1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2016 Broadcom
*/
#include <linux/debugfs.h>
#include "cipher.h"
#include "util.h"
/* offset of SPU_OFIFO_CTRL register */
#define SPU_OFIFO_CTRL 0x40
#define SPU_FIFO_WATERMARK 0x1FF
/**
* spu_sg_at_offset() - Find the scatterlist entry at a given distance from the
* start of a scatterlist.
* @sg: [in] Start of a scatterlist
* @skip: [in] Distance from the start of the scatterlist, in bytes
* @sge: [out] Scatterlist entry at skip bytes from start
* @sge_offset: [out] Number of bytes from start of sge buffer to get to
* requested distance.
*
* Return: 0 if entry found at requested distance
* < 0 otherwise
*/
int spu_sg_at_offset(struct scatterlist *sg, unsigned int skip,
struct scatterlist **sge, unsigned int *sge_offset)
{
/* byte index from start of sg to the end of the previous entry */
unsigned int index = 0;
/* byte index from start of sg to the end of the current entry */
unsigned int next_index;
next_index = sg->length;
while (next_index <= skip) {
sg = sg_next(sg);
index = next_index;
if (!sg)
return -EINVAL;
next_index += sg->length;
}
*sge_offset = skip - index;
*sge = sg;
return 0;
}
/* Copy len bytes of sg data, starting at offset skip, to a dest buffer */
void sg_copy_part_to_buf(struct scatterlist *src, u8 *dest,
unsigned int len, unsigned int skip)
{
size_t copied;
unsigned int nents = sg_nents(src);
copied = sg_pcopy_to_buffer(src, nents, dest, len, skip);
if (copied != len) {
flow_log("%s copied %u bytes of %u requested. ",
__func__, (u32)copied, len);
flow_log("sg with %u entries and skip %u\n", nents, skip);
}
}
/*
* Copy data into a scatterlist starting at a specified offset in the
* scatterlist. Specifically, copy len bytes of data in the buffer src
* into the scatterlist dest, starting skip bytes into the scatterlist.
*/
void sg_copy_part_from_buf(struct scatterlist *dest, u8 *src,
unsigned int len, unsigned int skip)
{
size_t copied;
unsigned int nents = sg_nents(dest);
copied = sg_pcopy_from_buffer(dest, nents, src, len, skip);
if (copied != len) {
flow_log("%s copied %u bytes of %u requested. ",
__func__, (u32)copied, len);
flow_log("sg with %u entries and skip %u\n", nents, skip);
}
}
/**
* spu_sg_count() - Determine number of elements in scatterlist to provide a
* specified number of bytes.
* @sg_list: scatterlist to examine
* @skip: index of starting point
* @nbytes: consider elements of scatterlist until reaching this number of
* bytes
*
* Return: the number of sg entries contributing to nbytes of data
*/
int spu_sg_count(struct scatterlist *sg_list, unsigned int skip, int nbytes)
{
struct scatterlist *sg;
int sg_nents = 0;
unsigned int offset;
if (!sg_list)
return 0;
if (spu_sg_at_offset(sg_list, skip, &sg, &offset) < 0)
return 0;
while (sg && (nbytes > 0)) {
sg_nents++;
nbytes -= (sg->length - offset);
offset = 0;
sg = sg_next(sg);
}
return sg_nents;
}
/**
* spu_msg_sg_add() - Copy scatterlist entries from one sg to another, up to a
* given length.
* @to_sg: scatterlist to copy to
* @from_sg: scatterlist to copy from
* @from_skip: number of bytes to skip in from_sg. Non-zero when previous
* request included part of the buffer in entry in from_sg.
* Assumes from_skip < from_sg->length.
* @from_nents number of entries in from_sg
* @length number of bytes to copy. may reach this limit before exhausting
* from_sg.
*
* Copies the entries themselves, not the data in the entries. Assumes to_sg has
* enough entries. Does not limit the size of an individual buffer in to_sg.
*
* to_sg, from_sg, skip are all updated to end of copy
*
* Return: Number of bytes copied
*/
u32 spu_msg_sg_add(struct scatterlist **to_sg,
struct scatterlist **from_sg, u32 *from_skip,
u8 from_nents, u32 length)
{
struct scatterlist *sg; /* an entry in from_sg */
struct scatterlist *to = *to_sg;
struct scatterlist *from = *from_sg;
u32 skip = *from_skip;
u32 offset;
int i;
u32 entry_len = 0;
u32 frag_len = 0; /* length of entry added to to_sg */
u32 copied = 0; /* number of bytes copied so far */
if (length == 0)
return 0;
for_each_sg(from, sg, from_nents, i) {
/* number of bytes in this from entry not yet used */
entry_len = sg->length - skip;
frag_len = min(entry_len, length - copied);
offset = sg->offset + skip;
if (frag_len)
sg_set_page(to++, sg_page(sg), frag_len, offset);
copied += frag_len;
if (copied == entry_len) {
/* used up all of from entry */
skip = 0; /* start at beginning of next entry */
}
if (copied == length)
break;
}
*to_sg = to;
*from_sg = sg;
if (frag_len < entry_len)
*from_skip = skip + frag_len;
else
*from_skip = 0;
return copied;
}
void add_to_ctr(u8 *ctr_pos, unsigned int increment)
{
__be64 *high_be = (__be64 *)ctr_pos;
__be64 *low_be = high_be + 1;
u64 orig_low = __be64_to_cpu(*low_be);
u64 new_low = orig_low + (u64)increment;
*low_be = __cpu_to_be64(new_low);
if (new_low < orig_low)
/* there was a carry from the low 8 bytes */
*high_be = __cpu_to_be64(__be64_to_cpu(*high_be) + 1);
}
struct sdesc {
struct shash_desc shash;
char ctx[];
};
/**
* do_shash() - Do a synchronous hash operation in software
* @name: The name of the hash algorithm
* @result: Buffer where digest is to be written
* @data1: First part of data to hash. May be NULL.
* @data1_len: Length of data1, in bytes
* @data2: Second part of data to hash. May be NULL.
* @data2_len: Length of data2, in bytes
* @key: Key (if keyed hash)
* @key_len: Length of key, in bytes (or 0 if non-keyed hash)
*
* Note that the crypto API will not select this driver's own transform because
* this driver only registers asynchronous algos.
*
* Return: 0 if hash successfully stored in result
* < 0 otherwise
*/
int do_shash(unsigned char *name, unsigned char *result,
const u8 *data1, unsigned int data1_len,
const u8 *data2, unsigned int data2_len,
const u8 *key, unsigned int key_len)
{
int rc;
unsigned int size;
struct crypto_shash *hash;
struct sdesc *sdesc;
hash = crypto_alloc_shash(name, 0, 0);
if (IS_ERR(hash)) {
rc = PTR_ERR(hash);
pr_err("%s: Crypto %s allocation error %d\n", __func__, name, rc);
return rc;
}
size = sizeof(struct shash_desc) + crypto_shash_descsize(hash);
sdesc = kmalloc(size, GFP_KERNEL);
if (!sdesc) {
rc = -ENOMEM;
goto do_shash_err;
}
sdesc->shash.tfm = hash;
if (key_len > 0) {
rc = crypto_shash_setkey(hash, key, key_len);
if (rc) {
pr_err("%s: Could not setkey %s shash\n", __func__, name);
goto do_shash_err;
}
}
rc = crypto_shash_init(&sdesc->shash);
if (rc) {
pr_err("%s: Could not init %s shash\n", __func__, name);
goto do_shash_err;
}
rc = crypto_shash_update(&sdesc->shash, data1, data1_len);
if (rc) {
pr_err("%s: Could not update1\n", __func__);
goto do_shash_err;
}
if (data2 && data2_len) {
rc = crypto_shash_update(&sdesc->shash, data2, data2_len);
if (rc) {
pr_err("%s: Could not update2\n", __func__);
goto do_shash_err;
}
}
rc = crypto_shash_final(&sdesc->shash, result);
if (rc)
pr_err("%s: Could not generate %s hash\n", __func__, name);
do_shash_err:
crypto_free_shash(hash);
kfree(sdesc);
return rc;
}
/* Dump len bytes of a scatterlist starting at skip bytes into the sg */
void __dump_sg(struct scatterlist *sg, unsigned int skip, unsigned int len)
{
u8 dbuf[16];
unsigned int idx = skip;
unsigned int num_out = 0; /* number of bytes dumped so far */
unsigned int count;
if (packet_debug_logging) {
while (num_out < len) {
count = (len - num_out > 16) ? 16 : len - num_out;
sg_copy_part_to_buf(sg, dbuf, count, idx);
num_out += count;
print_hex_dump(KERN_ALERT, " sg: ", DUMP_PREFIX_NONE,
4, 1, dbuf, count, false);
idx += 16;
}
}
if (debug_logging_sleep)
msleep(debug_logging_sleep);
}
/* Returns the name for a given cipher alg/mode */
char *spu_alg_name(enum spu_cipher_alg alg, enum spu_cipher_mode mode)
{
switch (alg) {
case CIPHER_ALG_RC4:
return "rc4";
case CIPHER_ALG_AES:
switch (mode) {
case CIPHER_MODE_CBC:
return "cbc(aes)";
case CIPHER_MODE_ECB:
return "ecb(aes)";
case CIPHER_MODE_OFB:
return "ofb(aes)";
case CIPHER_MODE_CFB:
return "cfb(aes)";
case CIPHER_MODE_CTR:
return "ctr(aes)";
case CIPHER_MODE_XTS:
return "xts(aes)";
case CIPHER_MODE_GCM:
return "gcm(aes)";
default:
return "aes";
}
break;
case CIPHER_ALG_DES:
switch (mode) {
case CIPHER_MODE_CBC:
return "cbc(des)";
case CIPHER_MODE_ECB:
return "ecb(des)";
case CIPHER_MODE_CTR:
return "ctr(des)";
default:
return "des";
}
break;
case CIPHER_ALG_3DES:
switch (mode) {
case CIPHER_MODE_CBC:
return "cbc(des3_ede)";
case CIPHER_MODE_ECB:
return "ecb(des3_ede)";
case CIPHER_MODE_CTR:
return "ctr(des3_ede)";
default:
return "3des";
}
break;
default:
return "other";
}
}
static ssize_t spu_debugfs_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp)
{
struct device_private *ipriv;
char *buf;
ssize_t ret, out_offset, out_count;
int i;
u32 fifo_len;
u32 spu_ofifo_ctrl;
u32 alg;
u32 mode;
u32 op_cnt;
out_count = 2048;
buf = kmalloc(out_count, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ipriv = filp->private_data;
out_offset = 0;
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Number of SPUs.........%u\n",
ipriv->spu.num_spu);
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Current sessions.......%u\n",
atomic_read(&ipriv->session_count));
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Session count..........%u\n",
atomic_read(&ipriv->stream_count));
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Cipher setkey..........%u\n",
atomic_read(&ipriv->setkey_cnt[SPU_OP_CIPHER]));
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Cipher Ops.............%u\n",
atomic_read(&ipriv->op_counts[SPU_OP_CIPHER]));
for (alg = 0; alg < CIPHER_ALG_LAST; alg++) {
for (mode = 0; mode < CIPHER_MODE_LAST; mode++) {
op_cnt = atomic_read(&ipriv->cipher_cnt[alg][mode]);
if (op_cnt) {
out_offset += scnprintf(buf + out_offset,
out_count - out_offset,
" %-13s%11u\n",
spu_alg_name(alg, mode), op_cnt);
}
}
}
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Hash Ops...............%u\n",
atomic_read(&ipriv->op_counts[SPU_OP_HASH]));
for (alg = 0; alg < HASH_ALG_LAST; alg++) {
op_cnt = atomic_read(&ipriv->hash_cnt[alg]);
if (op_cnt) {
out_offset += scnprintf(buf + out_offset,
out_count - out_offset,
" %-13s%11u\n",
hash_alg_name[alg], op_cnt);
}
}
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"HMAC setkey............%u\n",
atomic_read(&ipriv->setkey_cnt[SPU_OP_HMAC]));
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"HMAC Ops...............%u\n",
atomic_read(&ipriv->op_counts[SPU_OP_HMAC]));
for (alg = 0; alg < HASH_ALG_LAST; alg++) {
op_cnt = atomic_read(&ipriv->hmac_cnt[alg]);
if (op_cnt) {
out_offset += scnprintf(buf + out_offset,
out_count - out_offset,
" %-13s%11u\n",
hash_alg_name[alg], op_cnt);
}
}
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"AEAD setkey............%u\n",
atomic_read(&ipriv->setkey_cnt[SPU_OP_AEAD]));
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"AEAD Ops...............%u\n",
atomic_read(&ipriv->op_counts[SPU_OP_AEAD]));
for (alg = 0; alg < AEAD_TYPE_LAST; alg++) {
op_cnt = atomic_read(&ipriv->aead_cnt[alg]);
if (op_cnt) {
out_offset += scnprintf(buf + out_offset,
out_count - out_offset,
" %-13s%11u\n",
aead_alg_name[alg], op_cnt);
}
}
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Bytes of req data......%llu\n",
(u64)atomic64_read(&ipriv->bytes_out));
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Bytes of resp data.....%llu\n",
(u64)atomic64_read(&ipriv->bytes_in));
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Mailbox full...........%u\n",
atomic_read(&ipriv->mb_no_spc));
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Mailbox send failures..%u\n",
atomic_read(&ipriv->mb_send_fail));
out_offset += scnprintf(buf + out_offset, out_count - out_offset,
"Check ICV errors.......%u\n",
atomic_read(&ipriv->bad_icv));
if (ipriv->spu.spu_type == SPU_TYPE_SPUM)
for (i = 0; i < ipriv->spu.num_spu; i++) {
spu_ofifo_ctrl = ioread32(ipriv->spu.reg_vbase[i] +
SPU_OFIFO_CTRL);
fifo_len = spu_ofifo_ctrl & SPU_FIFO_WATERMARK;
out_offset += scnprintf(buf + out_offset,
out_count - out_offset,
"SPU %d output FIFO high water.....%u\n",
i, fifo_len);
}
if (out_offset > out_count)
out_offset = out_count;
ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
kfree(buf);
return ret;
}
static const struct file_operations spu_debugfs_stats = {
.owner = THIS_MODULE,
.open = simple_open,
.read = spu_debugfs_read,
};
/*
* Create the debug FS directories. If the top-level directory has not yet
* been created, create it now. Create a stats file in this directory for
* a SPU.
*/
void spu_setup_debugfs(void)
{
if (!debugfs_initialized())
return;
if (!iproc_priv.debugfs_dir)
iproc_priv.debugfs_dir = debugfs_create_dir(KBUILD_MODNAME,
NULL);
if (!iproc_priv.debugfs_stats)
/* Create file with permissions S_IRUSR */
debugfs_create_file("stats", 0400, iproc_priv.debugfs_dir,
&iproc_priv, &spu_debugfs_stats);
}
void spu_free_debugfs(void)
{
debugfs_remove_recursive(iproc_priv.debugfs_dir);
iproc_priv.debugfs_dir = NULL;
}
/**
* format_value_ccm() - Format a value into a buffer, using a specified number
* of bytes (i.e. maybe writing value X into a 4 byte
* buffer, or maybe into a 12 byte buffer), as per the
* SPU CCM spec.
*
* @val: value to write (up to max of unsigned int)
* @buf: (pointer to) buffer to write the value
* @len: number of bytes to use (0 to 255)
*
*/
void format_value_ccm(unsigned int val, u8 *buf, u8 len)
{
int i;
/* First clear full output buffer */
memset(buf, 0, len);
/* Then, starting from right side, fill in with data */
for (i = 0; i < len; i++) {
buf[len - i - 1] = (val >> (8 * i)) & 0xff;
if (i >= 3)
break; /* Only handle up to 32 bits of 'val' */
}
}
|