1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
|
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
#include <linux/vmalloc.h>
#include <linux/srcu.h>
#include <linux/anon_inodes.h>
#include <linux/file.h>
#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>
#include "book3s_hv_cma.h"
/* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
#define MAX_LPID_970 63
/* Power architecture requires HPT is at least 256kB */
#define PPC_MIN_HPT_ORDER 18
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
long pte_index, unsigned long pteh,
unsigned long ptel, unsigned long *pte_idx_ret);
static void kvmppc_rmap_reset(struct kvm *kvm);
long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
{
unsigned long hpt;
struct revmap_entry *rev;
struct page *page = NULL;
long order = KVM_DEFAULT_HPT_ORDER;
if (htab_orderp) {
order = *htab_orderp;
if (order < PPC_MIN_HPT_ORDER)
order = PPC_MIN_HPT_ORDER;
}
kvm->arch.hpt_cma_alloc = 0;
/*
* try first to allocate it from the kernel page allocator.
* We keep the CMA reserved for failed allocation.
*/
hpt = __get_free_pages(GFP_KERNEL | __GFP_ZERO | __GFP_REPEAT |
__GFP_NOWARN, order - PAGE_SHIFT);
/* Next try to allocate from the preallocated pool */
if (!hpt) {
VM_BUG_ON(order < KVM_CMA_CHUNK_ORDER);
page = kvm_alloc_hpt(1 << (order - PAGE_SHIFT));
if (page) {
hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
kvm->arch.hpt_cma_alloc = 1;
} else
--order;
}
/* Lastly try successively smaller sizes from the page allocator */
while (!hpt && order > PPC_MIN_HPT_ORDER) {
hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
__GFP_NOWARN, order - PAGE_SHIFT);
if (!hpt)
--order;
}
if (!hpt)
return -ENOMEM;
kvm->arch.hpt_virt = hpt;
kvm->arch.hpt_order = order;
/* HPTEs are 2**4 bytes long */
kvm->arch.hpt_npte = 1ul << (order - 4);
/* 128 (2**7) bytes in each HPTEG */
kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
/* Allocate reverse map array */
rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
if (!rev) {
pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
goto out_freehpt;
}
kvm->arch.revmap = rev;
kvm->arch.sdr1 = __pa(hpt) | (order - 18);
pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
hpt, order, kvm->arch.lpid);
if (htab_orderp)
*htab_orderp = order;
return 0;
out_freehpt:
if (kvm->arch.hpt_cma_alloc)
kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
else
free_pages(hpt, order - PAGE_SHIFT);
return -ENOMEM;
}
long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
{
long err = -EBUSY;
long order;
mutex_lock(&kvm->lock);
if (kvm->arch.rma_setup_done) {
kvm->arch.rma_setup_done = 0;
/* order rma_setup_done vs. vcpus_running */
smp_mb();
if (atomic_read(&kvm->arch.vcpus_running)) {
kvm->arch.rma_setup_done = 1;
goto out;
}
}
if (kvm->arch.hpt_virt) {
order = kvm->arch.hpt_order;
/* Set the entire HPT to 0, i.e. invalid HPTEs */
memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
/*
* Reset all the reverse-mapping chains for all memslots
*/
kvmppc_rmap_reset(kvm);
/* Ensure that each vcpu will flush its TLB on next entry. */
cpumask_setall(&kvm->arch.need_tlb_flush);
*htab_orderp = order;
err = 0;
} else {
err = kvmppc_alloc_hpt(kvm, htab_orderp);
order = *htab_orderp;
}
out:
mutex_unlock(&kvm->lock);
return err;
}
void kvmppc_free_hpt(struct kvm *kvm)
{
kvmppc_free_lpid(kvm->arch.lpid);
vfree(kvm->arch.revmap);
if (kvm->arch.hpt_cma_alloc)
kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
1 << (kvm->arch.hpt_order - PAGE_SHIFT));
else
free_pages(kvm->arch.hpt_virt,
kvm->arch.hpt_order - PAGE_SHIFT);
}
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
{
return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
}
/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
{
return (pgsize == 0x10000) ? 0x1000 : 0;
}
void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
unsigned long porder)
{
unsigned long i;
unsigned long npages;
unsigned long hp_v, hp_r;
unsigned long addr, hash;
unsigned long psize;
unsigned long hp0, hp1;
unsigned long idx_ret;
long ret;
struct kvm *kvm = vcpu->kvm;
psize = 1ul << porder;
npages = memslot->npages >> (porder - PAGE_SHIFT);
/* VRMA can't be > 1TB */
if (npages > 1ul << (40 - porder))
npages = 1ul << (40 - porder);
/* Can't use more than 1 HPTE per HPTEG */
if (npages > kvm->arch.hpt_mask + 1)
npages = kvm->arch.hpt_mask + 1;
hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
hp1 = hpte1_pgsize_encoding(psize) |
HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
for (i = 0; i < npages; ++i) {
addr = i << porder;
/* can't use hpt_hash since va > 64 bits */
hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
/*
* We assume that the hash table is empty and no
* vcpus are using it at this stage. Since we create
* at most one HPTE per HPTEG, we just assume entry 7
* is available and use it.
*/
hash = (hash << 3) + 7;
hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
hp_r = hp1 | addr;
ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
&idx_ret);
if (ret != H_SUCCESS) {
pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
addr, ret);
break;
}
}
}
int kvmppc_mmu_hv_init(void)
{
unsigned long host_lpid, rsvd_lpid;
if (!cpu_has_feature(CPU_FTR_HVMODE))
return -EINVAL;
/* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
if (cpu_has_feature(CPU_FTR_ARCH_206)) {
host_lpid = mfspr(SPRN_LPID); /* POWER7 */
rsvd_lpid = LPID_RSVD;
} else {
host_lpid = 0; /* PPC970 */
rsvd_lpid = MAX_LPID_970;
}
kvmppc_init_lpid(rsvd_lpid + 1);
kvmppc_claim_lpid(host_lpid);
/* rsvd_lpid is reserved for use in partition switching */
kvmppc_claim_lpid(rsvd_lpid);
return 0;
}
static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
{
kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
}
/*
* This is called to get a reference to a guest page if there isn't
* one already in the memslot->arch.slot_phys[] array.
*/
static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
struct kvm_memory_slot *memslot,
unsigned long psize)
{
unsigned long start;
long np, err;
struct page *page, *hpage, *pages[1];
unsigned long s, pgsize;
unsigned long *physp;
unsigned int is_io, got, pgorder;
struct vm_area_struct *vma;
unsigned long pfn, i, npages;
physp = memslot->arch.slot_phys;
if (!physp)
return -EINVAL;
if (physp[gfn - memslot->base_gfn])
return 0;
is_io = 0;
got = 0;
page = NULL;
pgsize = psize;
err = -EINVAL;
start = gfn_to_hva_memslot(memslot, gfn);
/* Instantiate and get the page we want access to */
np = get_user_pages_fast(start, 1, 1, pages);
if (np != 1) {
/* Look up the vma for the page */
down_read(¤t->mm->mmap_sem);
vma = find_vma(current->mm, start);
if (!vma || vma->vm_start > start ||
start + psize > vma->vm_end ||
!(vma->vm_flags & VM_PFNMAP))
goto up_err;
is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
/* check alignment of pfn vs. requested page size */
if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
goto up_err;
up_read(¤t->mm->mmap_sem);
} else {
page = pages[0];
got = KVMPPC_GOT_PAGE;
/* See if this is a large page */
s = PAGE_SIZE;
if (PageHuge(page)) {
hpage = compound_head(page);
s <<= compound_order(hpage);
/* Get the whole large page if slot alignment is ok */
if (s > psize && slot_is_aligned(memslot, s) &&
!(memslot->userspace_addr & (s - 1))) {
start &= ~(s - 1);
pgsize = s;
get_page(hpage);
put_page(page);
page = hpage;
}
}
if (s < psize)
goto out;
pfn = page_to_pfn(page);
}
npages = pgsize >> PAGE_SHIFT;
pgorder = __ilog2(npages);
physp += (gfn - memslot->base_gfn) & ~(npages - 1);
spin_lock(&kvm->arch.slot_phys_lock);
for (i = 0; i < npages; ++i) {
if (!physp[i]) {
physp[i] = ((pfn + i) << PAGE_SHIFT) +
got + is_io + pgorder;
got = 0;
}
}
spin_unlock(&kvm->arch.slot_phys_lock);
err = 0;
out:
if (got)
put_page(page);
return err;
up_err:
up_read(¤t->mm->mmap_sem);
return err;
}
long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
long pte_index, unsigned long pteh,
unsigned long ptel, unsigned long *pte_idx_ret)
{
unsigned long psize, gpa, gfn;
struct kvm_memory_slot *memslot;
long ret;
if (kvm->arch.using_mmu_notifiers)
goto do_insert;
psize = hpte_page_size(pteh, ptel);
if (!psize)
return H_PARAMETER;
pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
/* Find the memslot (if any) for this address */
gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
gfn = gpa >> PAGE_SHIFT;
memslot = gfn_to_memslot(kvm, gfn);
if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
if (!slot_is_aligned(memslot, psize))
return H_PARAMETER;
if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
return H_PARAMETER;
}
do_insert:
/* Protect linux PTE lookup from page table destruction */
rcu_read_lock_sched(); /* this disables preemption too */
ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
current->mm->pgd, false, pte_idx_ret);
rcu_read_unlock_sched();
if (ret == H_TOO_HARD) {
/* this can't happen */
pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
ret = H_RESOURCE; /* or something */
}
return ret;
}
/*
* We come here on a H_ENTER call from the guest when we are not
* using mmu notifiers and we don't have the requested page pinned
* already.
*/
long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
long pte_index, unsigned long pteh,
unsigned long ptel)
{
return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
pteh, ptel, &vcpu->arch.gpr[4]);
}
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
gva_t eaddr)
{
u64 mask;
int i;
for (i = 0; i < vcpu->arch.slb_nr; i++) {
if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
continue;
if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
mask = ESID_MASK_1T;
else
mask = ESID_MASK;
if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
return &vcpu->arch.slb[i];
}
return NULL;
}
static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
unsigned long ea)
{
unsigned long ra_mask;
ra_mask = hpte_page_size(v, r) - 1;
return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
}
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, bool data, bool iswrite)
{
struct kvm *kvm = vcpu->kvm;
struct kvmppc_slb *slbe;
unsigned long slb_v;
unsigned long pp, key;
unsigned long v, gr;
unsigned long *hptep;
int index;
int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
/* Get SLB entry */
if (virtmode) {
slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
if (!slbe)
return -EINVAL;
slb_v = slbe->origv;
} else {
/* real mode access */
slb_v = vcpu->kvm->arch.vrma_slb_v;
}
/* Find the HPTE in the hash table */
index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
HPTE_V_VALID | HPTE_V_ABSENT);
if (index < 0)
return -ENOENT;
hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
v = hptep[0] & ~HPTE_V_HVLOCK;
gr = kvm->arch.revmap[index].guest_rpte;
/* Unlock the HPTE */
asm volatile("lwsync" : : : "memory");
hptep[0] = v;
gpte->eaddr = eaddr;
gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
/* Get PP bits and key for permission check */
pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
key &= slb_v;
/* Calculate permissions */
gpte->may_read = hpte_read_permission(pp, key);
gpte->may_write = hpte_write_permission(pp, key);
gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
/* Storage key permission check for POWER7 */
if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
if (amrfield & 1)
gpte->may_read = 0;
if (amrfield & 2)
gpte->may_write = 0;
}
/* Get the guest physical address */
gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
return 0;
}
/*
* Quick test for whether an instruction is a load or a store.
* If the instruction is a load or a store, then this will indicate
* which it is, at least on server processors. (Embedded processors
* have some external PID instructions that don't follow the rule
* embodied here.) If the instruction isn't a load or store, then
* this doesn't return anything useful.
*/
static int instruction_is_store(unsigned int instr)
{
unsigned int mask;
mask = 0x10000000;
if ((instr & 0xfc000000) == 0x7c000000)
mask = 0x100; /* major opcode 31 */
return (instr & mask) != 0;
}
static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned long gpa, gva_t ea, int is_store)
{
int ret;
u32 last_inst;
unsigned long srr0 = kvmppc_get_pc(vcpu);
/* We try to load the last instruction. We don't let
* emulate_instruction do it as it doesn't check what
* kvmppc_ld returns.
* If we fail, we just return to the guest and try executing it again.
*/
if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
return RESUME_GUEST;
vcpu->arch.last_inst = last_inst;
}
/*
* WARNING: We do not know for sure whether the instruction we just
* read from memory is the same that caused the fault in the first
* place. If the instruction we read is neither an load or a store,
* then it can't access memory, so we don't need to worry about
* enforcing access permissions. So, assuming it is a load or
* store, we just check that its direction (load or store) is
* consistent with the original fault, since that's what we
* checked the access permissions against. If there is a mismatch
* we just return and retry the instruction.
*/
if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
return RESUME_GUEST;
/*
* Emulated accesses are emulated by looking at the hash for
* translation once, then performing the access later. The
* translation could be invalidated in the meantime in which
* point performing the subsequent memory access on the old
* physical address could possibly be a security hole for the
* guest (but not the host).
*
* This is less of an issue for MMIO stores since they aren't
* globally visible. It could be an issue for MMIO loads to
* a certain extent but we'll ignore it for now.
*/
vcpu->arch.paddr_accessed = gpa;
vcpu->arch.vaddr_accessed = ea;
return kvmppc_emulate_mmio(run, vcpu);
}
int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned long ea, unsigned long dsisr)
{
struct kvm *kvm = vcpu->kvm;
unsigned long *hptep, hpte[3], r;
unsigned long mmu_seq, psize, pte_size;
unsigned long gpa, gfn, hva, pfn;
struct kvm_memory_slot *memslot;
unsigned long *rmap;
struct revmap_entry *rev;
struct page *page, *pages[1];
long index, ret, npages;
unsigned long is_io;
unsigned int writing, write_ok;
struct vm_area_struct *vma;
unsigned long rcbits;
/*
* Real-mode code has already searched the HPT and found the
* entry we're interested in. Lock the entry and check that
* it hasn't changed. If it has, just return and re-execute the
* instruction.
*/
if (ea != vcpu->arch.pgfault_addr)
return RESUME_GUEST;
index = vcpu->arch.pgfault_index;
hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
rev = &kvm->arch.revmap[index];
preempt_disable();
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
cpu_relax();
hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
hpte[1] = hptep[1];
hpte[2] = r = rev->guest_rpte;
asm volatile("lwsync" : : : "memory");
hptep[0] = hpte[0];
preempt_enable();
if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
hpte[1] != vcpu->arch.pgfault_hpte[1])
return RESUME_GUEST;
/* Translate the logical address and get the page */
psize = hpte_page_size(hpte[0], r);
gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
gfn = gpa >> PAGE_SHIFT;
memslot = gfn_to_memslot(kvm, gfn);
/* No memslot means it's an emulated MMIO region */
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
dsisr & DSISR_ISSTORE);
if (!kvm->arch.using_mmu_notifiers)
return -EFAULT; /* should never get here */
/* used to check for invalidations in progress */
mmu_seq = kvm->mmu_notifier_seq;
smp_rmb();
is_io = 0;
pfn = 0;
page = NULL;
pte_size = PAGE_SIZE;
writing = (dsisr & DSISR_ISSTORE) != 0;
/* If writing != 0, then the HPTE must allow writing, if we get here */
write_ok = writing;
hva = gfn_to_hva_memslot(memslot, gfn);
npages = get_user_pages_fast(hva, 1, writing, pages);
if (npages < 1) {
/* Check if it's an I/O mapping */
down_read(¤t->mm->mmap_sem);
vma = find_vma(current->mm, hva);
if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
(vma->vm_flags & VM_PFNMAP)) {
pfn = vma->vm_pgoff +
((hva - vma->vm_start) >> PAGE_SHIFT);
pte_size = psize;
is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
write_ok = vma->vm_flags & VM_WRITE;
}
up_read(¤t->mm->mmap_sem);
if (!pfn)
return -EFAULT;
} else {
page = pages[0];
if (PageHuge(page)) {
page = compound_head(page);
pte_size <<= compound_order(page);
}
/* if the guest wants write access, see if that is OK */
if (!writing && hpte_is_writable(r)) {
unsigned int hugepage_shift;
pte_t *ptep, pte;
/*
* We need to protect against page table destruction
* while looking up and updating the pte.
*/
rcu_read_lock_sched();
ptep = find_linux_pte_or_hugepte(current->mm->pgd,
hva, &hugepage_shift);
if (ptep) {
pte = kvmppc_read_update_linux_pte(ptep, 1,
hugepage_shift);
if (pte_write(pte))
write_ok = 1;
}
rcu_read_unlock_sched();
}
pfn = page_to_pfn(page);
}
ret = -EFAULT;
if (psize > pte_size)
goto out_put;
/* Check WIMG vs. the actual page we're accessing */
if (!hpte_cache_flags_ok(r, is_io)) {
if (is_io)
return -EFAULT;
/*
* Allow guest to map emulated device memory as
* uncacheable, but actually make it cacheable.
*/
r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
}
/* Set the HPTE to point to pfn */
r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
if (hpte_is_writable(r) && !write_ok)
r = hpte_make_readonly(r);
ret = RESUME_GUEST;
preempt_disable();
while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
cpu_relax();
if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
rev->guest_rpte != hpte[2])
/* HPTE has been changed under us; let the guest retry */
goto out_unlock;
hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
lock_rmap(rmap);
/* Check if we might have been invalidated; let the guest retry if so */
ret = RESUME_GUEST;
if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
unlock_rmap(rmap);
goto out_unlock;
}
/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
if (hptep[0] & HPTE_V_VALID) {
/* HPTE was previously valid, so we need to invalidate it */
unlock_rmap(rmap);
hptep[0] |= HPTE_V_ABSENT;
kvmppc_invalidate_hpte(kvm, hptep, index);
/* don't lose previous R and C bits */
r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
} else {
kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
}
hptep[1] = r;
eieio();
hptep[0] = hpte[0];
asm volatile("ptesync" : : : "memory");
preempt_enable();
if (page && hpte_is_writable(r))
SetPageDirty(page);
out_put:
if (page) {
/*
* We drop pages[0] here, not page because page might
* have been set to the head page of a compound, but
* we have to drop the reference on the correct tail
* page to match the get inside gup()
*/
put_page(pages[0]);
}
return ret;
out_unlock:
hptep[0] &= ~HPTE_V_HVLOCK;
preempt_enable();
goto out_put;
}
static void kvmppc_rmap_reset(struct kvm *kvm)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
int srcu_idx;
srcu_idx = srcu_read_lock(&kvm->srcu);
slots = kvm->memslots;
kvm_for_each_memslot(memslot, slots) {
/*
* This assumes it is acceptable to lose reference and
* change bits across a reset.
*/
memset(memslot->arch.rmap, 0,
memslot->npages * sizeof(*memslot->arch.rmap));
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
}
static int kvm_handle_hva_range(struct kvm *kvm,
unsigned long start,
unsigned long end,
int (*handler)(struct kvm *kvm,
unsigned long *rmapp,
unsigned long gfn))
{
int ret;
int retval = 0;
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots) {
unsigned long hva_start, hva_end;
gfn_t gfn, gfn_end;
hva_start = max(start, memslot->userspace_addr);
hva_end = min(end, memslot->userspace_addr +
(memslot->npages << PAGE_SHIFT));
if (hva_start >= hva_end)
continue;
/*
* {gfn(page) | page intersects with [hva_start, hva_end)} =
* {gfn, gfn+1, ..., gfn_end-1}.
*/
gfn = hva_to_gfn_memslot(hva_start, memslot);
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
for (; gfn < gfn_end; ++gfn) {
gfn_t gfn_offset = gfn - memslot->base_gfn;
ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
retval |= ret;
}
}
return retval;
}
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
int (*handler)(struct kvm *kvm, unsigned long *rmapp,
unsigned long gfn))
{
return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
unsigned long gfn)
{
struct revmap_entry *rev = kvm->arch.revmap;
unsigned long h, i, j;
unsigned long *hptep;
unsigned long ptel, psize, rcbits;
for (;;) {
lock_rmap(rmapp);
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
unlock_rmap(rmapp);
break;
}
/*
* To avoid an ABBA deadlock with the HPTE lock bit,
* we can't spin on the HPTE lock while holding the
* rmap chain lock.
*/
i = *rmapp & KVMPPC_RMAP_INDEX;
hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
/* unlock rmap before spinning on the HPTE lock */
unlock_rmap(rmapp);
while (hptep[0] & HPTE_V_HVLOCK)
cpu_relax();
continue;
}
j = rev[i].forw;
if (j == i) {
/* chain is now empty */
*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
} else {
/* remove i from chain */
h = rev[i].back;
rev[h].forw = j;
rev[j].back = h;
rev[i].forw = rev[i].back = i;
*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
}
/* Now check and modify the HPTE */
ptel = rev[i].guest_rpte;
psize = hpte_page_size(hptep[0], ptel);
if ((hptep[0] & HPTE_V_VALID) &&
hpte_rpn(ptel, psize) == gfn) {
if (kvm->arch.using_mmu_notifiers)
hptep[0] |= HPTE_V_ABSENT;
kvmppc_invalidate_hpte(kvm, hptep, i);
/* Harvest R and C */
rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
if (rcbits & ~rev[i].guest_rpte) {
rev[i].guest_rpte = ptel | rcbits;
note_hpte_modification(kvm, &rev[i]);
}
}
unlock_rmap(rmapp);
hptep[0] &= ~HPTE_V_HVLOCK;
}
return 0;
}
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
{
if (kvm->arch.using_mmu_notifiers)
kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
return 0;
}
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
{
if (kvm->arch.using_mmu_notifiers)
kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
return 0;
}
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
struct kvm_memory_slot *memslot)
{
unsigned long *rmapp;
unsigned long gfn;
unsigned long n;
rmapp = memslot->arch.rmap;
gfn = memslot->base_gfn;
for (n = memslot->npages; n; --n) {
/*
* Testing the present bit without locking is OK because
* the memslot has been marked invalid already, and hence
* no new HPTEs referencing this page can be created,
* thus the present bit can't go from 0 to 1.
*/
if (*rmapp & KVMPPC_RMAP_PRESENT)
kvm_unmap_rmapp(kvm, rmapp, gfn);
++rmapp;
++gfn;
}
}
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
unsigned long gfn)
{
struct revmap_entry *rev = kvm->arch.revmap;
unsigned long head, i, j;
unsigned long *hptep;
int ret = 0;
retry:
lock_rmap(rmapp);
if (*rmapp & KVMPPC_RMAP_REFERENCED) {
*rmapp &= ~KVMPPC_RMAP_REFERENCED;
ret = 1;
}
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
unlock_rmap(rmapp);
return ret;
}
i = head = *rmapp & KVMPPC_RMAP_INDEX;
do {
hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
j = rev[i].forw;
/* If this HPTE isn't referenced, ignore it */
if (!(hptep[1] & HPTE_R_R))
continue;
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
/* unlock rmap before spinning on the HPTE lock */
unlock_rmap(rmapp);
while (hptep[0] & HPTE_V_HVLOCK)
cpu_relax();
goto retry;
}
/* Now check and modify the HPTE */
if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
kvmppc_clear_ref_hpte(kvm, hptep, i);
if (!(rev[i].guest_rpte & HPTE_R_R)) {
rev[i].guest_rpte |= HPTE_R_R;
note_hpte_modification(kvm, &rev[i]);
}
ret = 1;
}
hptep[0] &= ~HPTE_V_HVLOCK;
} while ((i = j) != head);
unlock_rmap(rmapp);
return ret;
}
int kvm_age_hva_hv(struct kvm *kvm, unsigned long hva)
{
if (!kvm->arch.using_mmu_notifiers)
return 0;
return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
}
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
unsigned long gfn)
{
struct revmap_entry *rev = kvm->arch.revmap;
unsigned long head, i, j;
unsigned long *hp;
int ret = 1;
if (*rmapp & KVMPPC_RMAP_REFERENCED)
return 1;
lock_rmap(rmapp);
if (*rmapp & KVMPPC_RMAP_REFERENCED)
goto out;
if (*rmapp & KVMPPC_RMAP_PRESENT) {
i = head = *rmapp & KVMPPC_RMAP_INDEX;
do {
hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
j = rev[i].forw;
if (hp[1] & HPTE_R_R)
goto out;
} while ((i = j) != head);
}
ret = 0;
out:
unlock_rmap(rmapp);
return ret;
}
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
{
if (!kvm->arch.using_mmu_notifiers)
return 0;
return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
}
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
{
if (!kvm->arch.using_mmu_notifiers)
return;
kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
}
static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
{
struct revmap_entry *rev = kvm->arch.revmap;
unsigned long head, i, j;
unsigned long *hptep;
int ret = 0;
retry:
lock_rmap(rmapp);
if (*rmapp & KVMPPC_RMAP_CHANGED) {
*rmapp &= ~KVMPPC_RMAP_CHANGED;
ret = 1;
}
if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
unlock_rmap(rmapp);
return ret;
}
i = head = *rmapp & KVMPPC_RMAP_INDEX;
do {
hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
j = rev[i].forw;
if (!(hptep[1] & HPTE_R_C))
continue;
if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
/* unlock rmap before spinning on the HPTE lock */
unlock_rmap(rmapp);
while (hptep[0] & HPTE_V_HVLOCK)
cpu_relax();
goto retry;
}
/* Now check and modify the HPTE */
if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
/* need to make it temporarily absent to clear C */
hptep[0] |= HPTE_V_ABSENT;
kvmppc_invalidate_hpte(kvm, hptep, i);
hptep[1] &= ~HPTE_R_C;
eieio();
hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
if (!(rev[i].guest_rpte & HPTE_R_C)) {
rev[i].guest_rpte |= HPTE_R_C;
note_hpte_modification(kvm, &rev[i]);
}
ret = 1;
}
hptep[0] &= ~HPTE_V_HVLOCK;
} while ((i = j) != head);
unlock_rmap(rmapp);
return ret;
}
static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
struct kvm_memory_slot *memslot,
unsigned long *map)
{
unsigned long gfn;
if (!vpa->dirty || !vpa->pinned_addr)
return;
gfn = vpa->gpa >> PAGE_SHIFT;
if (gfn < memslot->base_gfn ||
gfn >= memslot->base_gfn + memslot->npages)
return;
vpa->dirty = false;
if (map)
__set_bit_le(gfn - memslot->base_gfn, map);
}
long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
unsigned long *map)
{
unsigned long i;
unsigned long *rmapp;
struct kvm_vcpu *vcpu;
preempt_disable();
rmapp = memslot->arch.rmap;
for (i = 0; i < memslot->npages; ++i) {
if (kvm_test_clear_dirty(kvm, rmapp) && map)
__set_bit_le(i, map);
++rmapp;
}
/* Harvest dirty bits from VPA and DTL updates */
/* Note: we never modify the SLB shadow buffer areas */
kvm_for_each_vcpu(i, vcpu, kvm) {
spin_lock(&vcpu->arch.vpa_update_lock);
harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
spin_unlock(&vcpu->arch.vpa_update_lock);
}
preempt_enable();
return 0;
}
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
unsigned long *nb_ret)
{
struct kvm_memory_slot *memslot;
unsigned long gfn = gpa >> PAGE_SHIFT;
struct page *page, *pages[1];
int npages;
unsigned long hva, offset;
unsigned long pa;
unsigned long *physp;
int srcu_idx;
srcu_idx = srcu_read_lock(&kvm->srcu);
memslot = gfn_to_memslot(kvm, gfn);
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
goto err;
if (!kvm->arch.using_mmu_notifiers) {
physp = memslot->arch.slot_phys;
if (!physp)
goto err;
physp += gfn - memslot->base_gfn;
pa = *physp;
if (!pa) {
if (kvmppc_get_guest_page(kvm, gfn, memslot,
PAGE_SIZE) < 0)
goto err;
pa = *physp;
}
page = pfn_to_page(pa >> PAGE_SHIFT);
get_page(page);
} else {
hva = gfn_to_hva_memslot(memslot, gfn);
npages = get_user_pages_fast(hva, 1, 1, pages);
if (npages < 1)
goto err;
page = pages[0];
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
offset = gpa & (PAGE_SIZE - 1);
if (nb_ret)
*nb_ret = PAGE_SIZE - offset;
return page_address(page) + offset;
err:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return NULL;
}
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
bool dirty)
{
struct page *page = virt_to_page(va);
struct kvm_memory_slot *memslot;
unsigned long gfn;
unsigned long *rmap;
int srcu_idx;
put_page(page);
if (!dirty || !kvm->arch.using_mmu_notifiers)
return;
/* We need to mark this page dirty in the rmap chain */
gfn = gpa >> PAGE_SHIFT;
srcu_idx = srcu_read_lock(&kvm->srcu);
memslot = gfn_to_memslot(kvm, gfn);
if (memslot) {
rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
lock_rmap(rmap);
*rmap |= KVMPPC_RMAP_CHANGED;
unlock_rmap(rmap);
}
srcu_read_unlock(&kvm->srcu, srcu_idx);
}
/*
* Functions for reading and writing the hash table via reads and
* writes on a file descriptor.
*
* Reads return the guest view of the hash table, which has to be
* pieced together from the real hash table and the guest_rpte
* values in the revmap array.
*
* On writes, each HPTE written is considered in turn, and if it
* is valid, it is written to the HPT as if an H_ENTER with the
* exact flag set was done. When the invalid count is non-zero
* in the header written to the stream, the kernel will make
* sure that that many HPTEs are invalid, and invalidate them
* if not.
*/
struct kvm_htab_ctx {
unsigned long index;
unsigned long flags;
struct kvm *kvm;
int first_pass;
};
#define HPTE_SIZE (2 * sizeof(unsigned long))
/*
* Returns 1 if this HPT entry has been modified or has pending
* R/C bit changes.
*/
static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
{
unsigned long rcbits_unset;
if (revp->guest_rpte & HPTE_GR_MODIFIED)
return 1;
/* Also need to consider changes in reference and changed bits */
rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
return 1;
return 0;
}
static long record_hpte(unsigned long flags, unsigned long *hptp,
unsigned long *hpte, struct revmap_entry *revp,
int want_valid, int first_pass)
{
unsigned long v, r;
unsigned long rcbits_unset;
int ok = 1;
int valid, dirty;
/* Unmodified entries are uninteresting except on the first pass */
dirty = hpte_dirty(revp, hptp);
if (!first_pass && !dirty)
return 0;
valid = 0;
if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
valid = 1;
if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
!(hptp[0] & HPTE_V_BOLTED))
valid = 0;
}
if (valid != want_valid)
return 0;
v = r = 0;
if (valid || dirty) {
/* lock the HPTE so it's stable and read it */
preempt_disable();
while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
cpu_relax();
v = hptp[0];
/* re-evaluate valid and dirty from synchronized HPTE value */
valid = !!(v & HPTE_V_VALID);
dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
/* Harvest R and C into guest view if necessary */
rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
if (valid && (rcbits_unset & hptp[1])) {
revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
HPTE_GR_MODIFIED;
dirty = 1;
}
if (v & HPTE_V_ABSENT) {
v &= ~HPTE_V_ABSENT;
v |= HPTE_V_VALID;
valid = 1;
}
if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
valid = 0;
r = revp->guest_rpte;
/* only clear modified if this is the right sort of entry */
if (valid == want_valid && dirty) {
r &= ~HPTE_GR_MODIFIED;
revp->guest_rpte = r;
}
asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
hptp[0] &= ~HPTE_V_HVLOCK;
preempt_enable();
if (!(valid == want_valid && (first_pass || dirty)))
ok = 0;
}
hpte[0] = v;
hpte[1] = r;
return ok;
}
static ssize_t kvm_htab_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct kvm_htab_ctx *ctx = file->private_data;
struct kvm *kvm = ctx->kvm;
struct kvm_get_htab_header hdr;
unsigned long *hptp;
struct revmap_entry *revp;
unsigned long i, nb, nw;
unsigned long __user *lbuf;
struct kvm_get_htab_header __user *hptr;
unsigned long flags;
int first_pass;
unsigned long hpte[2];
if (!access_ok(VERIFY_WRITE, buf, count))
return -EFAULT;
first_pass = ctx->first_pass;
flags = ctx->flags;
i = ctx->index;
hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
revp = kvm->arch.revmap + i;
lbuf = (unsigned long __user *)buf;
nb = 0;
while (nb + sizeof(hdr) + HPTE_SIZE < count) {
/* Initialize header */
hptr = (struct kvm_get_htab_header __user *)buf;
hdr.n_valid = 0;
hdr.n_invalid = 0;
nw = nb;
nb += sizeof(hdr);
lbuf = (unsigned long __user *)(buf + sizeof(hdr));
/* Skip uninteresting entries, i.e. clean on not-first pass */
if (!first_pass) {
while (i < kvm->arch.hpt_npte &&
!hpte_dirty(revp, hptp)) {
++i;
hptp += 2;
++revp;
}
}
hdr.index = i;
/* Grab a series of valid entries */
while (i < kvm->arch.hpt_npte &&
hdr.n_valid < 0xffff &&
nb + HPTE_SIZE < count &&
record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
/* valid entry, write it out */
++hdr.n_valid;
if (__put_user(hpte[0], lbuf) ||
__put_user(hpte[1], lbuf + 1))
return -EFAULT;
nb += HPTE_SIZE;
lbuf += 2;
++i;
hptp += 2;
++revp;
}
/* Now skip invalid entries while we can */
while (i < kvm->arch.hpt_npte &&
hdr.n_invalid < 0xffff &&
record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
/* found an invalid entry */
++hdr.n_invalid;
++i;
hptp += 2;
++revp;
}
if (hdr.n_valid || hdr.n_invalid) {
/* write back the header */
if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
return -EFAULT;
nw = nb;
buf = (char __user *)lbuf;
} else {
nb = nw;
}
/* Check if we've wrapped around the hash table */
if (i >= kvm->arch.hpt_npte) {
i = 0;
ctx->first_pass = 0;
break;
}
}
ctx->index = i;
return nb;
}
static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct kvm_htab_ctx *ctx = file->private_data;
struct kvm *kvm = ctx->kvm;
struct kvm_get_htab_header hdr;
unsigned long i, j;
unsigned long v, r;
unsigned long __user *lbuf;
unsigned long *hptp;
unsigned long tmp[2];
ssize_t nb;
long int err, ret;
int rma_setup;
if (!access_ok(VERIFY_READ, buf, count))
return -EFAULT;
/* lock out vcpus from running while we're doing this */
mutex_lock(&kvm->lock);
rma_setup = kvm->arch.rma_setup_done;
if (rma_setup) {
kvm->arch.rma_setup_done = 0; /* temporarily */
/* order rma_setup_done vs. vcpus_running */
smp_mb();
if (atomic_read(&kvm->arch.vcpus_running)) {
kvm->arch.rma_setup_done = 1;
mutex_unlock(&kvm->lock);
return -EBUSY;
}
}
err = 0;
for (nb = 0; nb + sizeof(hdr) <= count; ) {
err = -EFAULT;
if (__copy_from_user(&hdr, buf, sizeof(hdr)))
break;
err = 0;
if (nb + hdr.n_valid * HPTE_SIZE > count)
break;
nb += sizeof(hdr);
buf += sizeof(hdr);
err = -EINVAL;
i = hdr.index;
if (i >= kvm->arch.hpt_npte ||
i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
break;
hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
lbuf = (unsigned long __user *)buf;
for (j = 0; j < hdr.n_valid; ++j) {
err = -EFAULT;
if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
goto out;
err = -EINVAL;
if (!(v & HPTE_V_VALID))
goto out;
lbuf += 2;
nb += HPTE_SIZE;
if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
err = -EIO;
ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
tmp);
if (ret != H_SUCCESS) {
pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
"r=%lx\n", ret, i, v, r);
goto out;
}
if (!rma_setup && is_vrma_hpte(v)) {
unsigned long psize = hpte_page_size(v, r);
unsigned long senc = slb_pgsize_encoding(psize);
unsigned long lpcr;
kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
(VRMA_VSID << SLB_VSID_SHIFT_1T);
lpcr = senc << (LPCR_VRMASD_SH - 4);
kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
rma_setup = 1;
}
++i;
hptp += 2;
}
for (j = 0; j < hdr.n_invalid; ++j) {
if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
++i;
hptp += 2;
}
err = 0;
}
out:
/* Order HPTE updates vs. rma_setup_done */
smp_wmb();
kvm->arch.rma_setup_done = rma_setup;
mutex_unlock(&kvm->lock);
if (err)
return err;
return nb;
}
static int kvm_htab_release(struct inode *inode, struct file *filp)
{
struct kvm_htab_ctx *ctx = filp->private_data;
filp->private_data = NULL;
if (!(ctx->flags & KVM_GET_HTAB_WRITE))
atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
kvm_put_kvm(ctx->kvm);
kfree(ctx);
return 0;
}
static const struct file_operations kvm_htab_fops = {
.read = kvm_htab_read,
.write = kvm_htab_write,
.llseek = default_llseek,
.release = kvm_htab_release,
};
int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
{
int ret;
struct kvm_htab_ctx *ctx;
int rwflag;
/* reject flags we don't recognize */
if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
return -EINVAL;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
kvm_get_kvm(kvm);
ctx->kvm = kvm;
ctx->index = ghf->start_index;
ctx->flags = ghf->flags;
ctx->first_pass = 1;
rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
if (ret < 0) {
kvm_put_kvm(kvm);
return ret;
}
if (rwflag == O_RDONLY) {
mutex_lock(&kvm->slots_lock);
atomic_inc(&kvm->arch.hpte_mod_interest);
/* make sure kvmppc_do_h_enter etc. see the increment */
synchronize_srcu_expedited(&kvm->srcu);
mutex_unlock(&kvm->slots_lock);
}
return ret;
}
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
{
struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
if (cpu_has_feature(CPU_FTR_ARCH_206))
vcpu->arch.slb_nr = 32; /* POWER7 */
else
vcpu->arch.slb_nr = 64;
mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}
|