summaryrefslogtreecommitdiffstats
path: root/arch/x86/include/asm/mmu_context.h
blob: 93dff19633374ca83a72c551b025dc682403cd7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_MMU_CONTEXT_H
#define _ASM_X86_MMU_CONTEXT_H

#include <asm/desc.h>
#include <linux/atomic.h>
#include <linux/mm_types.h>
#include <linux/pkeys.h>

#include <trace/events/tlb.h>

#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include <asm/paravirt.h>
#include <asm/mpx.h>
#include <asm/debugreg.h>

extern atomic64_t last_mm_ctx_id;

#ifndef CONFIG_PARAVIRT_XXL
static inline void paravirt_activate_mm(struct mm_struct *prev,
					struct mm_struct *next)
{
}
#endif	/* !CONFIG_PARAVIRT_XXL */

#ifdef CONFIG_PERF_EVENTS

DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);

static inline void load_mm_cr4(struct mm_struct *mm)
{
	if (static_branch_unlikely(&rdpmc_always_available_key) ||
	    atomic_read(&mm->context.perf_rdpmc_allowed))
		cr4_set_bits(X86_CR4_PCE);
	else
		cr4_clear_bits(X86_CR4_PCE);
}
#else
static inline void load_mm_cr4(struct mm_struct *mm) {}
#endif

#ifdef CONFIG_MODIFY_LDT_SYSCALL
/*
 * ldt_structs can be allocated, used, and freed, but they are never
 * modified while live.
 */
struct ldt_struct {
	/*
	 * Xen requires page-aligned LDTs with special permissions.  This is
	 * needed to prevent us from installing evil descriptors such as
	 * call gates.  On native, we could merge the ldt_struct and LDT
	 * allocations, but it's not worth trying to optimize.
	 */
	struct desc_struct	*entries;
	unsigned int		nr_entries;

	/*
	 * If PTI is in use, then the entries array is not mapped while we're
	 * in user mode.  The whole array will be aliased at the addressed
	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
	 * and map, and enable a new LDT without invalidating the mapping
	 * of an older, still-in-use LDT.
	 *
	 * slot will be -1 if this LDT doesn't have an alias mapping.
	 */
	int			slot;
};

/* This is a multiple of PAGE_SIZE. */
#define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)

static inline void *ldt_slot_va(int slot)
{
	return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
}

/*
 * Used for LDT copy/destruction.
 */
static inline void init_new_context_ldt(struct mm_struct *mm)
{
	mm->context.ldt = NULL;
	init_rwsem(&mm->context.ldt_usr_sem);
}
int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
void destroy_context_ldt(struct mm_struct *mm);
void ldt_arch_exit_mmap(struct mm_struct *mm);
#else	/* CONFIG_MODIFY_LDT_SYSCALL */
static inline void init_new_context_ldt(struct mm_struct *mm) { }
static inline int ldt_dup_context(struct mm_struct *oldmm,
				  struct mm_struct *mm)
{
	return 0;
}
static inline void destroy_context_ldt(struct mm_struct *mm) { }
static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
#endif

static inline void load_mm_ldt(struct mm_struct *mm)
{
#ifdef CONFIG_MODIFY_LDT_SYSCALL
	struct ldt_struct *ldt;

	/* READ_ONCE synchronizes with smp_store_release */
	ldt = READ_ONCE(mm->context.ldt);

	/*
	 * Any change to mm->context.ldt is followed by an IPI to all
	 * CPUs with the mm active.  The LDT will not be freed until
	 * after the IPI is handled by all such CPUs.  This means that,
	 * if the ldt_struct changes before we return, the values we see
	 * will be safe, and the new values will be loaded before we run
	 * any user code.
	 *
	 * NB: don't try to convert this to use RCU without extreme care.
	 * We would still need IRQs off, because we don't want to change
	 * the local LDT after an IPI loaded a newer value than the one
	 * that we can see.
	 */

	if (unlikely(ldt)) {
		if (static_cpu_has(X86_FEATURE_PTI)) {
			if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
				/*
				 * Whoops -- either the new LDT isn't mapped
				 * (if slot == -1) or is mapped into a bogus
				 * slot (if slot > 1).
				 */
				clear_LDT();
				return;
			}

			/*
			 * If page table isolation is enabled, ldt->entries
			 * will not be mapped in the userspace pagetables.
			 * Tell the CPU to access the LDT through the alias
			 * at ldt_slot_va(ldt->slot).
			 */
			set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
		} else {
			set_ldt(ldt->entries, ldt->nr_entries);
		}
	} else {
		clear_LDT();
	}
#else
	clear_LDT();
#endif
}

static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
{
#ifdef CONFIG_MODIFY_LDT_SYSCALL
	/*
	 * Load the LDT if either the old or new mm had an LDT.
	 *
	 * An mm will never go from having an LDT to not having an LDT.  Two
	 * mms never share an LDT, so we don't gain anything by checking to
	 * see whether the LDT changed.  There's also no guarantee that
	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
	 * then prev->context.ldt will also be non-NULL.
	 *
	 * If we really cared, we could optimize the case where prev == next
	 * and we're exiting lazy mode.  Most of the time, if this happens,
	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
	 * used by legacy code and emulators where we don't need this level of
	 * performance.
	 *
	 * This uses | instead of || because it generates better code.
	 */
	if (unlikely((unsigned long)prev->context.ldt |
		     (unsigned long)next->context.ldt))
		load_mm_ldt(next);
#endif

	DEBUG_LOCKS_WARN_ON(preemptible());
}

void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);

/*
 * Init a new mm.  Used on mm copies, like at fork()
 * and on mm's that are brand-new, like at execve().
 */
static inline int init_new_context(struct task_struct *tsk,
				   struct mm_struct *mm)
{
	mutex_init(&mm->context.lock);

	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
	atomic64_set(&mm->context.tlb_gen, 0);

#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
		/* pkey 0 is the default and allocated implicitly */
		mm->context.pkey_allocation_map = 0x1;
		/* -1 means unallocated or invalid */
		mm->context.execute_only_pkey = -1;
	}
#endif
	init_new_context_ldt(mm);
	return 0;
}
static inline void destroy_context(struct mm_struct *mm)
{
	destroy_context_ldt(mm);
}

extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
		      struct task_struct *tsk);

extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
			       struct task_struct *tsk);
#define switch_mm_irqs_off switch_mm_irqs_off

#define activate_mm(prev, next)			\
do {						\
	paravirt_activate_mm((prev), (next));	\
	switch_mm((prev), (next), NULL);	\
} while (0);

#ifdef CONFIG_X86_32
#define deactivate_mm(tsk, mm)			\
do {						\
	lazy_load_gs(0);			\
} while (0)
#else
#define deactivate_mm(tsk, mm)			\
do {						\
	load_gs_index(0);			\
	loadsegment(fs, 0);			\
} while (0)
#endif

static inline void arch_dup_pkeys(struct mm_struct *oldmm,
				  struct mm_struct *mm)
{
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
		return;

	/* Duplicate the oldmm pkey state in mm: */
	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
	mm->context.execute_only_pkey   = oldmm->context.execute_only_pkey;
#endif
}

static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
{
	arch_dup_pkeys(oldmm, mm);
	paravirt_arch_dup_mmap(oldmm, mm);
	return ldt_dup_context(oldmm, mm);
}

static inline void arch_exit_mmap(struct mm_struct *mm)
{
	paravirt_arch_exit_mmap(mm);
	ldt_arch_exit_mmap(mm);
}

#ifdef CONFIG_X86_64
static inline bool is_64bit_mm(struct mm_struct *mm)
{
	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
		!(mm->context.ia32_compat == TIF_IA32);
}
#else
static inline bool is_64bit_mm(struct mm_struct *mm)
{
	return false;
}
#endif

static inline void arch_bprm_mm_init(struct mm_struct *mm,
		struct vm_area_struct *vma)
{
	mpx_mm_init(mm);
}

static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
			      unsigned long start, unsigned long end)
{
	/*
	 * mpx_notify_unmap() goes and reads a rarely-hot
	 * cacheline in the mm_struct.  That can be expensive
	 * enough to be seen in profiles.
	 *
	 * The mpx_notify_unmap() call and its contents have been
	 * observed to affect munmap() performance on hardware
	 * where MPX is not present.
	 *
	 * The unlikely() optimizes for the fast case: no MPX
	 * in the CPU, or no MPX use in the process.  Even if
	 * we get this wrong (in the unlikely event that MPX
	 * is widely enabled on some system) the overhead of
	 * MPX itself (reading bounds tables) is expected to
	 * overwhelm the overhead of getting this unlikely()
	 * consistently wrong.
	 */
	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
		mpx_notify_unmap(mm, vma, start, end);
}

/*
 * We only want to enforce protection keys on the current process
 * because we effectively have no access to PKRU for other
 * processes or any way to tell *which * PKRU in a threaded
 * process we could use.
 *
 * So do not enforce things if the VMA is not from the current
 * mm, or if we are in a kernel thread.
 */
static inline bool vma_is_foreign(struct vm_area_struct *vma)
{
	if (!current->mm)
		return true;
	/*
	 * Should PKRU be enforced on the access to this VMA?  If
	 * the VMA is from another process, then PKRU has no
	 * relevance and should not be enforced.
	 */
	if (current->mm != vma->vm_mm)
		return true;

	return false;
}

static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
		bool write, bool execute, bool foreign)
{
	/* pkeys never affect instruction fetches */
	if (execute)
		return true;
	/* allow access if the VMA is not one from this process */
	if (foreign || vma_is_foreign(vma))
		return true;
	return __pkru_allows_pkey(vma_pkey(vma), write);
}

/*
 * This can be used from process context to figure out what the value of
 * CR3 is without needing to do a (slow) __read_cr3().
 *
 * It's intended to be used for code like KVM that sneakily changes CR3
 * and needs to restore it.  It needs to be used very carefully.
 */
static inline unsigned long __get_current_cr3_fast(void)
{
	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
		this_cpu_read(cpu_tlbstate.loaded_mm_asid));

	/* For now, be very restrictive about when this can be called. */
	VM_WARN_ON(in_nmi() || preemptible());

	VM_BUG_ON(cr3 != __read_cr3());
	return cr3;
}

typedef struct {
	struct mm_struct *mm;
} temp_mm_state_t;

/*
 * Using a temporary mm allows to set temporary mappings that are not accessible
 * by other CPUs. Such mappings are needed to perform sensitive memory writes
 * that override the kernel memory protections (e.g., W^X), without exposing the
 * temporary page-table mappings that are required for these write operations to
 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
 * mapping is torn down.
 *
 * Context: The temporary mm needs to be used exclusively by a single core. To
 *          harden security IRQs must be disabled while the temporary mm is
 *          loaded, thereby preventing interrupt handler bugs from overriding
 *          the kernel memory protection.
 */
static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
{
	temp_mm_state_t temp_state;

	lockdep_assert_irqs_disabled();
	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
	switch_mm_irqs_off(NULL, mm, current);

	/*
	 * If breakpoints are enabled, disable them while the temporary mm is
	 * used. Userspace might set up watchpoints on addresses that are used
	 * in the temporary mm, which would lead to wrong signals being sent or
	 * crashes.
	 *
	 * Note that breakpoints are not disabled selectively, which also causes
	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
	 * undesirable, but still seems reasonable as the code that runs in the
	 * temporary mm should be short.
	 */
	if (hw_breakpoint_active())
		hw_breakpoint_disable();

	return temp_state;
}

static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
{
	lockdep_assert_irqs_disabled();
	switch_mm_irqs_off(NULL, prev_state.mm, current);

	/*
	 * Restore the breakpoints if they were disabled before the temporary mm
	 * was loaded.
	 */
	if (hw_breakpoint_active())
		hw_breakpoint_restore();
}

#endif /* _ASM_X86_MMU_CONTEXT_H */