summaryrefslogtreecommitdiffstats
path: root/arch/x86/mm/kasan_init_64.c
blob: 3e4d9a1a39fa68cc947a9ebd54bd92aaf7cbd148 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#include <linux/bootmem.h>
#include <linux/kasan.h>
#include <linux/kdebug.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>

#include <asm/tlbflush.h>
#include <asm/sections.h>

extern pgd_t early_level4_pgt[PTRS_PER_PGD];
extern struct range pfn_mapped[E820_X_MAX];

extern unsigned char kasan_zero_page[PAGE_SIZE];

static int __init map_range(struct range *range)
{
	unsigned long start;
	unsigned long end;

	start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
	end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));

	/*
	 * end + 1 here is intentional. We check several shadow bytes in advance
	 * to slightly speed up fastpath. In some rare cases we could cross
	 * boundary of mapped shadow, so we just map some more here.
	 */
	return vmemmap_populate(start, end + 1, NUMA_NO_NODE);
}

static void __init clear_pgds(unsigned long start,
			unsigned long end)
{
	for (; start < end; start += PGDIR_SIZE)
		pgd_clear(pgd_offset_k(start));
}

void __init kasan_map_early_shadow(pgd_t *pgd)
{
	int i;
	unsigned long start = KASAN_SHADOW_START;
	unsigned long end = KASAN_SHADOW_END;

	for (i = pgd_index(start); start < end; i++) {
		pgd[i] = __pgd(__pa_nodebug(kasan_zero_pud)
				| _KERNPG_TABLE);
		start += PGDIR_SIZE;
	}
}

static int __init zero_pte_populate(pmd_t *pmd, unsigned long addr,
				unsigned long end)
{
	pte_t *pte = pte_offset_kernel(pmd, addr);

	while (addr + PAGE_SIZE <= end) {
		WARN_ON(!pte_none(*pte));
		set_pte(pte, __pte(__pa_nodebug(kasan_zero_page)
					| __PAGE_KERNEL_RO));
		addr += PAGE_SIZE;
		pte = pte_offset_kernel(pmd, addr);
	}
	return 0;
}

static int __init zero_pmd_populate(pud_t *pud, unsigned long addr,
				unsigned long end)
{
	int ret = 0;
	pmd_t *pmd = pmd_offset(pud, addr);

	while (IS_ALIGNED(addr, PMD_SIZE) && addr + PMD_SIZE <= end) {
		WARN_ON(!pmd_none(*pmd));
		set_pmd(pmd, __pmd(__pa_nodebug(kasan_zero_pte)
					| __PAGE_KERNEL_RO));
		addr += PMD_SIZE;
		pmd = pmd_offset(pud, addr);
	}
	if (addr < end) {
		if (pmd_none(*pmd)) {
			void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
			if (!p)
				return -ENOMEM;
			set_pmd(pmd, __pmd(__pa_nodebug(p) | _KERNPG_TABLE));
		}
		ret = zero_pte_populate(pmd, addr, end);
	}
	return ret;
}


static int __init zero_pud_populate(pgd_t *pgd, unsigned long addr,
				unsigned long end)
{
	int ret = 0;
	pud_t *pud = pud_offset(pgd, addr);

	while (IS_ALIGNED(addr, PUD_SIZE) && addr + PUD_SIZE <= end) {
		WARN_ON(!pud_none(*pud));
		set_pud(pud, __pud(__pa_nodebug(kasan_zero_pmd)
					| __PAGE_KERNEL_RO));
		addr += PUD_SIZE;
		pud = pud_offset(pgd, addr);
	}

	if (addr < end) {
		if (pud_none(*pud)) {
			void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
			if (!p)
				return -ENOMEM;
			set_pud(pud, __pud(__pa_nodebug(p) | _KERNPG_TABLE));
		}
		ret = zero_pmd_populate(pud, addr, end);
	}
	return ret;
}

static int __init zero_pgd_populate(unsigned long addr, unsigned long end)
{
	int ret = 0;
	pgd_t *pgd = pgd_offset_k(addr);

	while (IS_ALIGNED(addr, PGDIR_SIZE) && addr + PGDIR_SIZE <= end) {
		WARN_ON(!pgd_none(*pgd));
		set_pgd(pgd, __pgd(__pa_nodebug(kasan_zero_pud)
					| __PAGE_KERNEL_RO));
		addr += PGDIR_SIZE;
		pgd = pgd_offset_k(addr);
	}

	if (addr < end) {
		if (pgd_none(*pgd)) {
			void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
			if (!p)
				return -ENOMEM;
			set_pgd(pgd, __pgd(__pa_nodebug(p) | _KERNPG_TABLE));
		}
		ret = zero_pud_populate(pgd, addr, end);
	}
	return ret;
}


static void __init populate_zero_shadow(const void *start, const void *end)
{
	if (zero_pgd_populate((unsigned long)start, (unsigned long)end))
		panic("kasan: unable to map zero shadow!");
}


#ifdef CONFIG_KASAN_INLINE
static int kasan_die_handler(struct notifier_block *self,
			     unsigned long val,
			     void *data)
{
	if (val == DIE_GPF) {
		pr_emerg("CONFIG_KASAN_INLINE enabled");
		pr_emerg("GPF could be caused by NULL-ptr deref or user memory access");
	}
	return NOTIFY_OK;
}

static struct notifier_block kasan_die_notifier = {
	.notifier_call = kasan_die_handler,
};
#endif

void __init kasan_init(void)
{
	int i;

#ifdef CONFIG_KASAN_INLINE
	register_die_notifier(&kasan_die_notifier);
#endif

	memcpy(early_level4_pgt, init_level4_pgt, sizeof(early_level4_pgt));
	load_cr3(early_level4_pgt);

	clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);

	populate_zero_shadow((void *)KASAN_SHADOW_START,
			kasan_mem_to_shadow((void *)PAGE_OFFSET));

	for (i = 0; i < E820_X_MAX; i++) {
		if (pfn_mapped[i].end == 0)
			break;

		if (map_range(&pfn_mapped[i]))
			panic("kasan: unable to allocate shadow!");
	}

	populate_zero_shadow(kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
				(void *)KASAN_SHADOW_END);

	memset(kasan_zero_page, 0, PAGE_SIZE);

	load_cr3(init_level4_pgt);
}