summaryrefslogtreecommitdiffstats
path: root/arch/x86/boot/compressed/head_64.S
blob: c1d383d1fb7ed8d8bae3280698669a9caf1ce14c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*
 *  linux/boot/head.S
 *
 *  Copyright (C) 1991, 1992, 1993  Linus Torvalds
 */

/*
 *  head.S contains the 32-bit startup code.
 *
 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
 * the page directory will exist. The startup code will be overwritten by
 * the page directory. [According to comments etc elsewhere on a compressed
 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
 *
 * Page 0 is deliberately kept safe, since System Management Mode code in 
 * laptops may need to access the BIOS data stored there.  This is also
 * useful for future device drivers that either access the BIOS via VM86 
 * mode.
 */

/*
 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
 */
	.code32
	.text

#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/pgtable_types.h>
#include <asm/page_types.h>
#include <asm/boot.h>
#include <asm/msr.h>
#include <asm/processor-flags.h>
#include <asm/asm-offsets.h>

	__HEAD
	.code32
ENTRY(startup_32)
	/*
	 * 32bit entry is 0 and it is ABI so immutable!
	 * If we come here directly from a bootloader,
	 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
	 * all need to be under the 4G limit.
	 */
	cld
	/*
	 * Test KEEP_SEGMENTS flag to see if the bootloader is asking
	 * us to not reload segments
	 */
	testb $(1<<6), BP_loadflags(%esi)
	jnz 1f

	cli
	movl	$(__KERNEL_DS), %eax
	movl	%eax, %ds
	movl	%eax, %es
	movl	%eax, %ss
1:

/*
 * Calculate the delta between where we were compiled to run
 * at and where we were actually loaded at.  This can only be done
 * with a short local call on x86.  Nothing  else will tell us what
 * address we are running at.  The reserved chunk of the real-mode
 * data at 0x1e4 (defined as a scratch field) are used as the stack
 * for this calculation. Only 4 bytes are needed.
 */
	leal	(BP_scratch+4)(%esi), %esp
	call	1f
1:	popl	%ebp
	subl	$1b, %ebp

/* setup a stack and make sure cpu supports long mode. */
	movl	$boot_stack_end, %eax
	addl	%ebp, %eax
	movl	%eax, %esp

	call	verify_cpu
	testl	%eax, %eax
	jnz	no_longmode

/*
 * Compute the delta between where we were compiled to run at
 * and where the code will actually run at.
 *
 * %ebp contains the address we are loaded at by the boot loader and %ebx
 * contains the address where we should move the kernel image temporarily
 * for safe in-place decompression.
 */

#ifdef CONFIG_RELOCATABLE
	movl	%ebp, %ebx
	movl	BP_kernel_alignment(%esi), %eax
	decl	%eax
	addl	%eax, %ebx
	notl	%eax
	andl	%eax, %ebx
#else
	movl	$LOAD_PHYSICAL_ADDR, %ebx
#endif

	/* Target address to relocate to for decompression */
	addl	$z_extract_offset, %ebx

/*
 * Prepare for entering 64 bit mode
 */

	/* Load new GDT with the 64bit segments using 32bit descriptor */
	leal	gdt(%ebp), %eax
	movl	%eax, gdt+2(%ebp)
	lgdt	gdt(%ebp)

	/* Enable PAE mode */
	movl	$(X86_CR4_PAE), %eax
	movl	%eax, %cr4

 /*
  * Build early 4G boot pagetable
  */
	/* Initialize Page tables to 0 */
	leal	pgtable(%ebx), %edi
	xorl	%eax, %eax
	movl	$((4096*6)/4), %ecx
	rep	stosl

	/* Build Level 4 */
	leal	pgtable + 0(%ebx), %edi
	leal	0x1007 (%edi), %eax
	movl	%eax, 0(%edi)

	/* Build Level 3 */
	leal	pgtable + 0x1000(%ebx), %edi
	leal	0x1007(%edi), %eax
	movl	$4, %ecx
1:	movl	%eax, 0x00(%edi)
	addl	$0x00001000, %eax
	addl	$8, %edi
	decl	%ecx
	jnz	1b

	/* Build Level 2 */
	leal	pgtable + 0x2000(%ebx), %edi
	movl	$0x00000183, %eax
	movl	$2048, %ecx
1:	movl	%eax, 0(%edi)
	addl	$0x00200000, %eax
	addl	$8, %edi
	decl	%ecx
	jnz	1b

	/* Enable the boot page tables */
	leal	pgtable(%ebx), %eax
	movl	%eax, %cr3

	/* Enable Long mode in EFER (Extended Feature Enable Register) */
	movl	$MSR_EFER, %ecx
	rdmsr
	btsl	$_EFER_LME, %eax
	wrmsr

	/* After gdt is loaded */
	xorl	%eax, %eax
	lldt	%ax
	movl    $0x20, %eax
	ltr	%ax

	/*
	 * Setup for the jump to 64bit mode
	 *
	 * When the jump is performend we will be in long mode but
	 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
	 * (and in turn EFER.LMA = 1).	To jump into 64bit mode we use
	 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
	 * We place all of the values on our mini stack so lret can
	 * used to perform that far jump.
	 */
	pushl	$__KERNEL_CS
	leal	startup_64(%ebp), %eax
	pushl	%eax

	/* Enter paged protected Mode, activating Long Mode */
	movl	$(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
	movl	%eax, %cr0

	/* Jump from 32bit compatibility mode into 64bit mode. */
	lret
ENDPROC(startup_32)

	.code64
	.org 0x200
ENTRY(startup_64)
	/*
	 * 64bit entry is 0x200 and it is ABI so immutable!
	 * We come here either from startup_32 or directly from a
	 * 64bit bootloader.
	 * If we come here from a bootloader, kernel(text+data+bss+brk),
	 * ramdisk, zero_page, command line could be above 4G.
	 * We depend on an identity mapped page table being provided
	 * that maps our entire kernel(text+data+bss+brk), zero page
	 * and command line.
	 */
#ifdef CONFIG_EFI_STUB
	/*
	 * The entry point for the PE/COFF executable is efi_pe_entry, so
	 * only legacy boot loaders will execute this jmp.
	 */
	jmp	preferred_addr

ENTRY(efi_pe_entry)
	mov	%rcx, %rdi
	mov	%rdx, %rsi
	pushq	%rdi
	pushq	%rsi
	call	make_boot_params
	cmpq	$0,%rax
	je	1f
	mov	%rax, %rdx
	popq	%rsi
	popq	%rdi

ENTRY(efi_stub_entry)
	call	efi_main
	movq	%rax,%rsi
	cmpq	$0,%rax
	jne	2f
1:
	/* EFI init failed, so hang. */
	hlt
	jmp	1b
2:
	call	3f
3:
	popq	%rax
	subq	$3b, %rax
	subq	BP_pref_address(%rsi), %rax
	add	BP_code32_start(%esi), %eax
	leaq	preferred_addr(%rax), %rax
	jmp	*%rax

preferred_addr:
#endif

	/* Setup data segments. */
	xorl	%eax, %eax
	movl	%eax, %ds
	movl	%eax, %es
	movl	%eax, %ss
	movl	%eax, %fs
	movl	%eax, %gs

	/*
	 * Compute the decompressed kernel start address.  It is where
	 * we were loaded at aligned to a 2M boundary. %rbp contains the
	 * decompressed kernel start address.
	 *
	 * If it is a relocatable kernel then decompress and run the kernel
	 * from load address aligned to 2MB addr, otherwise decompress and
	 * run the kernel from LOAD_PHYSICAL_ADDR
	 *
	 * We cannot rely on the calculation done in 32-bit mode, since we
	 * may have been invoked via the 64-bit entry point.
	 */

	/* Start with the delta to where the kernel will run at. */
#ifdef CONFIG_RELOCATABLE
	leaq	startup_32(%rip) /* - $startup_32 */, %rbp
	movl	BP_kernel_alignment(%rsi), %eax
	decl	%eax
	addq	%rax, %rbp
	notq	%rax
	andq	%rax, %rbp
#else
	movq	$LOAD_PHYSICAL_ADDR, %rbp
#endif

	/* Target address to relocate to for decompression */
	leaq	z_extract_offset(%rbp), %rbx

	/* Set up the stack */
	leaq	boot_stack_end(%rbx), %rsp

	/* Zero EFLAGS */
	pushq	$0
	popfq

/*
 * Copy the compressed kernel to the end of our buffer
 * where decompression in place becomes safe.
 */
	pushq	%rsi
	leaq	(_bss-8)(%rip), %rsi
	leaq	(_bss-8)(%rbx), %rdi
	movq	$_bss /* - $startup_32 */, %rcx
	shrq	$3, %rcx
	std
	rep	movsq
	cld
	popq	%rsi

/*
 * Jump to the relocated address.
 */
	leaq	relocated(%rbx), %rax
	jmp	*%rax

	.text
relocated:

/*
 * Clear BSS (stack is currently empty)
 */
	xorl	%eax, %eax
	leaq    _bss(%rip), %rdi
	leaq    _ebss(%rip), %rcx
	subq	%rdi, %rcx
	shrq	$3, %rcx
	rep	stosq

/*
 * Adjust our own GOT
 */
	leaq	_got(%rip), %rdx
	leaq	_egot(%rip), %rcx
1:
	cmpq	%rcx, %rdx
	jae	2f
	addq	%rbx, (%rdx)
	addq	$8, %rdx
	jmp	1b
2:
	
/*
 * Do the decompression, and jump to the new kernel..
 */
	pushq	%rsi			/* Save the real mode argument */
	movq	%rsi, %rdi		/* real mode address */
	leaq	boot_heap(%rip), %rsi	/* malloc area for uncompression */
	leaq	input_data(%rip), %rdx  /* input_data */
	movl	$z_input_len, %ecx	/* input_len */
	movq	%rbp, %r8		/* output target address */
	call	decompress_kernel
	popq	%rsi

/*
 * Jump to the decompressed kernel.
 */
	jmp	*%rbp

	.code32
no_longmode:
	/* This isn't an x86-64 CPU so hang */
1:
	hlt
	jmp     1b

#include "../../kernel/verify_cpu.S"

	.data
gdt:
	.word	gdt_end - gdt
	.long	gdt
	.word	0
	.quad	0x0000000000000000	/* NULL descriptor */
	.quad	0x00af9a000000ffff	/* __KERNEL_CS */
	.quad	0x00cf92000000ffff	/* __KERNEL_DS */
	.quad	0x0080890000000000	/* TS descriptor */
	.quad   0x0000000000000000	/* TS continued */
gdt_end:

/*
 * Stack and heap for uncompression
 */
	.bss
	.balign 4
boot_heap:
	.fill BOOT_HEAP_SIZE, 1, 0
boot_stack:
	.fill BOOT_STACK_SIZE, 1, 0
boot_stack_end:

/*
 * Space for page tables (not in .bss so not zeroed)
 */
	.section ".pgtable","a",@nobits
	.balign 4096
pgtable:
	.fill 6*4096, 1, 0