1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
|
########################################################################
# Copyright (c) 2013, Intel Corporation
#
# This software is available to you under a choice of one of two
# licenses. You may choose to be licensed under the terms of the GNU
# General Public License (GPL) Version 2, available from the file
# COPYING in the main directory of this source tree, or the
# OpenIB.org BSD license below:
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the
# distribution.
#
# * Neither the name of the Intel Corporation nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
#
# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES# LOSS OF USE, DATA, OR
# PROFITS# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
########################################################################
##
## Authors:
## Erdinc Ozturk <erdinc.ozturk@intel.com>
## Vinodh Gopal <vinodh.gopal@intel.com>
## James Guilford <james.guilford@intel.com>
## Tim Chen <tim.c.chen@linux.intel.com>
##
## References:
## This code was derived and highly optimized from the code described in paper:
## Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation
## on Intel Architecture Processors. August, 2010
## The details of the implementation is explained in:
## Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode
## on Intel Architecture Processors. October, 2012.
##
## Assumptions:
##
##
##
## iv:
## 0 1 2 3
## 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
## | Salt (From the SA) |
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
## | Initialization Vector |
## | (This is the sequence number from IPSec header) |
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
## | 0x1 |
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
##
##
##
## AAD:
## AAD padded to 128 bits with 0
## for example, assume AAD is a u32 vector
##
## if AAD is 8 bytes:
## AAD[3] = {A0, A1}#
## padded AAD in xmm register = {A1 A0 0 0}
##
## 0 1 2 3
## 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
## | SPI (A1) |
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
## | 32-bit Sequence Number (A0) |
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
## | 0x0 |
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
##
## AAD Format with 32-bit Sequence Number
##
## if AAD is 12 bytes:
## AAD[3] = {A0, A1, A2}#
## padded AAD in xmm register = {A2 A1 A0 0}
##
## 0 1 2 3
## 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
## | SPI (A2) |
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
## | 64-bit Extended Sequence Number {A1,A0} |
## | |
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
## | 0x0 |
## +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
##
## AAD Format with 64-bit Extended Sequence Number
##
##
## aadLen:
## from the definition of the spec, aadLen can only be 8 or 12 bytes.
## The code additionally supports aadLen of length 16 bytes.
##
## TLen:
## from the definition of the spec, TLen can only be 8, 12 or 16 bytes.
##
## poly = x^128 + x^127 + x^126 + x^121 + 1
## throughout the code, one tab and two tab indentations are used. one tab is
## for GHASH part, two tabs is for AES part.
##
#include <linux/linkage.h>
#include <asm/inst.h>
# constants in mergeable sections, linker can reorder and merge
.section .rodata.cst16.POLY, "aM", @progbits, 16
.align 16
POLY: .octa 0xC2000000000000000000000000000001
.section .rodata.cst16.POLY2, "aM", @progbits, 16
.align 16
POLY2: .octa 0xC20000000000000000000001C2000000
.section .rodata.cst16.TWOONE, "aM", @progbits, 16
.align 16
TWOONE: .octa 0x00000001000000000000000000000001
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
.align 16
SHUF_MASK: .octa 0x000102030405060708090A0B0C0D0E0F
.section .rodata.cst16.ONE, "aM", @progbits, 16
.align 16
ONE: .octa 0x00000000000000000000000000000001
.section .rodata.cst16.ONEf, "aM", @progbits, 16
.align 16
ONEf: .octa 0x01000000000000000000000000000000
# order of these constants should not change.
# more specifically, ALL_F should follow SHIFT_MASK, and zero should follow ALL_F
.section .rodata, "a", @progbits
.align 16
SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100
ALL_F: .octa 0xffffffffffffffffffffffffffffffff
.octa 0x00000000000000000000000000000000
.section .rodata
.align 16
.type aad_shift_arr, @object
.size aad_shift_arr, 272
aad_shift_arr:
.octa 0xffffffffffffffffffffffffffffffff
.octa 0xffffffffffffffffffffffffffffff0C
.octa 0xffffffffffffffffffffffffffff0D0C
.octa 0xffffffffffffffffffffffffff0E0D0C
.octa 0xffffffffffffffffffffffff0F0E0D0C
.octa 0xffffffffffffffffffffff0C0B0A0908
.octa 0xffffffffffffffffffff0D0C0B0A0908
.octa 0xffffffffffffffffff0E0D0C0B0A0908
.octa 0xffffffffffffffff0F0E0D0C0B0A0908
.octa 0xffffffffffffff0C0B0A090807060504
.octa 0xffffffffffff0D0C0B0A090807060504
.octa 0xffffffffff0E0D0C0B0A090807060504
.octa 0xffffffff0F0E0D0C0B0A090807060504
.octa 0xffffff0C0B0A09080706050403020100
.octa 0xffff0D0C0B0A09080706050403020100
.octa 0xff0E0D0C0B0A09080706050403020100
.octa 0x0F0E0D0C0B0A09080706050403020100
.text
#define AadHash 16*0
#define AadLen 16*1
#define InLen (16*1)+8
#define PBlockEncKey 16*2
#define OrigIV 16*3
#define CurCount 16*4
#define PBlockLen 16*5
HashKey = 16*6 # store HashKey <<1 mod poly here
HashKey_2 = 16*7 # store HashKey^2 <<1 mod poly here
HashKey_3 = 16*8 # store HashKey^3 <<1 mod poly here
HashKey_4 = 16*9 # store HashKey^4 <<1 mod poly here
HashKey_5 = 16*10 # store HashKey^5 <<1 mod poly here
HashKey_6 = 16*11 # store HashKey^6 <<1 mod poly here
HashKey_7 = 16*12 # store HashKey^7 <<1 mod poly here
HashKey_8 = 16*13 # store HashKey^8 <<1 mod poly here
HashKey_k = 16*14 # store XOR of HashKey <<1 mod poly here (for Karatsuba purposes)
HashKey_2_k = 16*15 # store XOR of HashKey^2 <<1 mod poly here (for Karatsuba purposes)
HashKey_3_k = 16*16 # store XOR of HashKey^3 <<1 mod poly here (for Karatsuba purposes)
HashKey_4_k = 16*17 # store XOR of HashKey^4 <<1 mod poly here (for Karatsuba purposes)
HashKey_5_k = 16*18 # store XOR of HashKey^5 <<1 mod poly here (for Karatsuba purposes)
HashKey_6_k = 16*19 # store XOR of HashKey^6 <<1 mod poly here (for Karatsuba purposes)
HashKey_7_k = 16*20 # store XOR of HashKey^7 <<1 mod poly here (for Karatsuba purposes)
HashKey_8_k = 16*21 # store XOR of HashKey^8 <<1 mod poly here (for Karatsuba purposes)
#define arg1 %rdi
#define arg2 %rsi
#define arg3 %rdx
#define arg4 %rcx
#define arg5 %r8
#define arg6 %r9
#define arg7 STACK_OFFSET+8*1(%r14)
#define arg8 STACK_OFFSET+8*2(%r14)
#define arg9 STACK_OFFSET+8*3(%r14)
#define arg10 STACK_OFFSET+8*4(%r14)
#define keysize 2*15*16(arg1)
i = 0
j = 0
out_order = 0
in_order = 1
DEC = 0
ENC = 1
.macro define_reg r n
reg_\r = %xmm\n
.endm
.macro setreg
.altmacro
define_reg i %i
define_reg j %j
.noaltmacro
.endm
# need to push 4 registers into stack to maintain
STACK_OFFSET = 8*4
TMP1 = 16*0 # Temporary storage for AAD
TMP2 = 16*1 # Temporary storage for AES State 2 (State 1 is stored in an XMM register)
TMP3 = 16*2 # Temporary storage for AES State 3
TMP4 = 16*3 # Temporary storage for AES State 4
TMP5 = 16*4 # Temporary storage for AES State 5
TMP6 = 16*5 # Temporary storage for AES State 6
TMP7 = 16*6 # Temporary storage for AES State 7
TMP8 = 16*7 # Temporary storage for AES State 8
VARIABLE_OFFSET = 16*8
################################
# Utility Macros
################################
.macro FUNC_SAVE
#the number of pushes must equal STACK_OFFSET
push %r12
push %r13
push %r14
push %r15
mov %rsp, %r14
sub $VARIABLE_OFFSET, %rsp
and $~63, %rsp # align rsp to 64 bytes
.endm
.macro FUNC_RESTORE
mov %r14, %rsp
pop %r15
pop %r14
pop %r13
pop %r12
.endm
# Encryption of a single block
.macro ENCRYPT_SINGLE_BLOCK REP XMM0
vpxor (arg1), \XMM0, \XMM0
i = 1
setreg
.rep \REP
vaesenc 16*i(arg1), \XMM0, \XMM0
i = (i+1)
setreg
.endr
vaesenclast 16*i(arg1), \XMM0, \XMM0
.endm
# combined for GCM encrypt and decrypt functions
# clobbering all xmm registers
# clobbering r10, r11, r12, r13, r14, r15
.macro GCM_ENC_DEC INITIAL_BLOCKS GHASH_8_ENCRYPT_8_PARALLEL GHASH_LAST_8 GHASH_MUL ENC_DEC REP
vmovdqu AadHash(arg2), %xmm8
vmovdqu HashKey(arg2), %xmm13 # xmm13 = HashKey
add arg5, InLen(arg2)
# initialize the data pointer offset as zero
xor %r11d, %r11d
PARTIAL_BLOCK \GHASH_MUL, arg3, arg4, arg5, %r11, %xmm8, \ENC_DEC
sub %r11, arg5
mov arg5, %r13 # save the number of bytes of plaintext/ciphertext
and $-16, %r13 # r13 = r13 - (r13 mod 16)
mov %r13, %r12
shr $4, %r12
and $7, %r12
jz _initial_num_blocks_is_0\@
cmp $7, %r12
je _initial_num_blocks_is_7\@
cmp $6, %r12
je _initial_num_blocks_is_6\@
cmp $5, %r12
je _initial_num_blocks_is_5\@
cmp $4, %r12
je _initial_num_blocks_is_4\@
cmp $3, %r12
je _initial_num_blocks_is_3\@
cmp $2, %r12
je _initial_num_blocks_is_2\@
jmp _initial_num_blocks_is_1\@
_initial_num_blocks_is_7\@:
\INITIAL_BLOCKS \REP, 7, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
sub $16*7, %r13
jmp _initial_blocks_encrypted\@
_initial_num_blocks_is_6\@:
\INITIAL_BLOCKS \REP, 6, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
sub $16*6, %r13
jmp _initial_blocks_encrypted\@
_initial_num_blocks_is_5\@:
\INITIAL_BLOCKS \REP, 5, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
sub $16*5, %r13
jmp _initial_blocks_encrypted\@
_initial_num_blocks_is_4\@:
\INITIAL_BLOCKS \REP, 4, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
sub $16*4, %r13
jmp _initial_blocks_encrypted\@
_initial_num_blocks_is_3\@:
\INITIAL_BLOCKS \REP, 3, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
sub $16*3, %r13
jmp _initial_blocks_encrypted\@
_initial_num_blocks_is_2\@:
\INITIAL_BLOCKS \REP, 2, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
sub $16*2, %r13
jmp _initial_blocks_encrypted\@
_initial_num_blocks_is_1\@:
\INITIAL_BLOCKS \REP, 1, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
sub $16*1, %r13
jmp _initial_blocks_encrypted\@
_initial_num_blocks_is_0\@:
\INITIAL_BLOCKS \REP, 0, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
_initial_blocks_encrypted\@:
cmp $0, %r13
je _zero_cipher_left\@
sub $128, %r13
je _eight_cipher_left\@
vmovd %xmm9, %r15d
and $255, %r15d
vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
_encrypt_by_8_new\@:
cmp $(255-8), %r15d
jg _encrypt_by_8\@
add $8, %r15b
\GHASH_8_ENCRYPT_8_PARALLEL \REP, %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, out_order, \ENC_DEC
add $128, %r11
sub $128, %r13
jne _encrypt_by_8_new\@
vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
jmp _eight_cipher_left\@
_encrypt_by_8\@:
vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
add $8, %r15b
\GHASH_8_ENCRYPT_8_PARALLEL \REP, %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, in_order, \ENC_DEC
vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
add $128, %r11
sub $128, %r13
jne _encrypt_by_8_new\@
vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
_eight_cipher_left\@:
\GHASH_LAST_8 %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8
_zero_cipher_left\@:
vmovdqu %xmm14, AadHash(arg2)
vmovdqu %xmm9, CurCount(arg2)
# check for 0 length
mov arg5, %r13
and $15, %r13 # r13 = (arg5 mod 16)
je _multiple_of_16_bytes\@
# handle the last <16 Byte block separately
mov %r13, PBlockLen(arg2)
vpaddd ONE(%rip), %xmm9, %xmm9 # INCR CNT to get Yn
vmovdqu %xmm9, CurCount(arg2)
vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
ENCRYPT_SINGLE_BLOCK \REP, %xmm9 # E(K, Yn)
vmovdqu %xmm9, PBlockEncKey(arg2)
cmp $16, arg5
jge _large_enough_update\@
lea (arg4,%r11,1), %r10
mov %r13, %r12
READ_PARTIAL_BLOCK %r10 %r12 %xmm1
lea SHIFT_MASK+16(%rip), %r12
sub %r13, %r12 # adjust the shuffle mask pointer to be
# able to shift 16-r13 bytes (r13 is the
# number of bytes in plaintext mod 16)
jmp _final_ghash_mul\@
_large_enough_update\@:
sub $16, %r11
add %r13, %r11
# receive the last <16 Byte block
vmovdqu (arg4, %r11, 1), %xmm1
sub %r13, %r11
add $16, %r11
lea SHIFT_MASK+16(%rip), %r12
# adjust the shuffle mask pointer to be able to shift 16-r13 bytes
# (r13 is the number of bytes in plaintext mod 16)
sub %r13, %r12
# get the appropriate shuffle mask
vmovdqu (%r12), %xmm2
# shift right 16-r13 bytes
vpshufb %xmm2, %xmm1, %xmm1
_final_ghash_mul\@:
.if \ENC_DEC == DEC
vmovdqa %xmm1, %xmm2
vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn)
vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to
# mask out top 16-r13 bytes of xmm9
vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9
vpand %xmm1, %xmm2, %xmm2
vpshufb SHUF_MASK(%rip), %xmm2, %xmm2
vpxor %xmm2, %xmm14, %xmm14
vmovdqu %xmm14, AadHash(arg2)
.else
vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn)
vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1 # get the appropriate mask to
# mask out top 16-r13 bytes of xmm9
vpand %xmm1, %xmm9, %xmm9 # mask out top 16-r13 bytes of xmm9
vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
vpxor %xmm9, %xmm14, %xmm14
vmovdqu %xmm14, AadHash(arg2)
vpshufb SHUF_MASK(%rip), %xmm9, %xmm9 # shuffle xmm9 back to output as ciphertext
.endif
#############################
# output r13 Bytes
vmovq %xmm9, %rax
cmp $8, %r13
jle _less_than_8_bytes_left\@
mov %rax, (arg3 , %r11)
add $8, %r11
vpsrldq $8, %xmm9, %xmm9
vmovq %xmm9, %rax
sub $8, %r13
_less_than_8_bytes_left\@:
movb %al, (arg3 , %r11)
add $1, %r11
shr $8, %rax
sub $1, %r13
jne _less_than_8_bytes_left\@
#############################
_multiple_of_16_bytes\@:
.endm
# GCM_COMPLETE Finishes update of tag of last partial block
# Output: Authorization Tag (AUTH_TAG)
# Clobbers rax, r10-r12, and xmm0, xmm1, xmm5-xmm15
.macro GCM_COMPLETE GHASH_MUL REP AUTH_TAG AUTH_TAG_LEN
vmovdqu AadHash(arg2), %xmm14
vmovdqu HashKey(arg2), %xmm13
mov PBlockLen(arg2), %r12
cmp $0, %r12
je _partial_done\@
#GHASH computation for the last <16 Byte block
\GHASH_MUL %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
_partial_done\@:
mov AadLen(arg2), %r12 # r12 = aadLen (number of bytes)
shl $3, %r12 # convert into number of bits
vmovd %r12d, %xmm15 # len(A) in xmm15
mov InLen(arg2), %r12
shl $3, %r12 # len(C) in bits (*128)
vmovq %r12, %xmm1
vpslldq $8, %xmm15, %xmm15 # xmm15 = len(A)|| 0x0000000000000000
vpxor %xmm1, %xmm15, %xmm15 # xmm15 = len(A)||len(C)
vpxor %xmm15, %xmm14, %xmm14
\GHASH_MUL %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6 # final GHASH computation
vpshufb SHUF_MASK(%rip), %xmm14, %xmm14 # perform a 16Byte swap
vmovdqu OrigIV(arg2), %xmm9
ENCRYPT_SINGLE_BLOCK \REP, %xmm9 # E(K, Y0)
vpxor %xmm14, %xmm9, %xmm9
_return_T\@:
mov \AUTH_TAG, %r10 # r10 = authTag
mov \AUTH_TAG_LEN, %r11 # r11 = auth_tag_len
cmp $16, %r11
je _T_16\@
cmp $8, %r11
jl _T_4\@
_T_8\@:
vmovq %xmm9, %rax
mov %rax, (%r10)
add $8, %r10
sub $8, %r11
vpsrldq $8, %xmm9, %xmm9
cmp $0, %r11
je _return_T_done\@
_T_4\@:
vmovd %xmm9, %eax
mov %eax, (%r10)
add $4, %r10
sub $4, %r11
vpsrldq $4, %xmm9, %xmm9
cmp $0, %r11
je _return_T_done\@
_T_123\@:
vmovd %xmm9, %eax
cmp $2, %r11
jl _T_1\@
mov %ax, (%r10)
cmp $2, %r11
je _return_T_done\@
add $2, %r10
sar $16, %eax
_T_1\@:
mov %al, (%r10)
jmp _return_T_done\@
_T_16\@:
vmovdqu %xmm9, (%r10)
_return_T_done\@:
.endm
.macro CALC_AAD_HASH GHASH_MUL AAD AADLEN T1 T2 T3 T4 T5 T6 T7 T8
mov \AAD, %r10 # r10 = AAD
mov \AADLEN, %r12 # r12 = aadLen
mov %r12, %r11
vpxor \T8, \T8, \T8
vpxor \T7, \T7, \T7
cmp $16, %r11
jl _get_AAD_rest8\@
_get_AAD_blocks\@:
vmovdqu (%r10), \T7
vpshufb SHUF_MASK(%rip), \T7, \T7
vpxor \T7, \T8, \T8
\GHASH_MUL \T8, \T2, \T1, \T3, \T4, \T5, \T6
add $16, %r10
sub $16, %r12
sub $16, %r11
cmp $16, %r11
jge _get_AAD_blocks\@
vmovdqu \T8, \T7
cmp $0, %r11
je _get_AAD_done\@
vpxor \T7, \T7, \T7
/* read the last <16B of AAD. since we have at least 4B of
data right after the AAD (the ICV, and maybe some CT), we can
read 4B/8B blocks safely, and then get rid of the extra stuff */
_get_AAD_rest8\@:
cmp $4, %r11
jle _get_AAD_rest4\@
movq (%r10), \T1
add $8, %r10
sub $8, %r11
vpslldq $8, \T1, \T1
vpsrldq $8, \T7, \T7
vpxor \T1, \T7, \T7
jmp _get_AAD_rest8\@
_get_AAD_rest4\@:
cmp $0, %r11
jle _get_AAD_rest0\@
mov (%r10), %eax
movq %rax, \T1
add $4, %r10
sub $4, %r11
vpslldq $12, \T1, \T1
vpsrldq $4, \T7, \T7
vpxor \T1, \T7, \T7
_get_AAD_rest0\@:
/* finalize: shift out the extra bytes we read, and align
left. since pslldq can only shift by an immediate, we use
vpshufb and an array of shuffle masks */
movq %r12, %r11
salq $4, %r11
vmovdqu aad_shift_arr(%r11), \T1
vpshufb \T1, \T7, \T7
_get_AAD_rest_final\@:
vpshufb SHUF_MASK(%rip), \T7, \T7
vpxor \T8, \T7, \T7
\GHASH_MUL \T7, \T2, \T1, \T3, \T4, \T5, \T6
_get_AAD_done\@:
vmovdqu \T7, AadHash(arg2)
.endm
.macro INIT GHASH_MUL PRECOMPUTE
mov arg6, %r11
mov %r11, AadLen(arg2) # ctx_data.aad_length = aad_length
xor %r11d, %r11d
mov %r11, InLen(arg2) # ctx_data.in_length = 0
mov %r11, PBlockLen(arg2) # ctx_data.partial_block_length = 0
mov %r11, PBlockEncKey(arg2) # ctx_data.partial_block_enc_key = 0
mov arg3, %rax
movdqu (%rax), %xmm0
movdqu %xmm0, OrigIV(arg2) # ctx_data.orig_IV = iv
vpshufb SHUF_MASK(%rip), %xmm0, %xmm0
movdqu %xmm0, CurCount(arg2) # ctx_data.current_counter = iv
vmovdqu (arg4), %xmm6 # xmm6 = HashKey
vpshufb SHUF_MASK(%rip), %xmm6, %xmm6
############### PRECOMPUTATION of HashKey<<1 mod poly from the HashKey
vmovdqa %xmm6, %xmm2
vpsllq $1, %xmm6, %xmm6
vpsrlq $63, %xmm2, %xmm2
vmovdqa %xmm2, %xmm1
vpslldq $8, %xmm2, %xmm2
vpsrldq $8, %xmm1, %xmm1
vpor %xmm2, %xmm6, %xmm6
#reduction
vpshufd $0b00100100, %xmm1, %xmm2
vpcmpeqd TWOONE(%rip), %xmm2, %xmm2
vpand POLY(%rip), %xmm2, %xmm2
vpxor %xmm2, %xmm6, %xmm6 # xmm6 holds the HashKey<<1 mod poly
#######################################################################
vmovdqu %xmm6, HashKey(arg2) # store HashKey<<1 mod poly
CALC_AAD_HASH \GHASH_MUL, arg5, arg6, %xmm2, %xmm6, %xmm3, %xmm4, %xmm5, %xmm7, %xmm1, %xmm0
\PRECOMPUTE %xmm6, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5
.endm
# Reads DLEN bytes starting at DPTR and stores in XMMDst
# where 0 < DLEN < 16
# Clobbers %rax, DLEN
.macro READ_PARTIAL_BLOCK DPTR DLEN XMMDst
vpxor \XMMDst, \XMMDst, \XMMDst
cmp $8, \DLEN
jl _read_lt8_\@
mov (\DPTR), %rax
vpinsrq $0, %rax, \XMMDst, \XMMDst
sub $8, \DLEN
jz _done_read_partial_block_\@
xor %eax, %eax
_read_next_byte_\@:
shl $8, %rax
mov 7(\DPTR, \DLEN, 1), %al
dec \DLEN
jnz _read_next_byte_\@
vpinsrq $1, %rax, \XMMDst, \XMMDst
jmp _done_read_partial_block_\@
_read_lt8_\@:
xor %eax, %eax
_read_next_byte_lt8_\@:
shl $8, %rax
mov -1(\DPTR, \DLEN, 1), %al
dec \DLEN
jnz _read_next_byte_lt8_\@
vpinsrq $0, %rax, \XMMDst, \XMMDst
_done_read_partial_block_\@:
.endm
# PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks
# between update calls.
# Requires the input data be at least 1 byte long due to READ_PARTIAL_BLOCK
# Outputs encrypted bytes, and updates hash and partial info in gcm_data_context
# Clobbers rax, r10, r12, r13, xmm0-6, xmm9-13
.macro PARTIAL_BLOCK GHASH_MUL CYPH_PLAIN_OUT PLAIN_CYPH_IN PLAIN_CYPH_LEN DATA_OFFSET \
AAD_HASH ENC_DEC
mov PBlockLen(arg2), %r13
cmp $0, %r13
je _partial_block_done_\@ # Leave Macro if no partial blocks
# Read in input data without over reading
cmp $16, \PLAIN_CYPH_LEN
jl _fewer_than_16_bytes_\@
vmovdqu (\PLAIN_CYPH_IN), %xmm1 # If more than 16 bytes, just fill xmm
jmp _data_read_\@
_fewer_than_16_bytes_\@:
lea (\PLAIN_CYPH_IN, \DATA_OFFSET, 1), %r10
mov \PLAIN_CYPH_LEN, %r12
READ_PARTIAL_BLOCK %r10 %r12 %xmm1
mov PBlockLen(arg2), %r13
_data_read_\@: # Finished reading in data
vmovdqu PBlockEncKey(arg2), %xmm9
vmovdqu HashKey(arg2), %xmm13
lea SHIFT_MASK(%rip), %r12
# adjust the shuffle mask pointer to be able to shift r13 bytes
# r16-r13 is the number of bytes in plaintext mod 16)
add %r13, %r12
vmovdqu (%r12), %xmm2 # get the appropriate shuffle mask
vpshufb %xmm2, %xmm9, %xmm9 # shift right r13 bytes
.if \ENC_DEC == DEC
vmovdqa %xmm1, %xmm3
pxor %xmm1, %xmm9 # Cyphertext XOR E(K, Yn)
mov \PLAIN_CYPH_LEN, %r10
add %r13, %r10
# Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling
sub $16, %r10
# Determine if if partial block is not being filled and
# shift mask accordingly
jge _no_extra_mask_1_\@
sub %r10, %r12
_no_extra_mask_1_\@:
vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1
# get the appropriate mask to mask out bottom r13 bytes of xmm9
vpand %xmm1, %xmm9, %xmm9 # mask out bottom r13 bytes of xmm9
vpand %xmm1, %xmm3, %xmm3
vmovdqa SHUF_MASK(%rip), %xmm10
vpshufb %xmm10, %xmm3, %xmm3
vpshufb %xmm2, %xmm3, %xmm3
vpxor %xmm3, \AAD_HASH, \AAD_HASH
cmp $0, %r10
jl _partial_incomplete_1_\@
# GHASH computation for the last <16 Byte block
\GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
xor %eax,%eax
mov %rax, PBlockLen(arg2)
jmp _dec_done_\@
_partial_incomplete_1_\@:
add \PLAIN_CYPH_LEN, PBlockLen(arg2)
_dec_done_\@:
vmovdqu \AAD_HASH, AadHash(arg2)
.else
vpxor %xmm1, %xmm9, %xmm9 # Plaintext XOR E(K, Yn)
mov \PLAIN_CYPH_LEN, %r10
add %r13, %r10
# Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling
sub $16, %r10
# Determine if if partial block is not being filled and
# shift mask accordingly
jge _no_extra_mask_2_\@
sub %r10, %r12
_no_extra_mask_2_\@:
vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1
# get the appropriate mask to mask out bottom r13 bytes of xmm9
vpand %xmm1, %xmm9, %xmm9
vmovdqa SHUF_MASK(%rip), %xmm1
vpshufb %xmm1, %xmm9, %xmm9
vpshufb %xmm2, %xmm9, %xmm9
vpxor %xmm9, \AAD_HASH, \AAD_HASH
cmp $0, %r10
jl _partial_incomplete_2_\@
# GHASH computation for the last <16 Byte block
\GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
xor %eax,%eax
mov %rax, PBlockLen(arg2)
jmp _encode_done_\@
_partial_incomplete_2_\@:
add \PLAIN_CYPH_LEN, PBlockLen(arg2)
_encode_done_\@:
vmovdqu \AAD_HASH, AadHash(arg2)
vmovdqa SHUF_MASK(%rip), %xmm10
# shuffle xmm9 back to output as ciphertext
vpshufb %xmm10, %xmm9, %xmm9
vpshufb %xmm2, %xmm9, %xmm9
.endif
# output encrypted Bytes
cmp $0, %r10
jl _partial_fill_\@
mov %r13, %r12
mov $16, %r13
# Set r13 to be the number of bytes to write out
sub %r12, %r13
jmp _count_set_\@
_partial_fill_\@:
mov \PLAIN_CYPH_LEN, %r13
_count_set_\@:
vmovdqa %xmm9, %xmm0
vmovq %xmm0, %rax
cmp $8, %r13
jle _less_than_8_bytes_left_\@
mov %rax, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1)
add $8, \DATA_OFFSET
psrldq $8, %xmm0
vmovq %xmm0, %rax
sub $8, %r13
_less_than_8_bytes_left_\@:
movb %al, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1)
add $1, \DATA_OFFSET
shr $8, %rax
sub $1, %r13
jne _less_than_8_bytes_left_\@
_partial_block_done_\@:
.endm # PARTIAL_BLOCK
#ifdef CONFIG_AS_AVX
###############################################################################
# GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
# Input: A and B (128-bits each, bit-reflected)
# Output: C = A*B*x mod poly, (i.e. >>1 )
# To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
# GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
###############################################################################
.macro GHASH_MUL_AVX GH HK T1 T2 T3 T4 T5
vpshufd $0b01001110, \GH, \T2
vpshufd $0b01001110, \HK, \T3
vpxor \GH , \T2, \T2 # T2 = (a1+a0)
vpxor \HK , \T3, \T3 # T3 = (b1+b0)
vpclmulqdq $0x11, \HK, \GH, \T1 # T1 = a1*b1
vpclmulqdq $0x00, \HK, \GH, \GH # GH = a0*b0
vpclmulqdq $0x00, \T3, \T2, \T2 # T2 = (a1+a0)*(b1+b0)
vpxor \GH, \T2,\T2
vpxor \T1, \T2,\T2 # T2 = a0*b1+a1*b0
vpslldq $8, \T2,\T3 # shift-L T3 2 DWs
vpsrldq $8, \T2,\T2 # shift-R T2 2 DWs
vpxor \T3, \GH, \GH
vpxor \T2, \T1, \T1 # <T1:GH> = GH x HK
#first phase of the reduction
vpslld $31, \GH, \T2 # packed right shifting << 31
vpslld $30, \GH, \T3 # packed right shifting shift << 30
vpslld $25, \GH, \T4 # packed right shifting shift << 25
vpxor \T3, \T2, \T2 # xor the shifted versions
vpxor \T4, \T2, \T2
vpsrldq $4, \T2, \T5 # shift-R T5 1 DW
vpslldq $12, \T2, \T2 # shift-L T2 3 DWs
vpxor \T2, \GH, \GH # first phase of the reduction complete
#second phase of the reduction
vpsrld $1,\GH, \T2 # packed left shifting >> 1
vpsrld $2,\GH, \T3 # packed left shifting >> 2
vpsrld $7,\GH, \T4 # packed left shifting >> 7
vpxor \T3, \T2, \T2 # xor the shifted versions
vpxor \T4, \T2, \T2
vpxor \T5, \T2, \T2
vpxor \T2, \GH, \GH
vpxor \T1, \GH, \GH # the result is in GH
.endm
.macro PRECOMPUTE_AVX HK T1 T2 T3 T4 T5 T6
# Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
vmovdqa \HK, \T5
vpshufd $0b01001110, \T5, \T1
vpxor \T5, \T1, \T1
vmovdqu \T1, HashKey_k(arg2)
GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^2<<1 mod poly
vmovdqu \T5, HashKey_2(arg2) # [HashKey_2] = HashKey^2<<1 mod poly
vpshufd $0b01001110, \T5, \T1
vpxor \T5, \T1, \T1
vmovdqu \T1, HashKey_2_k(arg2)
GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^3<<1 mod poly
vmovdqu \T5, HashKey_3(arg2)
vpshufd $0b01001110, \T5, \T1
vpxor \T5, \T1, \T1
vmovdqu \T1, HashKey_3_k(arg2)
GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^4<<1 mod poly
vmovdqu \T5, HashKey_4(arg2)
vpshufd $0b01001110, \T5, \T1
vpxor \T5, \T1, \T1
vmovdqu \T1, HashKey_4_k(arg2)
GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^5<<1 mod poly
vmovdqu \T5, HashKey_5(arg2)
vpshufd $0b01001110, \T5, \T1
vpxor \T5, \T1, \T1
vmovdqu \T1, HashKey_5_k(arg2)
GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^6<<1 mod poly
vmovdqu \T5, HashKey_6(arg2)
vpshufd $0b01001110, \T5, \T1
vpxor \T5, \T1, \T1
vmovdqu \T1, HashKey_6_k(arg2)
GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^7<<1 mod poly
vmovdqu \T5, HashKey_7(arg2)
vpshufd $0b01001110, \T5, \T1
vpxor \T5, \T1, \T1
vmovdqu \T1, HashKey_7_k(arg2)
GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^8<<1 mod poly
vmovdqu \T5, HashKey_8(arg2)
vpshufd $0b01001110, \T5, \T1
vpxor \T5, \T1, \T1
vmovdqu \T1, HashKey_8_k(arg2)
.endm
## if a = number of total plaintext bytes
## b = floor(a/16)
## num_initial_blocks = b mod 4#
## encrypt the initial num_initial_blocks blocks and apply ghash on the ciphertext
## r10, r11, r12, rax are clobbered
## arg1, arg3, arg4, r14 are used as a pointer only, not modified
.macro INITIAL_BLOCKS_AVX REP num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC
i = (8-\num_initial_blocks)
setreg
vmovdqu AadHash(arg2), reg_i
# start AES for num_initial_blocks blocks
vmovdqu CurCount(arg2), \CTR
i = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, reg_i
vpshufb SHUF_MASK(%rip), reg_i, reg_i # perform a 16Byte swap
i = (i+1)
setreg
.endr
vmovdqa (arg1), \T_key
i = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vpxor \T_key, reg_i, reg_i
i = (i+1)
setreg
.endr
j = 1
setreg
.rep \REP
vmovdqa 16*j(arg1), \T_key
i = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vaesenc \T_key, reg_i, reg_i
i = (i+1)
setreg
.endr
j = (j+1)
setreg
.endr
vmovdqa 16*j(arg1), \T_key
i = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vaesenclast \T_key, reg_i, reg_i
i = (i+1)
setreg
.endr
i = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vmovdqu (arg4, %r11), \T1
vpxor \T1, reg_i, reg_i
vmovdqu reg_i, (arg3 , %r11) # write back ciphertext for num_initial_blocks blocks
add $16, %r11
.if \ENC_DEC == DEC
vmovdqa \T1, reg_i
.endif
vpshufb SHUF_MASK(%rip), reg_i, reg_i # prepare ciphertext for GHASH computations
i = (i+1)
setreg
.endr
i = (8-\num_initial_blocks)
j = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vpxor reg_i, reg_j, reg_j
GHASH_MUL_AVX reg_j, \T2, \T1, \T3, \T4, \T5, \T6 # apply GHASH on num_initial_blocks blocks
i = (i+1)
j = (j+1)
setreg
.endr
# XMM8 has the combined result here
vmovdqa \XMM8, TMP1(%rsp)
vmovdqa \XMM8, \T3
cmp $128, %r13
jl _initial_blocks_done\@ # no need for precomputed constants
###############################################################################
# Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM1
vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM2
vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM3
vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM4
vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM5
vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM6
vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM7
vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM8
vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap
vmovdqa (arg1), \T_key
vpxor \T_key, \XMM1, \XMM1
vpxor \T_key, \XMM2, \XMM2
vpxor \T_key, \XMM3, \XMM3
vpxor \T_key, \XMM4, \XMM4
vpxor \T_key, \XMM5, \XMM5
vpxor \T_key, \XMM6, \XMM6
vpxor \T_key, \XMM7, \XMM7
vpxor \T_key, \XMM8, \XMM8
i = 1
setreg
.rep \REP # do REP rounds
vmovdqa 16*i(arg1), \T_key
vaesenc \T_key, \XMM1, \XMM1
vaesenc \T_key, \XMM2, \XMM2
vaesenc \T_key, \XMM3, \XMM3
vaesenc \T_key, \XMM4, \XMM4
vaesenc \T_key, \XMM5, \XMM5
vaesenc \T_key, \XMM6, \XMM6
vaesenc \T_key, \XMM7, \XMM7
vaesenc \T_key, \XMM8, \XMM8
i = (i+1)
setreg
.endr
vmovdqa 16*i(arg1), \T_key
vaesenclast \T_key, \XMM1, \XMM1
vaesenclast \T_key, \XMM2, \XMM2
vaesenclast \T_key, \XMM3, \XMM3
vaesenclast \T_key, \XMM4, \XMM4
vaesenclast \T_key, \XMM5, \XMM5
vaesenclast \T_key, \XMM6, \XMM6
vaesenclast \T_key, \XMM7, \XMM7
vaesenclast \T_key, \XMM8, \XMM8
vmovdqu (arg4, %r11), \T1
vpxor \T1, \XMM1, \XMM1
vmovdqu \XMM1, (arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM1
.endif
vmovdqu 16*1(arg4, %r11), \T1
vpxor \T1, \XMM2, \XMM2
vmovdqu \XMM2, 16*1(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM2
.endif
vmovdqu 16*2(arg4, %r11), \T1
vpxor \T1, \XMM3, \XMM3
vmovdqu \XMM3, 16*2(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM3
.endif
vmovdqu 16*3(arg4, %r11), \T1
vpxor \T1, \XMM4, \XMM4
vmovdqu \XMM4, 16*3(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM4
.endif
vmovdqu 16*4(arg4, %r11), \T1
vpxor \T1, \XMM5, \XMM5
vmovdqu \XMM5, 16*4(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM5
.endif
vmovdqu 16*5(arg4, %r11), \T1
vpxor \T1, \XMM6, \XMM6
vmovdqu \XMM6, 16*5(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM6
.endif
vmovdqu 16*6(arg4, %r11), \T1
vpxor \T1, \XMM7, \XMM7
vmovdqu \XMM7, 16*6(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM7
.endif
vmovdqu 16*7(arg4, %r11), \T1
vpxor \T1, \XMM8, \XMM8
vmovdqu \XMM8, 16*7(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM8
.endif
add $128, %r11
vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap
vpxor TMP1(%rsp), \XMM1, \XMM1 # combine GHASHed value with the corresponding ciphertext
vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap
###############################################################################
_initial_blocks_done\@:
.endm
# encrypt 8 blocks at a time
# ghash the 8 previously encrypted ciphertext blocks
# arg1, arg3, arg4 are used as pointers only, not modified
# r11 is the data offset value
.macro GHASH_8_ENCRYPT_8_PARALLEL_AVX REP T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC
vmovdqa \XMM1, \T2
vmovdqa \XMM2, TMP2(%rsp)
vmovdqa \XMM3, TMP3(%rsp)
vmovdqa \XMM4, TMP4(%rsp)
vmovdqa \XMM5, TMP5(%rsp)
vmovdqa \XMM6, TMP6(%rsp)
vmovdqa \XMM7, TMP7(%rsp)
vmovdqa \XMM8, TMP8(%rsp)
.if \loop_idx == in_order
vpaddd ONE(%rip), \CTR, \XMM1 # INCR CNT
vpaddd ONE(%rip), \XMM1, \XMM2
vpaddd ONE(%rip), \XMM2, \XMM3
vpaddd ONE(%rip), \XMM3, \XMM4
vpaddd ONE(%rip), \XMM4, \XMM5
vpaddd ONE(%rip), \XMM5, \XMM6
vpaddd ONE(%rip), \XMM6, \XMM7
vpaddd ONE(%rip), \XMM7, \XMM8
vmovdqa \XMM8, \CTR
vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap
.else
vpaddd ONEf(%rip), \CTR, \XMM1 # INCR CNT
vpaddd ONEf(%rip), \XMM1, \XMM2
vpaddd ONEf(%rip), \XMM2, \XMM3
vpaddd ONEf(%rip), \XMM3, \XMM4
vpaddd ONEf(%rip), \XMM4, \XMM5
vpaddd ONEf(%rip), \XMM5, \XMM6
vpaddd ONEf(%rip), \XMM6, \XMM7
vpaddd ONEf(%rip), \XMM7, \XMM8
vmovdqa \XMM8, \CTR
.endif
#######################################################################
vmovdqu (arg1), \T1
vpxor \T1, \XMM1, \XMM1
vpxor \T1, \XMM2, \XMM2
vpxor \T1, \XMM3, \XMM3
vpxor \T1, \XMM4, \XMM4
vpxor \T1, \XMM5, \XMM5
vpxor \T1, \XMM6, \XMM6
vpxor \T1, \XMM7, \XMM7
vpxor \T1, \XMM8, \XMM8
#######################################################################
vmovdqu 16*1(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqu 16*2(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
#######################################################################
vmovdqu HashKey_8(arg2), \T5
vpclmulqdq $0x11, \T5, \T2, \T4 # T4 = a1*b1
vpclmulqdq $0x00, \T5, \T2, \T7 # T7 = a0*b0
vpshufd $0b01001110, \T2, \T6
vpxor \T2, \T6, \T6
vmovdqu HashKey_8_k(arg2), \T5
vpclmulqdq $0x00, \T5, \T6, \T6
vmovdqu 16*3(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqa TMP2(%rsp), \T1
vmovdqu HashKey_7(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpshufd $0b01001110, \T1, \T3
vpxor \T1, \T3, \T3
vmovdqu HashKey_7_k(arg2), \T5
vpclmulqdq $0x10, \T5, \T3, \T3
vpxor \T3, \T6, \T6
vmovdqu 16*4(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
#######################################################################
vmovdqa TMP3(%rsp), \T1
vmovdqu HashKey_6(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpshufd $0b01001110, \T1, \T3
vpxor \T1, \T3, \T3
vmovdqu HashKey_6_k(arg2), \T5
vpclmulqdq $0x10, \T5, \T3, \T3
vpxor \T3, \T6, \T6
vmovdqu 16*5(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqa TMP4(%rsp), \T1
vmovdqu HashKey_5(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpshufd $0b01001110, \T1, \T3
vpxor \T1, \T3, \T3
vmovdqu HashKey_5_k(arg2), \T5
vpclmulqdq $0x10, \T5, \T3, \T3
vpxor \T3, \T6, \T6
vmovdqu 16*6(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqa TMP5(%rsp), \T1
vmovdqu HashKey_4(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpshufd $0b01001110, \T1, \T3
vpxor \T1, \T3, \T3
vmovdqu HashKey_4_k(arg2), \T5
vpclmulqdq $0x10, \T5, \T3, \T3
vpxor \T3, \T6, \T6
vmovdqu 16*7(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqa TMP6(%rsp), \T1
vmovdqu HashKey_3(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpshufd $0b01001110, \T1, \T3
vpxor \T1, \T3, \T3
vmovdqu HashKey_3_k(arg2), \T5
vpclmulqdq $0x10, \T5, \T3, \T3
vpxor \T3, \T6, \T6
vmovdqu 16*8(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqa TMP7(%rsp), \T1
vmovdqu HashKey_2(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpshufd $0b01001110, \T1, \T3
vpxor \T1, \T3, \T3
vmovdqu HashKey_2_k(arg2), \T5
vpclmulqdq $0x10, \T5, \T3, \T3
vpxor \T3, \T6, \T6
#######################################################################
vmovdqu 16*9(arg1), \T5
vaesenc \T5, \XMM1, \XMM1
vaesenc \T5, \XMM2, \XMM2
vaesenc \T5, \XMM3, \XMM3
vaesenc \T5, \XMM4, \XMM4
vaesenc \T5, \XMM5, \XMM5
vaesenc \T5, \XMM6, \XMM6
vaesenc \T5, \XMM7, \XMM7
vaesenc \T5, \XMM8, \XMM8
vmovdqa TMP8(%rsp), \T1
vmovdqu HashKey(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpshufd $0b01001110, \T1, \T3
vpxor \T1, \T3, \T3
vmovdqu HashKey_k(arg2), \T5
vpclmulqdq $0x10, \T5, \T3, \T3
vpxor \T3, \T6, \T6
vpxor \T4, \T6, \T6
vpxor \T7, \T6, \T6
vmovdqu 16*10(arg1), \T5
i = 11
setreg
.rep (\REP-9)
vaesenc \T5, \XMM1, \XMM1
vaesenc \T5, \XMM2, \XMM2
vaesenc \T5, \XMM3, \XMM3
vaesenc \T5, \XMM4, \XMM4
vaesenc \T5, \XMM5, \XMM5
vaesenc \T5, \XMM6, \XMM6
vaesenc \T5, \XMM7, \XMM7
vaesenc \T5, \XMM8, \XMM8
vmovdqu 16*i(arg1), \T5
i = i + 1
setreg
.endr
i = 0
j = 1
setreg
.rep 8
vpxor 16*i(arg4, %r11), \T5, \T2
.if \ENC_DEC == ENC
vaesenclast \T2, reg_j, reg_j
.else
vaesenclast \T2, reg_j, \T3
vmovdqu 16*i(arg4, %r11), reg_j
vmovdqu \T3, 16*i(arg3, %r11)
.endif
i = (i+1)
j = (j+1)
setreg
.endr
#######################################################################
vpslldq $8, \T6, \T3 # shift-L T3 2 DWs
vpsrldq $8, \T6, \T6 # shift-R T2 2 DWs
vpxor \T3, \T7, \T7
vpxor \T4, \T6, \T6 # accumulate the results in T6:T7
#######################################################################
#first phase of the reduction
#######################################################################
vpslld $31, \T7, \T2 # packed right shifting << 31
vpslld $30, \T7, \T3 # packed right shifting shift << 30
vpslld $25, \T7, \T4 # packed right shifting shift << 25
vpxor \T3, \T2, \T2 # xor the shifted versions
vpxor \T4, \T2, \T2
vpsrldq $4, \T2, \T1 # shift-R T1 1 DW
vpslldq $12, \T2, \T2 # shift-L T2 3 DWs
vpxor \T2, \T7, \T7 # first phase of the reduction complete
#######################################################################
.if \ENC_DEC == ENC
vmovdqu \XMM1, 16*0(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM2, 16*1(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM3, 16*2(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM4, 16*3(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM5, 16*4(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM6, 16*5(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM7, 16*6(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM8, 16*7(arg3,%r11) # Write to the Ciphertext buffer
.endif
#######################################################################
#second phase of the reduction
vpsrld $1, \T7, \T2 # packed left shifting >> 1
vpsrld $2, \T7, \T3 # packed left shifting >> 2
vpsrld $7, \T7, \T4 # packed left shifting >> 7
vpxor \T3, \T2, \T2 # xor the shifted versions
vpxor \T4, \T2, \T2
vpxor \T1, \T2, \T2
vpxor \T2, \T7, \T7
vpxor \T7, \T6, \T6 # the result is in T6
#######################################################################
vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap
vpxor \T6, \XMM1, \XMM1
.endm
# GHASH the last 4 ciphertext blocks.
.macro GHASH_LAST_8_AVX T1 T2 T3 T4 T5 T6 T7 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8
## Karatsuba Method
vpshufd $0b01001110, \XMM1, \T2
vpxor \XMM1, \T2, \T2
vmovdqu HashKey_8(arg2), \T5
vpclmulqdq $0x11, \T5, \XMM1, \T6
vpclmulqdq $0x00, \T5, \XMM1, \T7
vmovdqu HashKey_8_k(arg2), \T3
vpclmulqdq $0x00, \T3, \T2, \XMM1
######################
vpshufd $0b01001110, \XMM2, \T2
vpxor \XMM2, \T2, \T2
vmovdqu HashKey_7(arg2), \T5
vpclmulqdq $0x11, \T5, \XMM2, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM2, \T4
vpxor \T4, \T7, \T7
vmovdqu HashKey_7_k(arg2), \T3
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vpshufd $0b01001110, \XMM3, \T2
vpxor \XMM3, \T2, \T2
vmovdqu HashKey_6(arg2), \T5
vpclmulqdq $0x11, \T5, \XMM3, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM3, \T4
vpxor \T4, \T7, \T7
vmovdqu HashKey_6_k(arg2), \T3
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vpshufd $0b01001110, \XMM4, \T2
vpxor \XMM4, \T2, \T2
vmovdqu HashKey_5(arg2), \T5
vpclmulqdq $0x11, \T5, \XMM4, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM4, \T4
vpxor \T4, \T7, \T7
vmovdqu HashKey_5_k(arg2), \T3
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vpshufd $0b01001110, \XMM5, \T2
vpxor \XMM5, \T2, \T2
vmovdqu HashKey_4(arg2), \T5
vpclmulqdq $0x11, \T5, \XMM5, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM5, \T4
vpxor \T4, \T7, \T7
vmovdqu HashKey_4_k(arg2), \T3
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vpshufd $0b01001110, \XMM6, \T2
vpxor \XMM6, \T2, \T2
vmovdqu HashKey_3(arg2), \T5
vpclmulqdq $0x11, \T5, \XMM6, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM6, \T4
vpxor \T4, \T7, \T7
vmovdqu HashKey_3_k(arg2), \T3
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vpshufd $0b01001110, \XMM7, \T2
vpxor \XMM7, \T2, \T2
vmovdqu HashKey_2(arg2), \T5
vpclmulqdq $0x11, \T5, \XMM7, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM7, \T4
vpxor \T4, \T7, \T7
vmovdqu HashKey_2_k(arg2), \T3
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vpshufd $0b01001110, \XMM8, \T2
vpxor \XMM8, \T2, \T2
vmovdqu HashKey(arg2), \T5
vpclmulqdq $0x11, \T5, \XMM8, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM8, \T4
vpxor \T4, \T7, \T7
vmovdqu HashKey_k(arg2), \T3
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
vpxor \T6, \XMM1, \XMM1
vpxor \T7, \XMM1, \T2
vpslldq $8, \T2, \T4
vpsrldq $8, \T2, \T2
vpxor \T4, \T7, \T7
vpxor \T2, \T6, \T6 # <T6:T7> holds the result of
# the accumulated carry-less multiplications
#######################################################################
#first phase of the reduction
vpslld $31, \T7, \T2 # packed right shifting << 31
vpslld $30, \T7, \T3 # packed right shifting shift << 30
vpslld $25, \T7, \T4 # packed right shifting shift << 25
vpxor \T3, \T2, \T2 # xor the shifted versions
vpxor \T4, \T2, \T2
vpsrldq $4, \T2, \T1 # shift-R T1 1 DW
vpslldq $12, \T2, \T2 # shift-L T2 3 DWs
vpxor \T2, \T7, \T7 # first phase of the reduction complete
#######################################################################
#second phase of the reduction
vpsrld $1, \T7, \T2 # packed left shifting >> 1
vpsrld $2, \T7, \T3 # packed left shifting >> 2
vpsrld $7, \T7, \T4 # packed left shifting >> 7
vpxor \T3, \T2, \T2 # xor the shifted versions
vpxor \T4, \T2, \T2
vpxor \T1, \T2, \T2
vpxor \T2, \T7, \T7
vpxor \T7, \T6, \T6 # the result is in T6
.endm
#############################################################
#void aesni_gcm_precomp_avx_gen2
# (gcm_data *my_ctx_data,
# gcm_context_data *data,
# u8 *hash_subkey# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */
# u8 *iv, /* Pre-counter block j0: 4 byte salt
# (from Security Association) concatenated with 8 byte
# Initialisation Vector (from IPSec ESP Payload)
# concatenated with 0x00000001. 16-byte aligned pointer. */
# const u8 *aad, /* Additional Authentication Data (AAD)*/
# u64 aad_len) /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */
#############################################################
SYM_FUNC_START(aesni_gcm_init_avx_gen2)
FUNC_SAVE
INIT GHASH_MUL_AVX, PRECOMPUTE_AVX
FUNC_RESTORE
ret
SYM_FUNC_END(aesni_gcm_init_avx_gen2)
###############################################################################
#void aesni_gcm_enc_update_avx_gen2(
# gcm_data *my_ctx_data, /* aligned to 16 Bytes */
# gcm_context_data *data,
# u8 *out, /* Ciphertext output. Encrypt in-place is allowed. */
# const u8 *in, /* Plaintext input */
# u64 plaintext_len) /* Length of data in Bytes for encryption. */
###############################################################################
SYM_FUNC_START(aesni_gcm_enc_update_avx_gen2)
FUNC_SAVE
mov keysize, %eax
cmp $32, %eax
je key_256_enc_update
cmp $16, %eax
je key_128_enc_update
# must be 192
GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 11
FUNC_RESTORE
ret
key_128_enc_update:
GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 9
FUNC_RESTORE
ret
key_256_enc_update:
GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 13
FUNC_RESTORE
ret
SYM_FUNC_END(aesni_gcm_enc_update_avx_gen2)
###############################################################################
#void aesni_gcm_dec_update_avx_gen2(
# gcm_data *my_ctx_data, /* aligned to 16 Bytes */
# gcm_context_data *data,
# u8 *out, /* Plaintext output. Decrypt in-place is allowed. */
# const u8 *in, /* Ciphertext input */
# u64 plaintext_len) /* Length of data in Bytes for encryption. */
###############################################################################
SYM_FUNC_START(aesni_gcm_dec_update_avx_gen2)
FUNC_SAVE
mov keysize,%eax
cmp $32, %eax
je key_256_dec_update
cmp $16, %eax
je key_128_dec_update
# must be 192
GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 11
FUNC_RESTORE
ret
key_128_dec_update:
GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 9
FUNC_RESTORE
ret
key_256_dec_update:
GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 13
FUNC_RESTORE
ret
SYM_FUNC_END(aesni_gcm_dec_update_avx_gen2)
###############################################################################
#void aesni_gcm_finalize_avx_gen2(
# gcm_data *my_ctx_data, /* aligned to 16 Bytes */
# gcm_context_data *data,
# u8 *auth_tag, /* Authenticated Tag output. */
# u64 auth_tag_len)# /* Authenticated Tag Length in bytes.
# Valid values are 16 (most likely), 12 or 8. */
###############################################################################
SYM_FUNC_START(aesni_gcm_finalize_avx_gen2)
FUNC_SAVE
mov keysize,%eax
cmp $32, %eax
je key_256_finalize
cmp $16, %eax
je key_128_finalize
# must be 192
GCM_COMPLETE GHASH_MUL_AVX, 11, arg3, arg4
FUNC_RESTORE
ret
key_128_finalize:
GCM_COMPLETE GHASH_MUL_AVX, 9, arg3, arg4
FUNC_RESTORE
ret
key_256_finalize:
GCM_COMPLETE GHASH_MUL_AVX, 13, arg3, arg4
FUNC_RESTORE
ret
SYM_FUNC_END(aesni_gcm_finalize_avx_gen2)
#endif /* CONFIG_AS_AVX */
#ifdef CONFIG_AS_AVX2
###############################################################################
# GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
# Input: A and B (128-bits each, bit-reflected)
# Output: C = A*B*x mod poly, (i.e. >>1 )
# To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
# GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
###############################################################################
.macro GHASH_MUL_AVX2 GH HK T1 T2 T3 T4 T5
vpclmulqdq $0x11,\HK,\GH,\T1 # T1 = a1*b1
vpclmulqdq $0x00,\HK,\GH,\T2 # T2 = a0*b0
vpclmulqdq $0x01,\HK,\GH,\T3 # T3 = a1*b0
vpclmulqdq $0x10,\HK,\GH,\GH # GH = a0*b1
vpxor \T3, \GH, \GH
vpsrldq $8 , \GH, \T3 # shift-R GH 2 DWs
vpslldq $8 , \GH, \GH # shift-L GH 2 DWs
vpxor \T3, \T1, \T1
vpxor \T2, \GH, \GH
#######################################################################
#first phase of the reduction
vmovdqa POLY2(%rip), \T3
vpclmulqdq $0x01, \GH, \T3, \T2
vpslldq $8, \T2, \T2 # shift-L T2 2 DWs
vpxor \T2, \GH, \GH # first phase of the reduction complete
#######################################################################
#second phase of the reduction
vpclmulqdq $0x00, \GH, \T3, \T2
vpsrldq $4, \T2, \T2 # shift-R T2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpclmulqdq $0x10, \GH, \T3, \GH
vpslldq $4, \GH, \GH # shift-L GH 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpxor \T2, \GH, \GH # second phase of the reduction complete
#######################################################################
vpxor \T1, \GH, \GH # the result is in GH
.endm
.macro PRECOMPUTE_AVX2 HK T1 T2 T3 T4 T5 T6
# Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
vmovdqa \HK, \T5
GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^2<<1 mod poly
vmovdqu \T5, HashKey_2(arg2) # [HashKey_2] = HashKey^2<<1 mod poly
GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^3<<1 mod poly
vmovdqu \T5, HashKey_3(arg2)
GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^4<<1 mod poly
vmovdqu \T5, HashKey_4(arg2)
GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^5<<1 mod poly
vmovdqu \T5, HashKey_5(arg2)
GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^6<<1 mod poly
vmovdqu \T5, HashKey_6(arg2)
GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^7<<1 mod poly
vmovdqu \T5, HashKey_7(arg2)
GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2 # T5 = HashKey^8<<1 mod poly
vmovdqu \T5, HashKey_8(arg2)
.endm
## if a = number of total plaintext bytes
## b = floor(a/16)
## num_initial_blocks = b mod 4#
## encrypt the initial num_initial_blocks blocks and apply ghash on the ciphertext
## r10, r11, r12, rax are clobbered
## arg1, arg3, arg4, r14 are used as a pointer only, not modified
.macro INITIAL_BLOCKS_AVX2 REP num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC VER
i = (8-\num_initial_blocks)
setreg
vmovdqu AadHash(arg2), reg_i
# start AES for num_initial_blocks blocks
vmovdqu CurCount(arg2), \CTR
i = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, reg_i
vpshufb SHUF_MASK(%rip), reg_i, reg_i # perform a 16Byte swap
i = (i+1)
setreg
.endr
vmovdqa (arg1), \T_key
i = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vpxor \T_key, reg_i, reg_i
i = (i+1)
setreg
.endr
j = 1
setreg
.rep \REP
vmovdqa 16*j(arg1), \T_key
i = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vaesenc \T_key, reg_i, reg_i
i = (i+1)
setreg
.endr
j = (j+1)
setreg
.endr
vmovdqa 16*j(arg1), \T_key
i = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vaesenclast \T_key, reg_i, reg_i
i = (i+1)
setreg
.endr
i = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vmovdqu (arg4, %r11), \T1
vpxor \T1, reg_i, reg_i
vmovdqu reg_i, (arg3 , %r11) # write back ciphertext for
# num_initial_blocks blocks
add $16, %r11
.if \ENC_DEC == DEC
vmovdqa \T1, reg_i
.endif
vpshufb SHUF_MASK(%rip), reg_i, reg_i # prepare ciphertext for GHASH computations
i = (i+1)
setreg
.endr
i = (8-\num_initial_blocks)
j = (9-\num_initial_blocks)
setreg
.rep \num_initial_blocks
vpxor reg_i, reg_j, reg_j
GHASH_MUL_AVX2 reg_j, \T2, \T1, \T3, \T4, \T5, \T6 # apply GHASH on num_initial_blocks blocks
i = (i+1)
j = (j+1)
setreg
.endr
# XMM8 has the combined result here
vmovdqa \XMM8, TMP1(%rsp)
vmovdqa \XMM8, \T3
cmp $128, %r13
jl _initial_blocks_done\@ # no need for precomputed constants
###############################################################################
# Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM1
vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM2
vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM3
vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM4
vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM5
vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM6
vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM7
vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap
vpaddd ONE(%rip), \CTR, \CTR # INCR Y0
vmovdqa \CTR, \XMM8
vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap
vmovdqa (arg1), \T_key
vpxor \T_key, \XMM1, \XMM1
vpxor \T_key, \XMM2, \XMM2
vpxor \T_key, \XMM3, \XMM3
vpxor \T_key, \XMM4, \XMM4
vpxor \T_key, \XMM5, \XMM5
vpxor \T_key, \XMM6, \XMM6
vpxor \T_key, \XMM7, \XMM7
vpxor \T_key, \XMM8, \XMM8
i = 1
setreg
.rep \REP # do REP rounds
vmovdqa 16*i(arg1), \T_key
vaesenc \T_key, \XMM1, \XMM1
vaesenc \T_key, \XMM2, \XMM2
vaesenc \T_key, \XMM3, \XMM3
vaesenc \T_key, \XMM4, \XMM4
vaesenc \T_key, \XMM5, \XMM5
vaesenc \T_key, \XMM6, \XMM6
vaesenc \T_key, \XMM7, \XMM7
vaesenc \T_key, \XMM8, \XMM8
i = (i+1)
setreg
.endr
vmovdqa 16*i(arg1), \T_key
vaesenclast \T_key, \XMM1, \XMM1
vaesenclast \T_key, \XMM2, \XMM2
vaesenclast \T_key, \XMM3, \XMM3
vaesenclast \T_key, \XMM4, \XMM4
vaesenclast \T_key, \XMM5, \XMM5
vaesenclast \T_key, \XMM6, \XMM6
vaesenclast \T_key, \XMM7, \XMM7
vaesenclast \T_key, \XMM8, \XMM8
vmovdqu (arg4, %r11), \T1
vpxor \T1, \XMM1, \XMM1
vmovdqu \XMM1, (arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM1
.endif
vmovdqu 16*1(arg4, %r11), \T1
vpxor \T1, \XMM2, \XMM2
vmovdqu \XMM2, 16*1(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM2
.endif
vmovdqu 16*2(arg4, %r11), \T1
vpxor \T1, \XMM3, \XMM3
vmovdqu \XMM3, 16*2(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM3
.endif
vmovdqu 16*3(arg4, %r11), \T1
vpxor \T1, \XMM4, \XMM4
vmovdqu \XMM4, 16*3(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM4
.endif
vmovdqu 16*4(arg4, %r11), \T1
vpxor \T1, \XMM5, \XMM5
vmovdqu \XMM5, 16*4(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM5
.endif
vmovdqu 16*5(arg4, %r11), \T1
vpxor \T1, \XMM6, \XMM6
vmovdqu \XMM6, 16*5(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM6
.endif
vmovdqu 16*6(arg4, %r11), \T1
vpxor \T1, \XMM7, \XMM7
vmovdqu \XMM7, 16*6(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM7
.endif
vmovdqu 16*7(arg4, %r11), \T1
vpxor \T1, \XMM8, \XMM8
vmovdqu \XMM8, 16*7(arg3 , %r11)
.if \ENC_DEC == DEC
vmovdqa \T1, \XMM8
.endif
add $128, %r11
vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap
vpxor TMP1(%rsp), \XMM1, \XMM1 # combine GHASHed value with
# the corresponding ciphertext
vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap
###############################################################################
_initial_blocks_done\@:
.endm
# encrypt 8 blocks at a time
# ghash the 8 previously encrypted ciphertext blocks
# arg1, arg3, arg4 are used as pointers only, not modified
# r11 is the data offset value
.macro GHASH_8_ENCRYPT_8_PARALLEL_AVX2 REP T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC
vmovdqa \XMM1, \T2
vmovdqa \XMM2, TMP2(%rsp)
vmovdqa \XMM3, TMP3(%rsp)
vmovdqa \XMM4, TMP4(%rsp)
vmovdqa \XMM5, TMP5(%rsp)
vmovdqa \XMM6, TMP6(%rsp)
vmovdqa \XMM7, TMP7(%rsp)
vmovdqa \XMM8, TMP8(%rsp)
.if \loop_idx == in_order
vpaddd ONE(%rip), \CTR, \XMM1 # INCR CNT
vpaddd ONE(%rip), \XMM1, \XMM2
vpaddd ONE(%rip), \XMM2, \XMM3
vpaddd ONE(%rip), \XMM3, \XMM4
vpaddd ONE(%rip), \XMM4, \XMM5
vpaddd ONE(%rip), \XMM5, \XMM6
vpaddd ONE(%rip), \XMM6, \XMM7
vpaddd ONE(%rip), \XMM7, \XMM8
vmovdqa \XMM8, \CTR
vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap
.else
vpaddd ONEf(%rip), \CTR, \XMM1 # INCR CNT
vpaddd ONEf(%rip), \XMM1, \XMM2
vpaddd ONEf(%rip), \XMM2, \XMM3
vpaddd ONEf(%rip), \XMM3, \XMM4
vpaddd ONEf(%rip), \XMM4, \XMM5
vpaddd ONEf(%rip), \XMM5, \XMM6
vpaddd ONEf(%rip), \XMM6, \XMM7
vpaddd ONEf(%rip), \XMM7, \XMM8
vmovdqa \XMM8, \CTR
.endif
#######################################################################
vmovdqu (arg1), \T1
vpxor \T1, \XMM1, \XMM1
vpxor \T1, \XMM2, \XMM2
vpxor \T1, \XMM3, \XMM3
vpxor \T1, \XMM4, \XMM4
vpxor \T1, \XMM5, \XMM5
vpxor \T1, \XMM6, \XMM6
vpxor \T1, \XMM7, \XMM7
vpxor \T1, \XMM8, \XMM8
#######################################################################
vmovdqu 16*1(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqu 16*2(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
#######################################################################
vmovdqu HashKey_8(arg2), \T5
vpclmulqdq $0x11, \T5, \T2, \T4 # T4 = a1*b1
vpclmulqdq $0x00, \T5, \T2, \T7 # T7 = a0*b0
vpclmulqdq $0x01, \T5, \T2, \T6 # T6 = a1*b0
vpclmulqdq $0x10, \T5, \T2, \T5 # T5 = a0*b1
vpxor \T5, \T6, \T6
vmovdqu 16*3(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqa TMP2(%rsp), \T1
vmovdqu HashKey_7(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpclmulqdq $0x01, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vpclmulqdq $0x10, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vmovdqu 16*4(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
#######################################################################
vmovdqa TMP3(%rsp), \T1
vmovdqu HashKey_6(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpclmulqdq $0x01, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vpclmulqdq $0x10, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vmovdqu 16*5(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqa TMP4(%rsp), \T1
vmovdqu HashKey_5(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpclmulqdq $0x01, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vpclmulqdq $0x10, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vmovdqu 16*6(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqa TMP5(%rsp), \T1
vmovdqu HashKey_4(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpclmulqdq $0x01, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vpclmulqdq $0x10, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vmovdqu 16*7(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqa TMP6(%rsp), \T1
vmovdqu HashKey_3(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpclmulqdq $0x01, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vpclmulqdq $0x10, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vmovdqu 16*8(arg1), \T1
vaesenc \T1, \XMM1, \XMM1
vaesenc \T1, \XMM2, \XMM2
vaesenc \T1, \XMM3, \XMM3
vaesenc \T1, \XMM4, \XMM4
vaesenc \T1, \XMM5, \XMM5
vaesenc \T1, \XMM6, \XMM6
vaesenc \T1, \XMM7, \XMM7
vaesenc \T1, \XMM8, \XMM8
vmovdqa TMP7(%rsp), \T1
vmovdqu HashKey_2(arg2), \T5
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T4
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpclmulqdq $0x01, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vpclmulqdq $0x10, \T5, \T1, \T3
vpxor \T3, \T6, \T6
#######################################################################
vmovdqu 16*9(arg1), \T5
vaesenc \T5, \XMM1, \XMM1
vaesenc \T5, \XMM2, \XMM2
vaesenc \T5, \XMM3, \XMM3
vaesenc \T5, \XMM4, \XMM4
vaesenc \T5, \XMM5, \XMM5
vaesenc \T5, \XMM6, \XMM6
vaesenc \T5, \XMM7, \XMM7
vaesenc \T5, \XMM8, \XMM8
vmovdqa TMP8(%rsp), \T1
vmovdqu HashKey(arg2), \T5
vpclmulqdq $0x00, \T5, \T1, \T3
vpxor \T3, \T7, \T7
vpclmulqdq $0x01, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vpclmulqdq $0x10, \T5, \T1, \T3
vpxor \T3, \T6, \T6
vpclmulqdq $0x11, \T5, \T1, \T3
vpxor \T3, \T4, \T1
vmovdqu 16*10(arg1), \T5
i = 11
setreg
.rep (\REP-9)
vaesenc \T5, \XMM1, \XMM1
vaesenc \T5, \XMM2, \XMM2
vaesenc \T5, \XMM3, \XMM3
vaesenc \T5, \XMM4, \XMM4
vaesenc \T5, \XMM5, \XMM5
vaesenc \T5, \XMM6, \XMM6
vaesenc \T5, \XMM7, \XMM7
vaesenc \T5, \XMM8, \XMM8
vmovdqu 16*i(arg1), \T5
i = i + 1
setreg
.endr
i = 0
j = 1
setreg
.rep 8
vpxor 16*i(arg4, %r11), \T5, \T2
.if \ENC_DEC == ENC
vaesenclast \T2, reg_j, reg_j
.else
vaesenclast \T2, reg_j, \T3
vmovdqu 16*i(arg4, %r11), reg_j
vmovdqu \T3, 16*i(arg3, %r11)
.endif
i = (i+1)
j = (j+1)
setreg
.endr
#######################################################################
vpslldq $8, \T6, \T3 # shift-L T3 2 DWs
vpsrldq $8, \T6, \T6 # shift-R T2 2 DWs
vpxor \T3, \T7, \T7
vpxor \T6, \T1, \T1 # accumulate the results in T1:T7
#######################################################################
#first phase of the reduction
vmovdqa POLY2(%rip), \T3
vpclmulqdq $0x01, \T7, \T3, \T2
vpslldq $8, \T2, \T2 # shift-L xmm2 2 DWs
vpxor \T2, \T7, \T7 # first phase of the reduction complete
#######################################################################
.if \ENC_DEC == ENC
vmovdqu \XMM1, 16*0(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM2, 16*1(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM3, 16*2(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM4, 16*3(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM5, 16*4(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM6, 16*5(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM7, 16*6(arg3,%r11) # Write to the Ciphertext buffer
vmovdqu \XMM8, 16*7(arg3,%r11) # Write to the Ciphertext buffer
.endif
#######################################################################
#second phase of the reduction
vpclmulqdq $0x00, \T7, \T3, \T2
vpsrldq $4, \T2, \T2 # shift-R xmm2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpclmulqdq $0x10, \T7, \T3, \T4
vpslldq $4, \T4, \T4 # shift-L xmm0 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpxor \T2, \T4, \T4 # second phase of the reduction complete
#######################################################################
vpxor \T4, \T1, \T1 # the result is in T1
vpshufb SHUF_MASK(%rip), \XMM1, \XMM1 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM2, \XMM2 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM3, \XMM3 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM4, \XMM4 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM5, \XMM5 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM6, \XMM6 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM7, \XMM7 # perform a 16Byte swap
vpshufb SHUF_MASK(%rip), \XMM8, \XMM8 # perform a 16Byte swap
vpxor \T1, \XMM1, \XMM1
.endm
# GHASH the last 4 ciphertext blocks.
.macro GHASH_LAST_8_AVX2 T1 T2 T3 T4 T5 T6 T7 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8
## Karatsuba Method
vmovdqu HashKey_8(arg2), \T5
vpshufd $0b01001110, \XMM1, \T2
vpshufd $0b01001110, \T5, \T3
vpxor \XMM1, \T2, \T2
vpxor \T5, \T3, \T3
vpclmulqdq $0x11, \T5, \XMM1, \T6
vpclmulqdq $0x00, \T5, \XMM1, \T7
vpclmulqdq $0x00, \T3, \T2, \XMM1
######################
vmovdqu HashKey_7(arg2), \T5
vpshufd $0b01001110, \XMM2, \T2
vpshufd $0b01001110, \T5, \T3
vpxor \XMM2, \T2, \T2
vpxor \T5, \T3, \T3
vpclmulqdq $0x11, \T5, \XMM2, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM2, \T4
vpxor \T4, \T7, \T7
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vmovdqu HashKey_6(arg2), \T5
vpshufd $0b01001110, \XMM3, \T2
vpshufd $0b01001110, \T5, \T3
vpxor \XMM3, \T2, \T2
vpxor \T5, \T3, \T3
vpclmulqdq $0x11, \T5, \XMM3, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM3, \T4
vpxor \T4, \T7, \T7
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vmovdqu HashKey_5(arg2), \T5
vpshufd $0b01001110, \XMM4, \T2
vpshufd $0b01001110, \T5, \T3
vpxor \XMM4, \T2, \T2
vpxor \T5, \T3, \T3
vpclmulqdq $0x11, \T5, \XMM4, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM4, \T4
vpxor \T4, \T7, \T7
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vmovdqu HashKey_4(arg2), \T5
vpshufd $0b01001110, \XMM5, \T2
vpshufd $0b01001110, \T5, \T3
vpxor \XMM5, \T2, \T2
vpxor \T5, \T3, \T3
vpclmulqdq $0x11, \T5, \XMM5, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM5, \T4
vpxor \T4, \T7, \T7
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vmovdqu HashKey_3(arg2), \T5
vpshufd $0b01001110, \XMM6, \T2
vpshufd $0b01001110, \T5, \T3
vpxor \XMM6, \T2, \T2
vpxor \T5, \T3, \T3
vpclmulqdq $0x11, \T5, \XMM6, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM6, \T4
vpxor \T4, \T7, \T7
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vmovdqu HashKey_2(arg2), \T5
vpshufd $0b01001110, \XMM7, \T2
vpshufd $0b01001110, \T5, \T3
vpxor \XMM7, \T2, \T2
vpxor \T5, \T3, \T3
vpclmulqdq $0x11, \T5, \XMM7, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM7, \T4
vpxor \T4, \T7, \T7
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
######################
vmovdqu HashKey(arg2), \T5
vpshufd $0b01001110, \XMM8, \T2
vpshufd $0b01001110, \T5, \T3
vpxor \XMM8, \T2, \T2
vpxor \T5, \T3, \T3
vpclmulqdq $0x11, \T5, \XMM8, \T4
vpxor \T4, \T6, \T6
vpclmulqdq $0x00, \T5, \XMM8, \T4
vpxor \T4, \T7, \T7
vpclmulqdq $0x00, \T3, \T2, \T2
vpxor \T2, \XMM1, \XMM1
vpxor \T6, \XMM1, \XMM1
vpxor \T7, \XMM1, \T2
vpslldq $8, \T2, \T4
vpsrldq $8, \T2, \T2
vpxor \T4, \T7, \T7
vpxor \T2, \T6, \T6 # <T6:T7> holds the result of the
# accumulated carry-less multiplications
#######################################################################
#first phase of the reduction
vmovdqa POLY2(%rip), \T3
vpclmulqdq $0x01, \T7, \T3, \T2
vpslldq $8, \T2, \T2 # shift-L xmm2 2 DWs
vpxor \T2, \T7, \T7 # first phase of the reduction complete
#######################################################################
#second phase of the reduction
vpclmulqdq $0x00, \T7, \T3, \T2
vpsrldq $4, \T2, \T2 # shift-R T2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpclmulqdq $0x10, \T7, \T3, \T4
vpslldq $4, \T4, \T4 # shift-L T4 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpxor \T2, \T4, \T4 # second phase of the reduction complete
#######################################################################
vpxor \T4, \T6, \T6 # the result is in T6
.endm
#############################################################
#void aesni_gcm_init_avx_gen4
# (gcm_data *my_ctx_data,
# gcm_context_data *data,
# u8 *iv, /* Pre-counter block j0: 4 byte salt
# (from Security Association) concatenated with 8 byte
# Initialisation Vector (from IPSec ESP Payload)
# concatenated with 0x00000001. 16-byte aligned pointer. */
# u8 *hash_subkey# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */
# const u8 *aad, /* Additional Authentication Data (AAD)*/
# u64 aad_len) /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */
#############################################################
SYM_FUNC_START(aesni_gcm_init_avx_gen4)
FUNC_SAVE
INIT GHASH_MUL_AVX2, PRECOMPUTE_AVX2
FUNC_RESTORE
ret
SYM_FUNC_END(aesni_gcm_init_avx_gen4)
###############################################################################
#void aesni_gcm_enc_avx_gen4(
# gcm_data *my_ctx_data, /* aligned to 16 Bytes */
# gcm_context_data *data,
# u8 *out, /* Ciphertext output. Encrypt in-place is allowed. */
# const u8 *in, /* Plaintext input */
# u64 plaintext_len) /* Length of data in Bytes for encryption. */
###############################################################################
SYM_FUNC_START(aesni_gcm_enc_update_avx_gen4)
FUNC_SAVE
mov keysize,%eax
cmp $32, %eax
je key_256_enc_update4
cmp $16, %eax
je key_128_enc_update4
# must be 192
GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 11
FUNC_RESTORE
ret
key_128_enc_update4:
GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 9
FUNC_RESTORE
ret
key_256_enc_update4:
GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 13
FUNC_RESTORE
ret
SYM_FUNC_END(aesni_gcm_enc_update_avx_gen4)
###############################################################################
#void aesni_gcm_dec_update_avx_gen4(
# gcm_data *my_ctx_data, /* aligned to 16 Bytes */
# gcm_context_data *data,
# u8 *out, /* Plaintext output. Decrypt in-place is allowed. */
# const u8 *in, /* Ciphertext input */
# u64 plaintext_len) /* Length of data in Bytes for encryption. */
###############################################################################
SYM_FUNC_START(aesni_gcm_dec_update_avx_gen4)
FUNC_SAVE
mov keysize,%eax
cmp $32, %eax
je key_256_dec_update4
cmp $16, %eax
je key_128_dec_update4
# must be 192
GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 11
FUNC_RESTORE
ret
key_128_dec_update4:
GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 9
FUNC_RESTORE
ret
key_256_dec_update4:
GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 13
FUNC_RESTORE
ret
SYM_FUNC_END(aesni_gcm_dec_update_avx_gen4)
###############################################################################
#void aesni_gcm_finalize_avx_gen4(
# gcm_data *my_ctx_data, /* aligned to 16 Bytes */
# gcm_context_data *data,
# u8 *auth_tag, /* Authenticated Tag output. */
# u64 auth_tag_len)# /* Authenticated Tag Length in bytes.
# Valid values are 16 (most likely), 12 or 8. */
###############################################################################
SYM_FUNC_START(aesni_gcm_finalize_avx_gen4)
FUNC_SAVE
mov keysize,%eax
cmp $32, %eax
je key_256_finalize4
cmp $16, %eax
je key_128_finalize4
# must be 192
GCM_COMPLETE GHASH_MUL_AVX2, 11, arg3, arg4
FUNC_RESTORE
ret
key_128_finalize4:
GCM_COMPLETE GHASH_MUL_AVX2, 9, arg3, arg4
FUNC_RESTORE
ret
key_256_finalize4:
GCM_COMPLETE GHASH_MUL_AVX2, 13, arg3, arg4
FUNC_RESTORE
ret
SYM_FUNC_END(aesni_gcm_finalize_avx_gen4)
#endif /* CONFIG_AS_AVX2 */
|