summaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq/cpufreq_conservative.c
blob: 4268f87e99fcfb68c60368cfdc13f5033488cfad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
 *  drivers/cpufreq/cpufreq_conservative.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/slab.h>
#include "cpufreq_governor.h"

struct cs_policy_dbs_info {
	struct policy_dbs_info policy_dbs;
	unsigned int down_skip;
	unsigned int requested_freq;
};

static inline struct cs_policy_dbs_info *to_dbs_info(struct policy_dbs_info *policy_dbs)
{
	return container_of(policy_dbs, struct cs_policy_dbs_info, policy_dbs);
}

struct cs_dbs_tuners {
	unsigned int down_threshold;
	unsigned int freq_step;
};

/* Conservative governor macros */
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
#define DEF_FREQUENCY_STEP			(5)
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(10)

static inline unsigned int get_freq_step(struct cs_dbs_tuners *cs_tuners,
					 struct cpufreq_policy *policy)
{
	unsigned int freq_step = (cs_tuners->freq_step * policy->max) / 100;

	/* max freq cannot be less than 100. But who knows... */
	if (unlikely(freq_step == 0))
		freq_step = DEF_FREQUENCY_STEP;

	return freq_step;
}

/*
 * Every sampling_rate, we check, if current idle time is less than 20%
 * (default), then we try to increase frequency. Every sampling_rate *
 * sampling_down_factor, we check, if current idle time is more than 80%
 * (default), then we try to decrease frequency
 *
 * Frequency updates happen at minimum steps of 5% (default) of maximum
 * frequency
 */
static unsigned int cs_dbs_update(struct cpufreq_policy *policy)
{
	struct policy_dbs_info *policy_dbs = policy->governor_data;
	struct cs_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
	unsigned int requested_freq = dbs_info->requested_freq;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
	unsigned int load = dbs_update(policy);
	unsigned int freq_step;

	/*
	 * break out if we 'cannot' reduce the speed as the user might
	 * want freq_step to be zero
	 */
	if (cs_tuners->freq_step == 0)
		goto out;

	/*
	 * If requested_freq is out of range, it is likely that the limits
	 * changed in the meantime, so fall back to current frequency in that
	 * case.
	 */
	if (requested_freq > policy->max || requested_freq < policy->min) {
		requested_freq = policy->cur;
		dbs_info->requested_freq = requested_freq;
	}

	freq_step = get_freq_step(cs_tuners, policy);

	/*
	 * Decrease requested_freq one freq_step for each idle period that
	 * we didn't update the frequency.
	 */
	if (policy_dbs->idle_periods < UINT_MAX) {
		unsigned int freq_steps = policy_dbs->idle_periods * freq_step;

		if (requested_freq > policy->min + freq_steps)
			requested_freq -= freq_steps;
		else
			requested_freq = policy->min;

		policy_dbs->idle_periods = UINT_MAX;
	}

	/* Check for frequency increase */
	if (load > dbs_data->up_threshold) {
		dbs_info->down_skip = 0;

		/* if we are already at full speed then break out early */
		if (requested_freq == policy->max)
			goto out;

		requested_freq += freq_step;
		if (requested_freq > policy->max)
			requested_freq = policy->max;

		__cpufreq_driver_target(policy, requested_freq, CPUFREQ_RELATION_H);
		dbs_info->requested_freq = requested_freq;
		goto out;
	}

	/* if sampling_down_factor is active break out early */
	if (++dbs_info->down_skip < dbs_data->sampling_down_factor)
		goto out;
	dbs_info->down_skip = 0;

	/* Check for frequency decrease */
	if (load < cs_tuners->down_threshold) {
		/*
		 * if we cannot reduce the frequency anymore, break out early
		 */
		if (requested_freq == policy->min)
			goto out;

		if (requested_freq > freq_step)
			requested_freq -= freq_step;
		else
			requested_freq = policy->min;

		__cpufreq_driver_target(policy, requested_freq, CPUFREQ_RELATION_L);
		dbs_info->requested_freq = requested_freq;
	}

 out:
	return dbs_data->sampling_rate;
}

/************************** sysfs interface ************************/

static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
					  const char *buf, size_t count)
{
	struct dbs_data *dbs_data = to_dbs_data(attr_set);
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
		return -EINVAL;

	dbs_data->sampling_down_factor = input;
	return count;
}

static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
				  const char *buf, size_t count)
{
	struct dbs_data *dbs_data = to_dbs_data(attr_set);
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
		return -EINVAL;

	dbs_data->up_threshold = input;
	return count;
}

static ssize_t store_down_threshold(struct gov_attr_set *attr_set,
				    const char *buf, size_t count)
{
	struct dbs_data *dbs_data = to_dbs_data(attr_set);
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	/* cannot be lower than 1 otherwise freq will not fall */
	if (ret != 1 || input < 1 || input > 100 ||
			input >= dbs_data->up_threshold)
		return -EINVAL;

	cs_tuners->down_threshold = input;
	return count;
}

static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
				      const char *buf, size_t count)
{
	struct dbs_data *dbs_data = to_dbs_data(attr_set);
	unsigned int input;
	int ret;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

	if (input > 1)
		input = 1;

	if (input == dbs_data->ignore_nice_load) /* nothing to do */
		return count;

	dbs_data->ignore_nice_load = input;

	/* we need to re-evaluate prev_cpu_idle */
	gov_update_cpu_data(dbs_data);

	return count;
}

static ssize_t store_freq_step(struct gov_attr_set *attr_set, const char *buf,
			       size_t count)
{
	struct dbs_data *dbs_data = to_dbs_data(attr_set);
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1)
		return -EINVAL;

	if (input > 100)
		input = 100;

	/*
	 * no need to test here if freq_step is zero as the user might actually
	 * want this, they would be crazy though :)
	 */
	cs_tuners->freq_step = input;
	return count;
}

gov_show_one_common(sampling_rate);
gov_show_one_common(sampling_down_factor);
gov_show_one_common(up_threshold);
gov_show_one_common(ignore_nice_load);
gov_show_one(cs, down_threshold);
gov_show_one(cs, freq_step);

gov_attr_rw(sampling_rate);
gov_attr_rw(sampling_down_factor);
gov_attr_rw(up_threshold);
gov_attr_rw(ignore_nice_load);
gov_attr_rw(down_threshold);
gov_attr_rw(freq_step);

static struct attribute *cs_attributes[] = {
	&sampling_rate.attr,
	&sampling_down_factor.attr,
	&up_threshold.attr,
	&down_threshold.attr,
	&ignore_nice_load.attr,
	&freq_step.attr,
	NULL
};

/************************** sysfs end ************************/

static struct policy_dbs_info *cs_alloc(void)
{
	struct cs_policy_dbs_info *dbs_info;

	dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
	return dbs_info ? &dbs_info->policy_dbs : NULL;
}

static void cs_free(struct policy_dbs_info *policy_dbs)
{
	kfree(to_dbs_info(policy_dbs));
}

static int cs_init(struct dbs_data *dbs_data)
{
	struct cs_dbs_tuners *tuners;

	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
	if (!tuners)
		return -ENOMEM;

	tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
	tuners->freq_step = DEF_FREQUENCY_STEP;
	dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
	dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
	dbs_data->ignore_nice_load = 0;
	dbs_data->tuners = tuners;

	return 0;
}

static void cs_exit(struct dbs_data *dbs_data)
{
	kfree(dbs_data->tuners);
}

static void cs_start(struct cpufreq_policy *policy)
{
	struct cs_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);

	dbs_info->down_skip = 0;
	dbs_info->requested_freq = policy->cur;
}

static struct dbs_governor cs_governor = {
	.gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("conservative"),
	.kobj_type = { .default_attrs = cs_attributes },
	.gov_dbs_update = cs_dbs_update,
	.alloc = cs_alloc,
	.free = cs_free,
	.init = cs_init,
	.exit = cs_exit,
	.start = cs_start,
};

#define CPU_FREQ_GOV_CONSERVATIVE	(&cs_governor.gov)

static int __init cpufreq_gov_dbs_init(void)
{
	return cpufreq_register_governor(CPU_FREQ_GOV_CONSERVATIVE);
}

static void __exit cpufreq_gov_dbs_exit(void)
{
	cpufreq_unregister_governor(CPU_FREQ_GOV_CONSERVATIVE);
}

MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
		"Low Latency Frequency Transition capable processors "
		"optimised for use in a battery environment");
MODULE_LICENSE("GPL");

#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
struct cpufreq_governor *cpufreq_default_governor(void)
{
	return CPU_FREQ_GOV_CONSERVATIVE;
}

fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);