summaryrefslogtreecommitdiffstats
path: root/arch/sparc/net/bpf_jit_comp_32.c
blob: c8eabb973b8688648dff42f70bd6f05b43a35103 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// SPDX-License-Identifier: GPL-2.0
#include <linux/moduleloader.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/cache.h>
#include <linux/if_vlan.h>

#include <asm/cacheflush.h>
#include <asm/ptrace.h>

#include "bpf_jit_32.h"

static inline bool is_simm13(unsigned int value)
{
	return value + 0x1000 < 0x2000;
}

#define SEEN_DATAREF 1 /* might call external helpers */
#define SEEN_XREG    2 /* ebx is used */
#define SEEN_MEM     4 /* use mem[] for temporary storage */

#define S13(X)		((X) & 0x1fff)
#define IMMED		0x00002000
#define RD(X)		((X) << 25)
#define RS1(X)		((X) << 14)
#define RS2(X)		((X))
#define OP(X)		((X) << 30)
#define OP2(X)		((X) << 22)
#define OP3(X)		((X) << 19)
#define COND(X)		((X) << 25)
#define F1(X)		OP(X)
#define F2(X, Y)	(OP(X) | OP2(Y))
#define F3(X, Y)	(OP(X) | OP3(Y))

#define CONDN		COND(0x0)
#define CONDE		COND(0x1)
#define CONDLE		COND(0x2)
#define CONDL		COND(0x3)
#define CONDLEU		COND(0x4)
#define CONDCS		COND(0x5)
#define CONDNEG		COND(0x6)
#define CONDVC		COND(0x7)
#define CONDA		COND(0x8)
#define CONDNE		COND(0x9)
#define CONDG		COND(0xa)
#define CONDGE		COND(0xb)
#define CONDGU		COND(0xc)
#define CONDCC		COND(0xd)
#define CONDPOS		COND(0xe)
#define CONDVS		COND(0xf)

#define CONDGEU		CONDCC
#define CONDLU		CONDCS

#define WDISP22(X)	(((X) >> 2) & 0x3fffff)

#define BA		(F2(0, 2) | CONDA)
#define BGU		(F2(0, 2) | CONDGU)
#define BLEU		(F2(0, 2) | CONDLEU)
#define BGEU		(F2(0, 2) | CONDGEU)
#define BLU		(F2(0, 2) | CONDLU)
#define BE		(F2(0, 2) | CONDE)
#define BNE		(F2(0, 2) | CONDNE)

#define BE_PTR		BE

#define SETHI(K, REG)	\
	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
#define OR_LO(K, REG)	\
	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))

#define ADD		F3(2, 0x00)
#define AND		F3(2, 0x01)
#define ANDCC		F3(2, 0x11)
#define OR		F3(2, 0x02)
#define XOR		F3(2, 0x03)
#define SUB		F3(2, 0x04)
#define SUBCC		F3(2, 0x14)
#define MUL		F3(2, 0x0a)	/* umul */
#define DIV		F3(2, 0x0e)	/* udiv */
#define SLL		F3(2, 0x25)
#define SRL		F3(2, 0x26)
#define JMPL		F3(2, 0x38)
#define CALL		F1(1)
#define BR		F2(0, 0x01)
#define RD_Y		F3(2, 0x28)
#define WR_Y		F3(2, 0x30)

#define LD32		F3(3, 0x00)
#define LD8		F3(3, 0x01)
#define LD16		F3(3, 0x02)
#define LD64		F3(3, 0x0b)
#define ST32		F3(3, 0x04)

#define LDPTR		LD32
#define BASE_STACKFRAME	96

#define LD32I		(LD32 | IMMED)
#define LD8I		(LD8 | IMMED)
#define LD16I		(LD16 | IMMED)
#define LD64I		(LD64 | IMMED)
#define LDPTRI		(LDPTR | IMMED)
#define ST32I		(ST32 | IMMED)

#define emit_nop()		\
do {				\
	*prog++ = SETHI(0, G0);	\
} while (0)

#define emit_neg()					\
do {	/* sub %g0, r_A, r_A */				\
	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
} while (0)

#define emit_reg_move(FROM, TO)				\
do {	/* or %g0, FROM, TO */				\
	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
} while (0)

#define emit_clear(REG)					\
do {	/* or %g0, %g0, REG */				\
	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
} while (0)

#define emit_set_const(K, REG)					\
do {	/* sethi %hi(K), REG */					\
	*prog++ = SETHI(K, REG);				\
	/* or REG, %lo(K), REG */				\
	*prog++ = OR_LO(K, REG);				\
} while (0)

	/* Emit
	 *
	 *	OP	r_A, r_X, r_A
	 */
#define emit_alu_X(OPCODE)					\
do {								\
	seen |= SEEN_XREG;					\
	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
} while (0)

	/* Emit either:
	 *
	 *	OP	r_A, K, r_A
	 *
	 * or
	 *
	 *	sethi	%hi(K), r_TMP
	 *	or	r_TMP, %lo(K), r_TMP
	 *	OP	r_A, r_TMP, r_A
	 *
	 * depending upon whether K fits in a signed 13-bit
	 * immediate instruction field.  Emit nothing if K
	 * is zero.
	 */
#define emit_alu_K(OPCODE, K)					\
do {								\
	if (K || OPCODE == AND || OPCODE == MUL) {		\
		unsigned int _insn = OPCODE;			\
		_insn |= RS1(r_A) | RD(r_A);			\
		if (is_simm13(K)) {				\
			*prog++ = _insn | IMMED | S13(K);	\
		} else {					\
			emit_set_const(K, r_TMP);		\
			*prog++ = _insn | RS2(r_TMP);		\
		}						\
	}							\
} while (0)

#define emit_loadimm(K, DEST)						\
do {									\
	if (is_simm13(K)) {						\
		/* or %g0, K, DEST */					\
		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
	} else {							\
		emit_set_const(K, DEST);				\
	}								\
} while (0)

#define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(void *));	\
	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
} while (0)

#define emit_load32(BASE, STRUCT, FIELD, DEST)				\
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u32));	\
	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
} while (0)

#define emit_load16(BASE, STRUCT, FIELD, DEST)				\
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u16));	\
	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
} while (0)

#define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
} while (0)

#define emit_load8(BASE, STRUCT, FIELD, DEST)				\
do {	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u8));	\
	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
} while (0)

#define BIAS (-4)

#define emit_ldmem(OFF, DEST)						\
do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\
} while (0)

#define emit_stmem(OFF, SRC)						\
do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\
} while (0)

#ifdef CONFIG_SMP
#define emit_load_cpu(REG)						\
	emit_load32(G6, struct thread_info, cpu, REG)
#else
#define emit_load_cpu(REG)	emit_clear(REG)
#endif

#define emit_skb_loadptr(FIELD, DEST) \
	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
#define emit_skb_load32(FIELD, DEST) \
	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
#define emit_skb_load16(FIELD, DEST) \
	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
#define __emit_skb_load8(FIELD, DEST) \
	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
#define emit_skb_load8(FIELD, DEST) \
	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)

#define emit_jmpl(BASE, IMM_OFF, LREG) \
	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))

#define emit_call(FUNC)					\
do {	void *_here = image + addrs[i] - 8;		\
	unsigned int _off = (void *)(FUNC) - _here;	\
	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
	emit_nop();					\
} while (0)

#define emit_branch(BR_OPC, DEST)			\
do {	unsigned int _here = addrs[i] - 8;		\
	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
} while (0)

#define emit_branch_off(BR_OPC, OFF)			\
do {	*prog++ = BR_OPC | WDISP22(OFF);		\
} while (0)

#define emit_jump(DEST)		emit_branch(BA, DEST)

#define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
#define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)

#define emit_cmp(R1, R2) \
	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))

#define emit_cmpi(R1, IMM) \
	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));

#define emit_btst(R1, R2) \
	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))

#define emit_btsti(R1, IMM) \
	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));

#define emit_sub(R1, R2, R3) \
	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))

#define emit_subi(R1, IMM, R3) \
	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))

#define emit_add(R1, R2, R3) \
	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))

#define emit_addi(R1, IMM, R3) \
	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))

#define emit_and(R1, R2, R3) \
	*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))

#define emit_andi(R1, IMM, R3) \
	*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))

#define emit_alloc_stack(SZ) \
	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))

#define emit_release_stack(SZ) \
	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))

/* A note about branch offset calculations.  The addrs[] array,
 * indexed by BPF instruction, records the address after all the
 * sparc instructions emitted for that BPF instruction.
 *
 * The most common case is to emit a branch at the end of such
 * a code sequence.  So this would be two instructions, the
 * branch and it's delay slot.
 *
 * Therefore by default the branch emitters calculate the branch
 * offset field as:
 *
 *	destination - (addrs[i] - 8)
 *
 * This "addrs[i] - 8" is the address of the branch itself or
 * what "." would be in assembler notation.  The "8" part is
 * how we take into consideration the branch and it's delay
 * slot mentioned above.
 *
 * Sometimes we need to emit a branch earlier in the code
 * sequence.  And in these situations we adjust "destination"
 * to accommodate this difference.  For example, if we needed
 * to emit a branch (and it's delay slot) right before the
 * final instruction emitted for a BPF opcode, we'd use
 * "destination + 4" instead of just plain "destination" above.
 *
 * This is why you see all of these funny emit_branch() and
 * emit_jump() calls with adjusted offsets.
 */

void bpf_jit_compile(struct bpf_prog *fp)
{
	unsigned int cleanup_addr, proglen, oldproglen = 0;
	u32 temp[8], *prog, *func, seen = 0, pass;
	const struct sock_filter *filter = fp->insns;
	int i, flen = fp->len, pc_ret0 = -1;
	unsigned int *addrs;
	void *image;

	if (!bpf_jit_enable)
		return;

	addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL);
	if (addrs == NULL)
		return;

	/* Before first pass, make a rough estimation of addrs[]
	 * each bpf instruction is translated to less than 64 bytes
	 */
	for (proglen = 0, i = 0; i < flen; i++) {
		proglen += 64;
		addrs[i] = proglen;
	}
	cleanup_addr = proglen; /* epilogue address */
	image = NULL;
	for (pass = 0; pass < 10; pass++) {
		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;

		/* no prologue/epilogue for trivial filters (RET something) */
		proglen = 0;
		prog = temp;

		/* Prologue */
		if (seen_or_pass0) {
			if (seen_or_pass0 & SEEN_MEM) {
				unsigned int sz = BASE_STACKFRAME;
				sz += BPF_MEMWORDS * sizeof(u32);
				emit_alloc_stack(sz);
			}

			/* Make sure we dont leek kernel memory. */
			if (seen_or_pass0 & SEEN_XREG)
				emit_clear(r_X);

			/* If this filter needs to access skb data,
			 * load %o4 and %o5 with:
			 *  %o4 = skb->len - skb->data_len
			 *  %o5 = skb->data
			 * And also back up %o7 into r_saved_O7 so we can
			 * invoke the stubs using 'call'.
			 */
			if (seen_or_pass0 & SEEN_DATAREF) {
				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
			}
		}
		emit_reg_move(O7, r_saved_O7);

		/* Make sure we dont leak kernel information to the user. */
		if (bpf_needs_clear_a(&filter[0]))
			emit_clear(r_A); /* A = 0 */

		for (i = 0; i < flen; i++) {
			unsigned int K = filter[i].k;
			unsigned int t_offset;
			unsigned int f_offset;
			u32 t_op, f_op;
			u16 code = bpf_anc_helper(&filter[i]);
			int ilen;

			switch (code) {
			case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */
				emit_alu_X(ADD);
				break;
			case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */
				emit_alu_K(ADD, K);
				break;
			case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */
				emit_alu_X(SUB);
				break;
			case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */
				emit_alu_K(SUB, K);
				break;
			case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */
				emit_alu_X(AND);
				break;
			case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */
				emit_alu_K(AND, K);
				break;
			case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */
				emit_alu_X(OR);
				break;
			case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */
				emit_alu_K(OR, K);
				break;
			case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
			case BPF_ALU | BPF_XOR | BPF_X:
				emit_alu_X(XOR);
				break;
			case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */
				emit_alu_K(XOR, K);
				break;
			case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */
				emit_alu_X(SLL);
				break;
			case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */
				emit_alu_K(SLL, K);
				break;
			case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */
				emit_alu_X(SRL);
				break;
			case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */
				emit_alu_K(SRL, K);
				break;
			case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */
				emit_alu_X(MUL);
				break;
			case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */
				emit_alu_K(MUL, K);
				break;
			case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/
				if (K == 1)
					break;
				emit_write_y(G0);
				/* The Sparc v8 architecture requires
				 * three instructions between a %y
				 * register write and the first use.
				 */
				emit_nop();
				emit_nop();
				emit_nop();
				emit_alu_K(DIV, K);
				break;
			case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */
				emit_cmpi(r_X, 0);
				if (pc_ret0 > 0) {
					t_offset = addrs[pc_ret0 - 1];
					emit_branch(BE, t_offset + 20);
					emit_nop(); /* delay slot */
				} else {
					emit_branch_off(BNE, 16);
					emit_nop();
					emit_jump(cleanup_addr + 20);
					emit_clear(r_A);
				}
				emit_write_y(G0);
				/* The Sparc v8 architecture requires
				 * three instructions between a %y
				 * register write and the first use.
				 */
				emit_nop();
				emit_nop();
				emit_nop();
				emit_alu_X(DIV);
				break;
			case BPF_ALU | BPF_NEG:
				emit_neg();
				break;
			case BPF_RET | BPF_K:
				if (!K) {
					if (pc_ret0 == -1)
						pc_ret0 = i;
					emit_clear(r_A);
				} else {
					emit_loadimm(K, r_A);
				}
				/* Fallthrough */
			case BPF_RET | BPF_A:
				if (seen_or_pass0) {
					if (i != flen - 1) {
						emit_jump(cleanup_addr);
						emit_nop();
						break;
					}
					if (seen_or_pass0 & SEEN_MEM) {
						unsigned int sz = BASE_STACKFRAME;
						sz += BPF_MEMWORDS * sizeof(u32);
						emit_release_stack(sz);
					}
				}
				/* jmpl %r_saved_O7 + 8, %g0 */
				emit_jmpl(r_saved_O7, 8, G0);
				emit_reg_move(r_A, O0); /* delay slot */
				break;
			case BPF_MISC | BPF_TAX:
				seen |= SEEN_XREG;
				emit_reg_move(r_A, r_X);
				break;
			case BPF_MISC | BPF_TXA:
				seen |= SEEN_XREG;
				emit_reg_move(r_X, r_A);
				break;
			case BPF_ANC | SKF_AD_CPU:
				emit_load_cpu(r_A);
				break;
			case BPF_ANC | SKF_AD_PROTOCOL:
				emit_skb_load16(protocol, r_A);
				break;
			case BPF_ANC | SKF_AD_PKTTYPE:
				__emit_skb_load8(__pkt_type_offset, r_A);
				emit_andi(r_A, PKT_TYPE_MAX, r_A);
				emit_alu_K(SRL, 5);
				break;
			case BPF_ANC | SKF_AD_IFINDEX:
				emit_skb_loadptr(dev, r_A);
				emit_cmpi(r_A, 0);
				emit_branch(BE_PTR, cleanup_addr + 4);
				emit_nop();
				emit_load32(r_A, struct net_device, ifindex, r_A);
				break;
			case BPF_ANC | SKF_AD_MARK:
				emit_skb_load32(mark, r_A);
				break;
			case BPF_ANC | SKF_AD_QUEUE:
				emit_skb_load16(queue_mapping, r_A);
				break;
			case BPF_ANC | SKF_AD_HATYPE:
				emit_skb_loadptr(dev, r_A);
				emit_cmpi(r_A, 0);
				emit_branch(BE_PTR, cleanup_addr + 4);
				emit_nop();
				emit_load16(r_A, struct net_device, type, r_A);
				break;
			case BPF_ANC | SKF_AD_RXHASH:
				emit_skb_load32(hash, r_A);
				break;
			case BPF_ANC | SKF_AD_VLAN_TAG:
				emit_skb_load16(vlan_tci, r_A);
				break;
			case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
				__emit_skb_load8(__pkt_vlan_present_offset, r_A);
				if (PKT_VLAN_PRESENT_BIT)
					emit_alu_K(SRL, PKT_VLAN_PRESENT_BIT);
				if (PKT_VLAN_PRESENT_BIT < 7)
					emit_andi(r_A, 1, r_A);
				break;
			case BPF_LD | BPF_W | BPF_LEN:
				emit_skb_load32(len, r_A);
				break;
			case BPF_LDX | BPF_W | BPF_LEN:
				emit_skb_load32(len, r_X);
				break;
			case BPF_LD | BPF_IMM:
				emit_loadimm(K, r_A);
				break;
			case BPF_LDX | BPF_IMM:
				emit_loadimm(K, r_X);
				break;
			case BPF_LD | BPF_MEM:
				seen |= SEEN_MEM;
				emit_ldmem(K * 4, r_A);
				break;
			case BPF_LDX | BPF_MEM:
				seen |= SEEN_MEM | SEEN_XREG;
				emit_ldmem(K * 4, r_X);
				break;
			case BPF_ST:
				seen |= SEEN_MEM;
				emit_stmem(K * 4, r_A);
				break;
			case BPF_STX:
				seen |= SEEN_MEM | SEEN_XREG;
				emit_stmem(K * 4, r_X);
				break;

#define CHOOSE_LOAD_FUNC(K, func) \
	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)

			case BPF_LD | BPF_W | BPF_ABS:
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
common_load:			seen |= SEEN_DATAREF;
				emit_loadimm(K, r_OFF);
				emit_call(func);
				break;
			case BPF_LD | BPF_H | BPF_ABS:
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
				goto common_load;
			case BPF_LD | BPF_B | BPF_ABS:
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
				goto common_load;
			case BPF_LDX | BPF_B | BPF_MSH:
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
				goto common_load;
			case BPF_LD | BPF_W | BPF_IND:
				func = bpf_jit_load_word;
common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
				if (K) {
					if (is_simm13(K)) {
						emit_addi(r_X, K, r_OFF);
					} else {
						emit_loadimm(K, r_TMP);
						emit_add(r_X, r_TMP, r_OFF);
					}
				} else {
					emit_reg_move(r_X, r_OFF);
				}
				emit_call(func);
				break;
			case BPF_LD | BPF_H | BPF_IND:
				func = bpf_jit_load_half;
				goto common_load_ind;
			case BPF_LD | BPF_B | BPF_IND:
				func = bpf_jit_load_byte;
				goto common_load_ind;
			case BPF_JMP | BPF_JA:
				emit_jump(addrs[i + K]);
				emit_nop();
				break;

#define COND_SEL(CODE, TOP, FOP)	\
	case CODE:			\
		t_op = TOP;		\
		f_op = FOP;		\
		goto cond_branch

			COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
			COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
			COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
			COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
			COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
			COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
			COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
			COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);

cond_branch:			f_offset = addrs[i + filter[i].jf];
				t_offset = addrs[i + filter[i].jt];

				/* same targets, can avoid doing the test :) */
				if (filter[i].jt == filter[i].jf) {
					emit_jump(t_offset);
					emit_nop();
					break;
				}

				switch (code) {
				case BPF_JMP | BPF_JGT | BPF_X:
				case BPF_JMP | BPF_JGE | BPF_X:
				case BPF_JMP | BPF_JEQ | BPF_X:
					seen |= SEEN_XREG;
					emit_cmp(r_A, r_X);
					break;
				case BPF_JMP | BPF_JSET | BPF_X:
					seen |= SEEN_XREG;
					emit_btst(r_A, r_X);
					break;
				case BPF_JMP | BPF_JEQ | BPF_K:
				case BPF_JMP | BPF_JGT | BPF_K:
				case BPF_JMP | BPF_JGE | BPF_K:
					if (is_simm13(K)) {
						emit_cmpi(r_A, K);
					} else {
						emit_loadimm(K, r_TMP);
						emit_cmp(r_A, r_TMP);
					}
					break;
				case BPF_JMP | BPF_JSET | BPF_K:
					if (is_simm13(K)) {
						emit_btsti(r_A, K);
					} else {
						emit_loadimm(K, r_TMP);
						emit_btst(r_A, r_TMP);
					}
					break;
				}
				if (filter[i].jt != 0) {
					if (filter[i].jf)
						t_offset += 8;
					emit_branch(t_op, t_offset);
					emit_nop(); /* delay slot */
					if (filter[i].jf) {
						emit_jump(f_offset);
						emit_nop();
					}
					break;
				}
				emit_branch(f_op, f_offset);
				emit_nop(); /* delay slot */
				break;

			default:
				/* hmm, too complex filter, give up with jit compiler */
				goto out;
			}
			ilen = (void *) prog - (void *) temp;
			if (image) {
				if (unlikely(proglen + ilen > oldproglen)) {
					pr_err("bpb_jit_compile fatal error\n");
					kfree(addrs);
					module_memfree(image);
					return;
				}
				memcpy(image + proglen, temp, ilen);
			}
			proglen += ilen;
			addrs[i] = proglen;
			prog = temp;
		}
		/* last bpf instruction is always a RET :
		 * use it to give the cleanup instruction(s) addr
		 */
		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
		if (seen_or_pass0 & SEEN_MEM)
			cleanup_addr -= 4; /* add %sp, X, %sp; */

		if (image) {
			if (proglen != oldproglen)
				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
				       proglen, oldproglen);
			break;
		}
		if (proglen == oldproglen) {
			image = module_alloc(proglen);
			if (!image)
				goto out;
		}
		oldproglen = proglen;
	}

	if (bpf_jit_enable > 1)
		bpf_jit_dump(flen, proglen, pass + 1, image);

	if (image) {
		fp->bpf_func = (void *)image;
		fp->jited = 1;
	}
out:
	kfree(addrs);
	return;
}

void bpf_jit_free(struct bpf_prog *fp)
{
	if (fp->jited)
		module_memfree(fp->bpf_func);

	bpf_prog_unlock_free(fp);
}