(9)
#define SHA_FLAGS_PAD		BIT(10)

/**
 * mtk_sha_info - hardware information of AES
 * @cmd:	command token, hardware instruction
 * @tfm:	transform state of cipher algorithm.
 * @state:	contains keys and initial vectors.
 *
 */
struct mtk_sha_info {
	__le32 ctrl[2];
	__le32 cmd[3];
	__le32 tfm[2];
	__le32 digest[SHA_MAX_DIGEST_BUF_SIZE];
};

struct mtk_sha_reqctx {
	struct mtk_sha_info info;
	unsigned long flags;
	unsigned long op;

	u64 digcnt;
	size_t bufcnt;
	dma_addr_t dma_addr;

	__le32 ct_hdr;
	u32 ct_size;
	dma_addr_t ct_dma;
	dma_addr_t tfm_dma;

	/* Walk state */
	struct scatterlist *sg;
	u32 offset;	/* Offset in current sg */
	u32 total;	/* Total request */
	size_t ds;
	size_t bs;

	u8 *buffer;
};

struct mtk_sha_hmac_ctx {
	struct crypto_shash	*shash;
	u8 ipad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
	u8 opad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
};

struct mtk_sha_ctx {
	struct mtk_cryp *cryp;
	unsigned long flags;
	u8 id;
	u8 buf[SHA_BUF_SIZE] __aligned(sizeof(u32));

	struct mtk_sha_hmac_ctx	base[0];
};

struct mtk_sha_drv {
	struct list_head dev_list;
	/* Device list lock */
	spinlock_t lock;
};

static struct mtk_sha_drv mtk_sha = {
	.dev_list = LIST_HEAD_INIT(mtk_sha.dev_list),
	.lock = __SPIN_LOCK_UNLOCKED(mtk_sha.lock),
};

static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
				struct ahash_request *req);

static inline u32 mtk_sha_read(struct mtk_cryp *cryp, u32 offset)
{
	return readl_relaxed(cryp->base + offset);
}

static inline void mtk_sha_write(struct mtk_cryp *cryp,
				 u32 offset, u32 value)
{
	writel_relaxed(value, cryp->base + offset);
}

static inline void mtk_sha_ring_shift(struct mtk_ring *ring,
				      struct mtk_desc **cmd_curr,
				      struct mtk_desc **res_curr,
				      int *count)
{
	*cmd_curr = ring->cmd_next++;
	*res_curr = ring->res_next++;
	(*count)++;

	if (ring->cmd_next == ring->cmd_base + MTK_DESC_NUM) {
		ring->cmd_next = ring->cmd_base;
		ring->res_next = ring->res_base;
	}
}

static struct mtk_cryp *mtk_sha_find_dev(struct mtk_sha_ctx *tctx)
{
	struct mtk_cryp *cryp = NULL;
	struct mtk_cryp *tmp;

	spin_lock_bh(&mtk_sha.lock);
	if (!tctx->cryp) {
		list_for_each_entry(tmp, &mtk_sha.dev_list, sha_list) {
			cryp = tmp;
			break;
		}
		tctx->cryp = cryp;
	} else {
		cryp = tctx->cryp;
	}

	/*
	 * Assign record id to tfm in round-robin fashion, and this
	 * will help tfm to bind  to corresponding descriptor rings.
	 */
	tctx->id = cryp->rec;
	cryp->rec = !cryp->rec;

	spin_unlock_bh(&mtk_sha.lock);

	return cryp;
}

static int mtk_sha_append_sg(struct mtk_sha_reqctx *ctx)
{
	size_t count;

	while ((ctx->bufcnt < SHA_BUF_SIZE) && ctx->total) {
		count = min(ctx->sg->length - ctx->offset, ctx->total);
		count = min(count, SHA_BUF_SIZE - ctx->bufcnt);

		if (count <= 0) {
			/*
			 * Check if count <= 0 because the buffer is full or
			 * because the sg length is 0. In the latest case,
			 * check if there is another sg in the list, a 0 length
			 * sg doesn't necessarily mean the end of the sg list.
			 */
			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
				ctx->sg = sg_next(ctx->sg);
				continue;
			} else {
				break;
			}
		}

		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
					 ctx->offset, count, 0);

		ctx->bufcnt += count;
		ctx->offset += count;
		ctx->total -= count;

		if (ctx->offset == ctx->sg->length) {
			ctx->sg = sg_next(ctx->sg);
			if (ctx->sg)
				ctx->offset = 0;
			else
				ctx->total = 0;
		}
	}

	return 0;
}

/*
 * The purpose of this padding is to ensure that the padded message is a
 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 * The bit "1" is appended at the end of the message followed by
 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 * is appended.
 *
 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
 *  - if message length < 56 bytes then padlen = 56 - message length
 *  - else padlen = 64 + 56 - message length
 *
 * For SHA384/SHA512, padlen is calculated as followed:
 *  - if message length < 112 bytes then padlen = 112 - message length
 *  - else padlen = 128 + 112 - message length
 */
static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
{
	u32 index, padlen;
	u64 bits[2];
	u64 size = ctx->digcnt;

	size += ctx->bufcnt;
	size += len;

	bits[1] = cpu_to_be64(size << 3);
	bits[0] = cpu_to_be64(size >> 61);

	switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
	case SHA_FLAGS_SHA384:
	case SHA_FLAGS_SHA512:
		index = ctx->bufcnt & 0x7f;
		padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
		*(ctx->buffer + ctx->bufcnt) = 0x80;
		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
		ctx->bufcnt += padlen + 16;
		ctx->flags |= SHA_FLAGS_PAD;
		break;

	default:
		index = ctx->bufcnt & 0x3f;
		padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
		*(ctx->buffer + ctx->bufcnt) = 0x80;
		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
		ctx->bufcnt += padlen + 8;
		ctx->flags |= SHA_FLAGS_PAD;
		break;
	}
}

/* Initialize basic transform information of SHA */
static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
{
	struct mtk_sha_info *info = &ctx->info;

	ctx->ct_hdr = SHA_CT_CTRL_HDR;
	ctx->ct_size = SHA_CT_SIZE;

	info->tfm[0] = SHA_TFM_HASH | SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));

	switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
	case SHA_FLAGS_SHA1:
		info->tfm[0] |= SHA_TFM_SHA1;
		break;
	case SHA_FLAGS_SHA224:
		info->tfm[0] |= SHA_TFM_SHA224;
		break;
	case SHA_FLAGS_SHA256:
		info->tfm[0] |= SHA_TFM_SHA256;
		break;
	case SHA_FLAGS_SHA384:
		info->tfm[0] |= SHA_TFM_SHA384;
		break;
	case SHA_FLAGS_SHA512:
		info->tfm[0] |= SHA_TFM_SHA512;
		break;

	default:
		/* Should not happen... */
		return;
	}

	info->tfm[1] = SHA_TFM_HASH_STORE;
	info->ctrl[0] = info->tfm[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
	info->ctrl[1] = info->tfm[1];

	info->cmd[0] = SHA_CMD0;
	info->cmd[1] = SHA_CMD1;
	info->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
}

/*
 * Update input data length field of transform information and
 * map it to DMA region.
 */
static int mtk_sha_info_update(struct mtk_cryp *cryp,
			       struct mtk_sha_rec *sha,
			       size_t len1, size_t len2)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
	struct mtk_sha_info *info = &ctx->info;

	ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
	ctx->ct_hdr |= cpu_to_le32(len1 + len2);
	info->cmd[0] &= ~SHA_DATA_LEN_MSK;
	info->cmd[0] |= cpu_to_le32(len1 + len2);

	/* Setting SHA_TFM_START only for the first iteration */
	if (ctx->digcnt)
		info->ctrl[0] &= ~SHA_TFM_START;

	ctx->digcnt += len1;

	ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
				     DMA_BIDIRECTIONAL);
	if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) {
		dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
		return -EINVAL;
	}

	ctx->tfm_dma = ctx->ct_dma + sizeof(info->ctrl) + sizeof(info->cmd);

	return 0;
}

/*
 * Because of hardware limitation, we must pre-calculate the inner
 * and outer digest that need to be processed firstly by engine, then
 * apply the result digest to the input message. These complex hashing
 * procedures limits HMAC performance, so we use fallback SW encoding.
 */
static int mtk_sha_finish_hmac(struct ahash_request *req)
{
	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
	struct mtk_sha_hmac_ctx *bctx = tctx->base;
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);

	SHASH_DESC_ON_STACK(shash, bctx->shash);

	shash->tfm = bctx->shash;

	return crypto_shash_init(shash) ?:
	       crypto_shash_update(shash, bctx->opad, ctx->bs) ?:
	       crypto_shash_finup(shash, req->result, ctx->ds, req->result);
}

/* Initialize request context */
static int mtk_sha_init(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);

	ctx->flags = 0;
	ctx->ds = crypto_ahash_digestsize(tfm);

	switch (ctx->ds) {
	case SHA1_DIGEST_SIZE:
		ctx->flags |= SHA_FLAGS_SHA1;
		ctx->bs = SHA1_BLOCK_SIZE;
		break;
	case SHA224_DIGEST_SIZE:
		ctx->flags |= SHA_FLAGS_SHA224;
		ctx->bs = SHA224_BLOCK_SIZE;
		break;
	case SHA256_DIGEST_SIZE:
		ctx->flags |= SHA_FLAGS_SHA256;
		ctx->bs = SHA256_BLOCK_SIZE;
		break;
	case SHA384_DIGEST_SIZE:
		ctx->flags |= SHA_FLAGS_SHA384;
		ctx->bs = SHA384_BLOCK_SIZE;
		break;
	case SHA512_DIGEST_SIZE:
		ctx->flags |= SHA_FLAGS_SHA512;
		ctx->bs = SHA512_BLOCK_SIZE;
		break;
	default:
		return -EINVAL;
	}

	ctx->bufcnt = 0;
	ctx->digcnt = 0;
	ctx->buffer = tctx->buf;

	if (tctx->flags & SHA_FLAGS_HMAC) {
		struct mtk_sha_hmac_ctx *bctx = tctx->base;

		memcpy(ctx->buffer, bctx->ipad, ctx->bs);
		ctx->bufcnt = ctx->bs;
		ctx->flags |= SHA_FLAGS_HMAC;
	}

	return 0;
}

static int mtk_sha_xmit(struct mtk_cryp *cryp, struct mtk_sha_rec *sha,
			dma_addr_t addr1, size_t len1,
			dma_addr_t addr2, size_t len2)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
	struct mtk_ring *ring = cryp->ring[sha->id];
	struct mtk_desc *cmd, *res;
	int err, count = 0;

	err = mtk_sha_info_update(cryp, sha, len1, len2);
	if (err)
		return err;

	/* Fill in the command/result descriptors */
	mtk_sha_ring_shift(ring, &cmd, &res, &count);

	res->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1);
	cmd->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1) |
		   MTK_DESC_CT_LEN(ctx->ct_size);
	cmd->buf = cpu_to_le32(addr1);
	cmd->ct = cpu_to_le32(ctx->ct_dma);
	cmd->ct_hdr = ctx->ct_hdr;
	cmd->tfm = cpu_to_le32(ctx->tfm_dma);

	if (len2) {
		mtk_sha_ring_shift(ring, &cmd, &res, &count);

		res->hdr = MTK_DESC_BUF_LEN(len2);
		cmd->hdr = MTK_DESC_BUF_LEN(len2);
		cmd->buf = cpu_to_le32(addr2);
	}

	cmd->hdr |= MTK_DESC_LAST;
	res->hdr |= MTK_DESC_LAST;

	/*
	 * Make sure that all changes to the DMA ring are done before we
	 * start engine.
	 */
	wmb();
	/* Start DMA transfer */
	mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
	mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));

	return -EINPROGRESS;
}

static int mtk_sha_dma_map(struct mtk_cryp *cryp,
			   struct mtk_sha_rec *sha,
			   struct mtk_sha_reqctx *ctx,
			   size_t count)
{
	ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
				       SHA_BUF_SIZE, DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
		dev_err(cryp->dev, "dma map error\n");
		return -EINVAL;
	}

	ctx->flags &= ~SHA_FLAGS_SG;

	return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count, 0, 0);
}

static int mtk_sha_update_slow(struct mtk_cryp *cryp,
			       struct mtk_sha_rec *sha)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
	size_t count;
	u32 final;

	mtk_sha_append_sg(ctx);

	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;

	dev_dbg(cryp->dev, "slow: bufcnt: %zu\n", ctx->bufcnt);

	if (final) {
		sha->flags |= SHA_FLAGS_FINAL;
		mtk_sha_fill_padding(ctx, 0);
	}

	if (final || (ctx->bufcnt == SHA_BUF_SIZE && ctx->total)) {
		count = ctx->bufcnt;
		ctx->bufcnt = 0;

		return mtk_sha_dma_map(cryp, sha, ctx, count);
	}
	return 0;
}

static int mtk_sha_update_start(struct mtk_cryp *cryp,
				struct mtk_sha_rec *sha)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
	u32 len, final, tail;
	struct scatterlist *sg;

	if (!ctx->total)
		return 0;

	if (ctx->bufcnt || ctx->offset)
		return mtk_sha_update_slow(cryp, sha);

	sg = ctx->sg;

	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
		return mtk_sha_update_slow(cryp, sha);

	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->bs))
		/* size is not ctx->bs aligned */
		return mtk_sha_update_slow(cryp, sha);

	len = min(ctx->total, sg->length);

	if (sg_is_last(sg)) {
		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
			/* not last sg must be ctx->bs aligned */
			tail = len & (ctx->bs - 1);
			len -= tail;
		}
	}

	ctx->total -= len;
	ctx->offset = len; /* offset where to start slow */

	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;

	/* Add padding */
	if (final) {
		size_t count;

		tail = len & (ctx->bs - 1);
		len -= tail;
		ctx->total += tail;
		ctx->offset = len; /* offset where to start slow */

		sg = ctx->sg;
		mtk_sha_append_sg(ctx);
		mtk_sha_fill_padding(ctx, len);

		ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
					       SHA_BUF_SIZE, DMA_TO_DEVICE);
		if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
			dev_err(cryp->dev, "dma map bytes error\n");
			return -EINVAL;
		}

		sha->flags |= SHA_FLAGS_FINAL;
		count = ctx->bufcnt;
		ctx->bufcnt = 0;

		if (len == 0) {
			ctx->flags &= ~SHA_FLAGS_SG;
			return mtk_sha_xmit(cryp, sha, ctx->dma_addr,
					    count, 0, 0);

		} else {
			ctx->sg = sg;
			if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
				dev_err(cryp->dev, "dma_map_sg error\n");
				return -EINVAL;
			}

			ctx->flags |= SHA_FLAGS_SG;
			return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
					    len, ctx->dma_addr, count);
		}
	}

	if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
		dev_err(cryp->dev, "dma_map_sg  error\n");
		return -EINVAL;
	}

	ctx->flags |= SHA_FLAGS_SG;

	return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
			    len, 0, 0);
}

static int mtk_sha_final_req(struct mtk_cryp *cryp,
			     struct mtk_sha_rec *sha)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
	size_t count;

	mtk_sha_fill_padding(ctx, 0);

	sha->flags |= SHA_FLAGS_FINAL;
	count = ctx->bufcnt;
	ctx->bufcnt = 0;

	return mtk_sha_dma_map(cryp, sha, ctx, count);
}

/* Copy ready hash (+ finalize hmac) */
static int mtk_sha_finish(struct ahash_request *req)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
	__le32 *digest = ctx->info.digest;
	u32 *result = (u32 *)req->result;
	int i;

	/* Get the hash from the digest buffer */
	for (i = 0; i < SIZE_IN_WORDS(ctx->ds); i++)
		result[i] = le32_to_cpu(digest[i]);

	if (ctx->flags & SHA_FLAGS_HMAC)
		return mtk_sha_finish_hmac(req);

	return 0;
}

static void mtk_sha_finish_req(struct mtk_cryp *cryp,
			       struct mtk_sha_rec *sha,
			       int err)
{
	if (likely(!err && (SHA_FLAGS_FINAL & sha->flags)))
		err = mtk_sha_finish(sha->req);

	sha->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL);

	sha->req->base.complete(&sha->req->base, err);

	/* Handle new request */
	tasklet_schedule(&sha->queue_task);
}

static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
				struct ahash_request *req)
{
	struct mtk_sha_rec *sha = cryp->sha[id];
	struct crypto_async_request *async_req, *backlog;
	struct mtk_sha_reqctx *ctx;
	unsigned long flags;
	int err = 0, ret = 0;

	spin_lock_irqsave(&sha->lock, flags);
	if (req)
		ret = ahash_enqueue_request(&sha->queue, req);

	if (SHA_FLAGS_BUSY & sha->flags) {
		spin_unlock_irqrestore(&sha->lock, flags);
		return ret;
	}

	backlog = crypto_get_backlog(&sha->queue);
	async_req = crypto_dequeue_request(&sha->queue);
	if (async_req)
		sha->flags |= SHA_FLAGS_BUSY;
	spin_unlock_irqrestore(&sha->lock, flags);

	if (!async_req)
		return ret;

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);

	req = ahash_request_cast(async_req);
	ctx = ahash_request_ctx(req);

	sha->req = req;

	mtk_sha_info_init(ctx);

	if (ctx->op == SHA_OP_UPDATE) {
		err = mtk_sha_update_start(cryp, sha);
		if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
			/* No final() after finup() */
			err = mtk_sha_final_req(cryp, sha);
	} else if (ctx->op == SHA_OP_FINAL) {
		err = mtk_sha_final_req(cryp, sha);
	}

	if (unlikely(err != -EINPROGRESS))
		/* Task will not finish it, so do it here */
		mtk_sha_finish_req(cryp, sha, err);

	return ret;
}

static int mtk_sha_enqueue(struct ahash_request *req, u32 op)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);

	ctx->op = op;

	return mtk_sha_handle_queue(tctx->cryp, tctx->id, req);
}

static void mtk_sha_unmap(struct mtk_cryp *cryp, struct mtk_sha_rec *sha)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);

	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
			 DMA_BIDIRECTIONAL);

	if (ctx->flags & SHA_FLAGS_SG) {
		dma_unmap_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE);
		if (ctx->sg->length == ctx->offset) {
			ctx->sg = sg_next(ctx->sg);
			if (ctx->sg)
				ctx->offset = 0;
		}
		if (ctx->flags & SHA_FLAGS_PAD) {
			dma_unmap_single(cryp->dev, ctx->dma_addr,
					 SHA_BUF_SIZE, DMA_TO_DEVICE);
		}
	} else
		dma_unmap_single(cryp->dev, ctx->dma_addr,
				 SHA_BUF_SIZE, DMA_TO_DEVICE);
}

static void mtk_sha_complete(struct mtk_cryp *cryp,
			     struct mtk_sha_rec *sha)
{
	int err = 0;

	err = mtk_sha_update_start(cryp, sha);
	if (err != -EINPROGRESS)
		mtk_sha_finish_req(cryp, sha, err);
}

static int mtk_sha_update(struct ahash_request *req)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);

	ctx->total = req->nbytes;
	ctx->sg = req->src;
	ctx->offset = 0;

	if ((ctx->bufcnt + ctx->total < SHA_BUF_SIZE) &&
	    !(ctx->flags & SHA_FLAGS_FINUP))
		return mtk_sha_append_sg(ctx);

	return mtk_sha_enqueue(req, SHA_OP_UPDATE);
}

static int mtk_sha_final(struct ahash_request *req)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);

	ctx->flags |= SHA_FLAGS_FINUP;

	if (ctx->flags & SHA_FLAGS_PAD)
		return mtk_sha_finish(req);

	return mtk_sha_enqueue(req, SHA_OP_FINAL);
}

static int mtk_sha_finup(struct ahash_request *req)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
	int err1, err2;

	ctx->flags |= SHA_FLAGS_FINUP;

	err1 = mtk_sha_update(req);
	if (err1 == -EINPROGRESS || err1 == -EBUSY)
		return err1;
	/*
	 * final() has to be always called to cleanup resources
	 * even if update() failed
	 */
	err2 = mtk_sha_final(req);

	return err1 ?: err2;
}

static int mtk_sha_digest(struct ahash_request *req)
{
	return mtk_sha_init(req) ?: mtk_sha_finup(req);
}

static int mtk_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
			  u32 keylen)
{
	struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
	struct mtk_sha_hmac_ctx *bctx = tctx->base;
	size_t bs = crypto_shash_blocksize(bctx->shash);
	size_t ds = crypto_shash_digestsize(bctx->shash);
	int err, i;

	SHASH_DESC_ON_STACK(shash, bctx->shash);

	shash->tfm = bctx->shash;

	if (keylen > bs) {
		err = crypto_shash_digest(shash, key, keylen, bctx->ipad);
		if (err)
			return err;
		keylen = ds;
	} else {
		memcpy(bctx->ipad, key, keylen);
	}

	memset(bctx->ipad + keylen, 0, bs - keylen);
	memcpy(bctx->opad, bctx->ipad, bs);

	for (i = 0; i < bs; i++) {
		bctx->ipad[i] ^= HMAC_IPAD_VALUE;
		bctx->opad[i] ^= HMAC_OPAD_VALUE;
	}

	return 0;
}

static int mtk_sha_export(struct ahash_request *req, void *out)
{
	const struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);

	memcpy(out, ctx, sizeof(*ctx));
	return 0;
}

static int mtk_sha_import(struct ahash_request *req, const void *in)
{
	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);

	memcpy(ctx, in, sizeof(*ctx));
	return 0;
}

static int mtk_sha_cra_init_alg(struct crypto_tfm *tfm,
				const char *alg_base)
{
	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
	struct mtk_cryp *cryp = NULL;

	cryp = mtk_sha_find_dev(tctx);
	if (!cryp)
		return -ENODEV;

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct mtk_sha_reqctx));

	if (alg_base) {
		struct mtk_sha_hmac_ctx *bctx = tctx->base;

		tctx->flags |= SHA_FLAGS_HMAC;
		bctx->shash = crypto_alloc_shash(alg_base, 0,
					CRYPTO_ALG_NEED_FALLBACK);
		if (IS_ERR(bctx->shash)) {
			pr_err("base driver %s could not be loaded.\n",
			       alg_base);

			return PTR_ERR(bctx->shash);
		}
	}
	return 0;
}

static int mtk_sha_cra_init(struct crypto_tfm *tfm)
{
	return mtk_sha_cra_init_alg(tfm, NULL);
}

static int mtk_sha_cra_sha1_init(struct crypto_tfm *tfm)
{
	return mtk_sha_cra_init_alg(tfm, "sha1");
}

static int mtk_sha_cra_sha224_init(struct crypto_tfm *tfm)
{
	return mtk_sha_cra_init_alg(tfm, "sha224");
}

static int mtk_sha_cra_sha256_init(struct crypto_tfm *tfm)
{
	return mtk_sha_cra_init_alg(tfm, "sha256");
}

static int mtk_sha_cra_sha384_init(struct crypto_tfm *tfm)
{
	return mtk_sha_cra_init_alg(tfm, "sha384");
}

static int mtk_sha_cra_sha512_init(struct crypto_tfm *tfm)
{
	return mtk_sha_cra_init_alg(tfm, "sha512");
}

static void mtk_sha_cra_exit(struct crypto_tfm *tfm)
{
	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);

	if (tctx->flags & SHA_FLAGS_HMAC) {
		struct mtk_sha_hmac_ctx *bctx = tctx->base;

		crypto_free_shash(bctx->shash);
	}
}

static struct ahash_alg algs_sha1_sha224_sha256[] = {
{
	.init		= mtk_sha_init,
	.update		= mtk_sha_update,
	.final		= mtk_sha_final,
	.finup		= mtk_sha_finup,
	.digest		= mtk_sha_digest,
	.export		= mtk_sha_export,
	.import		= mtk_sha_import,
	.halg.digestsize	= SHA1_DIGEST_SIZE,
	.halg.statesize = sizeof(struct mtk_sha_reqctx),
	.halg.base	= {
		.cra_name		= "sha1",
		.cra_driver_name	= "mtk-sha1",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= SHA1_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
		.cra_alignmask		= SHA_ALIGN_MSK,
		.cra_module		= THIS_MODULE,
		.cra_init		= mtk_sha_cra_init,
		.cra_exit		= mtk_sha_cra_exit,
	}
},
{
	.init		= mtk_sha_init,
	.update		= mtk_sha_update,
	.final		= mtk_sha_final,
	.finup		= mtk_sha_finup,
	.digest		= mtk_sha_digest,
	.export		= mtk_sha_export,
	.import		= mtk_sha_import,
	.halg.digestsize	= SHA224_DIGEST_SIZE,
	.halg.statesize = sizeof(struct mtk_sha_reqctx),
	.halg.base	= {
		.cra_name		= "sha224",
		.cra_driver_name	= "mtk-sha224",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= SHA224_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
		.cra_alignmask		= SHA_ALIGN_MSK,
		.cra_module		= THIS_MODULE,
		.cra_init		= mtk_sha_cra_init,
		.cra_exit		= mtk_sha_cra_exit,
	}
},
{
	.init		= mtk_sha_init,
	.update		= mtk_sha_update,
	.final		= mtk_sha_final,
	.finup		= mtk_sha_finup,
	.digest		= mtk_sha_digest,
	.export		= mtk_sha_export,
	.import		= mtk_sha_import,
	.halg.digestsize	= SHA256_DIGEST_SIZE,
	.halg.statesize = sizeof(struct mtk_sha_reqctx),
	.halg.base	= {
		.cra_name		= "sha256",
		.cra_driver_name	= "mtk-sha256",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= SHA256_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
		.cra_alignmask		= SHA_ALIGN_MSK,
		.cra_module		= THIS_MODULE,
		.cra_init		= mtk_sha_cra_init,
		.cra_exit		= mtk_sha_cra_exit,
	}
},
{
	.init		= mtk_sha_init,
	.update		= mtk_sha_update,
	.final		= mtk_sha_final,
	.finup		= mtk_sha_finup,
	.digest		= mtk_sha_digest,
	.export		= mtk_sha_export,
	.import		= mtk_sha_import,
	.setkey		= mtk_sha_setkey,
	.halg.digestsize	= SHA1_DIGEST_SIZE,
	.halg.statesize = sizeof(struct mtk_sha_reqctx),
	.halg.base	= {
		.cra_name		= "hmac(sha1)",
		.cra_driver_name	= "mtk-hmac-sha1",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC |
					  CRYPTO_ALG_NEED_FALLBACK,
		.cra_blocksize		= SHA1_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
					sizeof(struct mtk_sha_hmac_ctx),
		.cra_alignmask		= SHA_ALIGN_MSK,
		.cra_module		= THIS_MODULE,
		.cra_init		= mtk_sha_cra_sha1_init,
		.cra_exit		= mtk_sha_cra_exit,
	}
},
{
	.init		= mtk_sha_init,
	.update		= mtk_sha_update,
	.final		= mtk_sha_final,
	.finup		= mtk_sha_finup,
	.digest		= mtk_sha_digest,
	.export		= mtk_sha_export,
	.import		= mtk_sha_import,
	.setkey		= mtk_sha_setkey,
	.halg.digestsize	= SHA224_DIGEST_SIZE,
	.halg.statesize = sizeof(struct mtk_sha_reqctx),
	.halg.base	= {
		.cra_name		= "hmac(sha224)",
		.cra_driver_name	= "mtk-hmac-sha224",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC |
					  CRYPTO_ALG_NEED_FALLBACK,
		.cra_blocksize		= SHA224_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
					sizeof(struct mtk_sha_hmac_ctx),
		.cra_alignmask		= SHA_ALIGN_MSK,
		.cra_module		= THIS_MODULE,
		.cra_init		= mtk_sha_cra_sha224_init,
		.cra_exit		= mtk_sha_cra_exit,
	}
},
{
	.init		= mtk_sha_init,
	.update		= mtk_sha_update,
	.final		= mtk_sha_final,
	.finup		= mtk_sha_finup,
	.digest		= mtk_sha_digest,
	.export		= mtk_sha_export,
	.import		= mtk_sha_import,
	.setkey		= mtk_sha_setkey,
	.halg.digestsize	= SHA256_DIGEST_SIZE,
	.halg.statesize = sizeof(struct mtk_sha_reqctx),
	.halg.base	= {
		.cra_name		= "hmac(sha256)",
		.cra_driver_name	= "mtk-hmac-sha256",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC |
					  CRYPTO_ALG_NEED_FALLBACK,
		.cra_blocksize		= SHA256_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
					sizeof(struct mtk_sha_hmac_ctx),
		.cra_alignmask		= SHA_ALIGN_MSK,
		.cra_module		= THIS_MODULE,
		.cra_init		= mtk_sha_cra_sha256_init,
		.cra_exit		= mtk_sha_cra_exit,
	}
},
};

static struct ahash_alg algs_sha384_sha512[] = {
{
	.init		= mtk_sha_init,
	.update		= mtk_sha_update,
	.final		= mtk_sha_final,
	.finup		= mtk_sha_finup,
	.digest		= mtk_sha_digest,
	.export		= mtk_sha_export,
	.import		= mtk_sha_import,
	.halg.digestsize	= SHA384_DIGEST_SIZE,
	.halg.statesize = sizeof(struct mtk_sha_reqctx),
	.halg.base	= {
		.cra_name		= "sha384",
		.cra_driver_name	= "mtk-sha384",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= SHA384_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
		.cra_alignmask		= SHA_ALIGN_MSK,
		.cra_module		= THIS_MODULE,
		.cra_init		= mtk_sha_cra_init,
		.cra_exit		= mtk_sha_cra_exit,
	}
},
{
	.init		= mtk_sha_init,
	.update		= mtk_sha_update,
	.final		= mtk_sha_final,
	.finup		= mtk_sha_finup,
	.digest		= mtk_sha_digest,
	.export		= mtk_sha_export,
	.import		= mtk_sha_import,
	.halg.digestsize	= SHA512_DIGEST_SIZE,
	.halg.statesize = sizeof(struct mtk_sha_reqctx),
	.halg.base	= {
		.cra_name		= "sha512",
		.cra_driver_name	= "mtk-sha512",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= SHA512_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
		.cra_alignmask		= SHA_ALIGN_MSK,
		.cra_module		= THIS_MODULE,
		.cra_init		= mtk_sha_cra_init,
		.cra_exit		= mtk_sha_cra_exit,
	}
},
{
	.init		= mtk_sha_init,
	.update		= mtk_sha_update,
	.final		= mtk_sha_final,
	.finup		= mtk_sha_finup,
	.digest		= mtk_sha_digest,
	.export		= mtk_sha_export,
	.import		= mtk_sha_import,
	.setkey		= mtk_sha_setkey,
	.halg.digestsize	= SHA384_DIGEST_SIZE,
	.halg.statesize = sizeof(struct mtk_sha_reqctx),
	.halg.base	= {
		.cra_name		= "hmac(sha384)",
		.cra_driver_name	= "mtk-hmac-sha384",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC |
					  CRYPTO_ALG_NEED_FALLBACK,
		.cra_blocksize		= SHA384_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
					sizeof(struct mtk_sha_hmac_ctx),
		.cra_alignmask		= SHA_ALIGN_MSK,
		.cra_module		= THIS_MODULE,
		.cra_init		= mtk_sha_cra_sha384_init,
		.cra_exit		= mtk_sha_cra_exit,
	}
},
{
	.init		= mtk_sha_init,
	.update		= mtk_sha_update,
	.final		= mtk_sha_final,
	.finup		= mtk_sha_finup,
	.digest		= mtk_sha_digest,
	.export		= mtk_sha_export,
	.import		= mtk_sha_import,
	.setkey		= mtk_sha_setkey,
	.halg.digestsize	= SHA512_DIGEST_SIZE,
	.halg.statesize = sizeof(struct mtk_sha_reqctx),
	.halg.base	= {
		.cra_name		= "hmac(sha512)",
		.cra_driver_name	= "mtk-hmac-sha512",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC |
					  CRYPTO_ALG_NEED_FALLBACK,
		.cra_blocksize		= SHA512_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
					sizeof(struct mtk_sha_hmac_ctx),
		.cra_alignmask		= SHA_ALIGN_MSK,
		.cra_module		= THIS_MODULE,
		.cra_init		= mtk_sha_cra_sha512_init,
		.cra_exit		= mtk_sha_cra_exit,
	}
},
};

static void mtk_sha_queue_task(unsigned long data)
{
	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;

	mtk_sha_handle_queue(sha->cryp, sha->id - MTK_RING2, NULL);
}

static void mtk_sha_done_task(unsigned long data)
{
	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
	struct mtk_cryp *cryp = sha->cryp;

	mtk_sha_unmap(cryp, sha);
	mtk_sha_complete(cryp, sha);
}

static irqreturn_t mtk_sha_irq(int irq, void *dev_id)
{
	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)dev_id;
	struct mtk_cryp *cryp = sha->cryp;
	u32 val = mtk_sha_read(cryp, RDR_STAT(sha->id));

	mtk_sha_write(cryp, RDR_STAT(sha->id), val);

	if (likely((SHA_FLAGS_BUSY & sha->flags))) {
		mtk_sha_write(cryp, RDR_PROC_COUNT(sha->id), MTK_CNT_RST);
		mtk_sha_write(cryp, RDR_THRESH(sha->id),
			      MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);

		tasklet_schedule(&sha->done_task);
	} else {
		dev_warn(cryp->dev, "SHA interrupt when no active requests.\n");
	}
	return IRQ_HANDLED;
}

/*
 * The purpose of two SHA records is used to get extra performance.
 * It is similar to mtk_aes_record_init().
 */
static int mtk_sha_record_init(struct mtk_cryp *cryp)
{
	struct mtk_sha_rec **sha = cryp->sha;
	int i, err = -ENOMEM;

	for (i = 0; i < MTK_REC_NUM; i++) {
		sha[i] = kzalloc(sizeof(**sha), GFP_KERNEL);
		if (!sha[i])
			goto err_cleanup;

		sha[i]->cryp = cryp;

		spin_lock_init(&sha[i]->lock);
		crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE);

		tasklet_init(&sha[i]->queue_task, mtk_sha_queue_task,
			     (unsigned long)sha[i]);
		tasklet_init(&sha[i]->done_task, mtk_sha_done_task,
			     (unsigned long)sha[i]);
	}

	/* Link to ring2 and ring3 respectively */
	sha[0]->id = MTK_RING2;
	sha[1]->id = MTK_RING3;

	cryp->rec = 1;

	return 0;

err_cleanup:
	for (; i--; )
		kfree(sha[i]);
	return err;
}

static void mtk_sha_record_free(struct mtk_cryp *cryp)
{
	int i;

	for (i = 0; i < MTK_REC_NUM; i++) {
		tasklet_kill(&cryp->sha[i]->done_task);
		tasklet_kill(&cryp->sha[i]->queue_task);

		kfree(cryp->sha[i]);
	}
}

static void mtk_sha_unregister_algs(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++)
		crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);

	for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++)
		crypto_unregister_ahash(&algs_sha384_sha512[i]);
}

static int mtk_sha_register_algs(void)
{
	int err, i;

	for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) {
		err = crypto_register_ahash(&algs_sha1_sha224_sha256[i]);
		if (err)
			goto err_sha_224_256_algs;
	}

	for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) {
		err = crypto_register_ahash(&algs_sha384_sha512[i]);
		if (err)
			goto err_sha_384_512_algs;
	}

	return 0;

err_sha_384_512_algs:
	for (; i--; )
		crypto_unregister_ahash(&algs_sha384_sha512[i]);
	i = ARRAY_SIZE(algs_sha1_sha224_sha256);
err_sha_224_256_algs:
	for (; i--; )
		crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);

	return err;
}

int mtk_hash_alg_register(struct mtk_cryp *cryp)
{
	int err;

	INIT_LIST_HEAD(&cryp->sha_list);

	/* Initialize two hash records */
	err = mtk_sha_record_init(cryp);
	if (err)
		goto err_record;

	err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING2], mtk_sha_irq,
			       0, "mtk-sha", cryp->sha[0]);
	if (err) {
		dev_err(cryp->dev, "unable to request sha irq0.\n");
		goto err_res;
	}

	err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING3], mtk_sha_irq,
			       0, "mtk-sha", cryp->sha[1]);
	if (err) {
		dev_err(cryp->dev, "unable to request sha irq1.\n");
		goto err_res;
	}

	/* Enable ring2 and ring3 interrupt for hash */
	mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING2), MTK_IRQ_RDR2);
	mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING3), MTK_IRQ_RDR3);

	spin_lock(&mtk_sha.lock);
	list_add_tail(&cryp->sha_list, &mtk_sha.dev_list);
	spin_unlock(&mtk_sha.lock);

	err = mtk_sha_register_algs();
	if (err)
		goto err_algs;

	return 0;

err_algs:
	spin_lock(&mtk_sha.lock);
	list_del(&cryp->sha_list);
	spin_unlock(&mtk_sha.lock);
err_res:
	mtk_sha_record_free(cryp);
err_record:

	dev_err(cryp->dev, "mtk-sha initialization failed.\n");
	return err;
}

void mtk_hash_alg_release(struct mtk_cryp *cryp)
{
	spin_lock(&mtk_sha.lock);
	list_del(&cryp->sha_list);
	spin_unlock(&mtk_sha.lock);

	mtk_sha_unregister_algs();
	mtk_sha_record_free(cryp);
}