1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
#include <linux/clk.h>
#include <linux/compiler.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <asm/clock.h>
static int sh_clk_mstp32_enable(struct clk *clk)
{
__raw_writel(__raw_readl(clk->enable_reg) & ~(1 << clk->enable_bit),
clk->enable_reg);
return 0;
}
static void sh_clk_mstp32_disable(struct clk *clk)
{
__raw_writel(__raw_readl(clk->enable_reg) | (1 << clk->enable_bit),
clk->enable_reg);
}
static struct clk_ops sh_clk_mstp32_clk_ops = {
.enable = sh_clk_mstp32_enable,
.disable = sh_clk_mstp32_disable,
.recalc = followparent_recalc,
};
int __init sh_clk_mstp32_register(struct clk *clks, int nr)
{
struct clk *clkp;
int ret = 0;
int k;
for (k = 0; !ret && (k < nr); k++) {
clkp = clks + k;
clkp->ops = &sh_clk_mstp32_clk_ops;
ret |= clk_register(clkp);
}
return ret;
}
static long sh_clk_div_round_rate(struct clk *clk, unsigned long rate)
{
return clk_rate_table_round(clk, clk->freq_table, rate);
}
static int sh_clk_div6_divisors[64] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
};
static struct clk_div_mult_table sh_clk_div6_table = {
.divisors = sh_clk_div6_divisors,
.nr_divisors = ARRAY_SIZE(sh_clk_div6_divisors),
};
static unsigned long sh_clk_div6_recalc(struct clk *clk)
{
struct clk_div_mult_table *table = &sh_clk_div6_table;
unsigned int idx;
clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
table, NULL);
idx = __raw_readl(clk->enable_reg) & 0x003f;
return clk->freq_table[idx].frequency;
}
static int sh_clk_div6_set_rate(struct clk *clk,
unsigned long rate, int algo_id)
{
unsigned long value;
int idx;
idx = clk_rate_table_find(clk, clk->freq_table, rate);
if (idx < 0)
return idx;
value = __raw_readl(clk->enable_reg);
value &= ~0x3f;
value |= idx;
__raw_writel(value, clk->enable_reg);
return 0;
}
static int sh_clk_div6_enable(struct clk *clk)
{
unsigned long value;
int ret;
ret = sh_clk_div6_set_rate(clk, clk->rate, 0);
if (ret == 0) {
value = __raw_readl(clk->enable_reg);
value &= ~0x100; /* clear stop bit to enable clock */
__raw_writel(value, clk->enable_reg);
}
return ret;
}
static void sh_clk_div6_disable(struct clk *clk)
{
unsigned long value;
value = __raw_readl(clk->enable_reg);
value |= 0x100; /* stop clock */
value |= 0x3f; /* VDIV bits must be non-zero, overwrite divider */
__raw_writel(value, clk->enable_reg);
}
static struct clk_ops sh_clk_div6_clk_ops = {
.recalc = sh_clk_div6_recalc,
.round_rate = sh_clk_div_round_rate,
.set_rate = sh_clk_div6_set_rate,
.enable = sh_clk_div6_enable,
.disable = sh_clk_div6_disable,
};
int __init sh_clk_div6_register(struct clk *clks, int nr)
{
struct clk *clkp;
void *freq_table;
int nr_divs = sh_clk_div6_table.nr_divisors;
int freq_table_size = sizeof(struct cpufreq_frequency_table);
int ret = 0;
int k;
freq_table_size *= (nr_divs + 1);
freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
if (!freq_table) {
pr_err("sh_clk_div6_register: unable to alloc memory\n");
return -ENOMEM;
}
for (k = 0; !ret && (k < nr); k++) {
clkp = clks + k;
clkp->ops = &sh_clk_div6_clk_ops;
clkp->id = -1;
clkp->freq_table = freq_table + (k * freq_table_size);
clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
ret = clk_register(clkp);
}
return ret;
}
static unsigned long sh_clk_div4_recalc(struct clk *clk)
{
struct clk_div4_table *d4t = clk->priv;
struct clk_div_mult_table *table = d4t->div_mult_table;
unsigned int idx;
clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
table, &clk->arch_flags);
idx = (__raw_readl(clk->enable_reg) >> clk->enable_bit) & 0x000f;
return clk->freq_table[idx].frequency;
}
static int sh_clk_div4_set_parent(struct clk *clk, struct clk *parent)
{
struct clk_div4_table *d4t = clk->priv;
struct clk_div_mult_table *table = d4t->div_mult_table;
u32 value;
int ret;
/* we really need a better way to determine parent index, but for
* now assume internal parent comes with CLK_ENABLE_ON_INIT set,
* no CLK_ENABLE_ON_INIT means external clock...
*/
if (parent->flags & CLK_ENABLE_ON_INIT)
value = __raw_readl(clk->enable_reg) & ~(1 << 7);
else
value = __raw_readl(clk->enable_reg) | (1 << 7);
ret = clk_reparent(clk, parent);
if (ret < 0)
return ret;
__raw_writel(value, clk->enable_reg);
/* Rebiuld the frequency table */
clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
table, &clk->arch_flags);
return 0;
}
static int sh_clk_div4_set_rate(struct clk *clk, unsigned long rate, int algo_id)
{
struct clk_div4_table *d4t = clk->priv;
unsigned long value;
int idx = clk_rate_table_find(clk, clk->freq_table, rate);
if (idx < 0)
return idx;
value = __raw_readl(clk->enable_reg);
value &= ~(0xf << clk->enable_bit);
value |= (idx << clk->enable_bit);
__raw_writel(value, clk->enable_reg);
if (d4t->kick)
d4t->kick(clk);
return 0;
}
static int sh_clk_div4_enable(struct clk *clk)
{
__raw_writel(__raw_readl(clk->enable_reg) & ~(1 << 8), clk->enable_reg);
return 0;
}
static void sh_clk_div4_disable(struct clk *clk)
{
__raw_writel(__raw_readl(clk->enable_reg) | (1 << 8), clk->enable_reg);
}
static struct clk_ops sh_clk_div4_clk_ops = {
.recalc = sh_clk_div4_recalc,
.set_rate = sh_clk_div4_set_rate,
.round_rate = sh_clk_div_round_rate,
};
static struct clk_ops sh_clk_div4_enable_clk_ops = {
.recalc = sh_clk_div4_recalc,
.set_rate = sh_clk_div4_set_rate,
.round_rate = sh_clk_div_round_rate,
.enable = sh_clk_div4_enable,
.disable = sh_clk_div4_disable,
};
static struct clk_ops sh_clk_div4_reparent_clk_ops = {
.recalc = sh_clk_div4_recalc,
.set_rate = sh_clk_div4_set_rate,
.round_rate = sh_clk_div_round_rate,
.enable = sh_clk_div4_enable,
.disable = sh_clk_div4_disable,
.set_parent = sh_clk_div4_set_parent,
};
static int __init sh_clk_div4_register_ops(struct clk *clks, int nr,
struct clk_div4_table *table, struct clk_ops *ops)
{
struct clk *clkp;
void *freq_table;
int nr_divs = table->div_mult_table->nr_divisors;
int freq_table_size = sizeof(struct cpufreq_frequency_table);
int ret = 0;
int k;
freq_table_size *= (nr_divs + 1);
freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
if (!freq_table) {
pr_err("sh_clk_div4_register: unable to alloc memory\n");
return -ENOMEM;
}
for (k = 0; !ret && (k < nr); k++) {
clkp = clks + k;
clkp->ops = ops;
clkp->id = -1;
clkp->priv = table;
clkp->freq_table = freq_table + (k * freq_table_size);
clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
ret = clk_register(clkp);
}
return ret;
}
int __init sh_clk_div4_register(struct clk *clks, int nr,
struct clk_div4_table *table)
{
return sh_clk_div4_register_ops(clks, nr, table, &sh_clk_div4_clk_ops);
}
int __init sh_clk_div4_enable_register(struct clk *clks, int nr,
struct clk_div4_table *table)
{
return sh_clk_div4_register_ops(clks, nr, table,
&sh_clk_div4_enable_clk_ops);
}
int __init sh_clk_div4_reparent_register(struct clk *clks, int nr,
struct clk_div4_table *table)
{
return sh_clk_div4_register_ops(clks, nr, table,
&sh_clk_div4_reparent_clk_ops);
}
#ifdef CONFIG_SH_CLK_CPG_LEGACY
static struct clk master_clk = {
.name = "master_clk",
.flags = CLK_ENABLE_ON_INIT,
.rate = CONFIG_SH_PCLK_FREQ,
};
static struct clk peripheral_clk = {
.name = "peripheral_clk",
.parent = &master_clk,
.flags = CLK_ENABLE_ON_INIT,
};
static struct clk bus_clk = {
.name = "bus_clk",
.parent = &master_clk,
.flags = CLK_ENABLE_ON_INIT,
};
static struct clk cpu_clk = {
.name = "cpu_clk",
.parent = &master_clk,
.flags = CLK_ENABLE_ON_INIT,
};
/*
* The ordering of these clocks matters, do not change it.
*/
static struct clk *onchip_clocks[] = {
&master_clk,
&peripheral_clk,
&bus_clk,
&cpu_clk,
};
int __init __deprecated cpg_clk_init(void)
{
int i, ret = 0;
for (i = 0; i < ARRAY_SIZE(onchip_clocks); i++) {
struct clk *clk = onchip_clocks[i];
arch_init_clk_ops(&clk->ops, i);
if (clk->ops)
ret |= clk_register(clk);
}
clk_add_alias("tmu_fck", NULL, "peripheral_clk", NULL);
clk_add_alias("mtu2_fck", NULL, "peripheral_clk", NULL);
clk_add_alias("cmt_fck", NULL, "peripheral_clk", NULL);
clk_add_alias("sci_ick", NULL, "peripheral_clk", NULL);
return ret;
}
/*
* Placeholder for compatability, until the lazy CPUs do this
* on their own.
*/
int __init __weak arch_clk_init(void)
{
return cpg_clk_init();
}
#endif /* CONFIG_SH_CPG_CLK_LEGACY */
|