summaryrefslogtreecommitdiffstats
path: root/arch/mips/math-emu/ieee754sp.c
blob: def00ffc50fcc7bc4740933215cdf5872940a450 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/* IEEE754 floating point arithmetic
 * single precision
 */
/*
 * MIPS floating point support
 * Copyright (C) 1994-2000 Algorithmics Ltd.
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License (Version 2) as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
 */

#include <linux/compiler.h>

#include "ieee754sp.h"

int ieee754sp_class(union ieee754sp x)
{
	COMPXSP;
	EXPLODEXSP;
	return xc;
}

static inline int ieee754sp_isnan(union ieee754sp x)
{
	return ieee754_class_nan(ieee754sp_class(x));
}

static inline int ieee754sp_issnan(union ieee754sp x)
{
	int qbit;

	assert(ieee754sp_isnan(x));
	qbit = (SPMANT(x) & SP_MBIT(SP_FBITS - 1)) == SP_MBIT(SP_FBITS - 1);
	return ieee754_csr.nan2008 ^ qbit;
}


/*
 * Raise the Invalid Operation IEEE 754 exception
 * and convert the signaling NaN supplied to a quiet NaN.
 */
union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp r)
{
	assert(ieee754sp_issnan(r));

	ieee754_setcx(IEEE754_INVALID_OPERATION);
	if (ieee754_csr.nan2008)
		SPMANT(r) |= SP_MBIT(SP_FBITS - 1);
	else
		r = ieee754sp_indef();

	return r;
}

static unsigned ieee754sp_get_rounding(int sn, unsigned xm)
{
	/* inexact must round of 3 bits
	 */
	if (xm & (SP_MBIT(3) - 1)) {
		switch (ieee754_csr.rm) {
		case FPU_CSR_RZ:
			break;
		case FPU_CSR_RN:
			xm += 0x3 + ((xm >> 3) & 1);
			/* xm += (xm&0x8)?0x4:0x3 */
			break;
		case FPU_CSR_RU:	/* toward +Infinity */
			if (!sn)	/* ?? */
				xm += 0x8;
			break;
		case FPU_CSR_RD:	/* toward -Infinity */
			if (sn) /* ?? */
				xm += 0x8;
			break;
		}
	}
	return xm;
}


/* generate a normal/denormal number with over,under handling
 * sn is sign
 * xe is an unbiased exponent
 * xm is 3bit extended precision value.
 */
union ieee754sp ieee754sp_format(int sn, int xe, unsigned xm)
{
	assert(xm);		/* we don't gen exact zeros (probably should) */

	assert((xm >> (SP_FBITS + 1 + 3)) == 0);	/* no execess */
	assert(xm & (SP_HIDDEN_BIT << 3));

	if (xe < SP_EMIN) {
		/* strip lower bits */
		int es = SP_EMIN - xe;

		if (ieee754_csr.nod) {
			ieee754_setcx(IEEE754_UNDERFLOW);
			ieee754_setcx(IEEE754_INEXACT);

			switch(ieee754_csr.rm) {
			case FPU_CSR_RN:
			case FPU_CSR_RZ:
				return ieee754sp_zero(sn);
			case FPU_CSR_RU:      /* toward +Infinity */
				if (sn == 0)
					return ieee754sp_min(0);
				else
					return ieee754sp_zero(1);
			case FPU_CSR_RD:      /* toward -Infinity */
				if (sn == 0)
					return ieee754sp_zero(0);
				else
					return ieee754sp_min(1);
			}
		}

		if (xe == SP_EMIN - 1 &&
		    ieee754sp_get_rounding(sn, xm) >> (SP_FBITS + 1 + 3))
		{
			/* Not tiny after rounding */
			ieee754_setcx(IEEE754_INEXACT);
			xm = ieee754sp_get_rounding(sn, xm);
			xm >>= 1;
			/* Clear grs bits */
			xm &= ~(SP_MBIT(3) - 1);
			xe++;
		} else {
			/* sticky right shift es bits
			 */
			SPXSRSXn(es);
			assert((xm & (SP_HIDDEN_BIT << 3)) == 0);
			assert(xe == SP_EMIN);
		}
	}
	if (xm & (SP_MBIT(3) - 1)) {
		ieee754_setcx(IEEE754_INEXACT);
		if ((xm & (SP_HIDDEN_BIT << 3)) == 0) {
			ieee754_setcx(IEEE754_UNDERFLOW);
		}

		/* inexact must round of 3 bits
		 */
		xm = ieee754sp_get_rounding(sn, xm);
		/* adjust exponent for rounding add overflowing
		 */
		if (xm >> (SP_FBITS + 1 + 3)) {
			/* add causes mantissa overflow */
			xm >>= 1;
			xe++;
		}
	}
	/* strip grs bits */
	xm >>= 3;

	assert((xm >> (SP_FBITS + 1)) == 0);	/* no execess */
	assert(xe >= SP_EMIN);

	if (xe > SP_EMAX) {
		ieee754_setcx(IEEE754_OVERFLOW);
		ieee754_setcx(IEEE754_INEXACT);
		/* -O can be table indexed by (rm,sn) */
		switch (ieee754_csr.rm) {
		case FPU_CSR_RN:
			return ieee754sp_inf(sn);
		case FPU_CSR_RZ:
			return ieee754sp_max(sn);
		case FPU_CSR_RU:	/* toward +Infinity */
			if (sn == 0)
				return ieee754sp_inf(0);
			else
				return ieee754sp_max(1);
		case FPU_CSR_RD:	/* toward -Infinity */
			if (sn == 0)
				return ieee754sp_max(0);
			else
				return ieee754sp_inf(1);
		}
	}
	/* gen norm/denorm/zero */

	if ((xm & SP_HIDDEN_BIT) == 0) {
		/* we underflow (tiny/zero) */
		assert(xe == SP_EMIN);
		if (ieee754_csr.mx & IEEE754_UNDERFLOW)
			ieee754_setcx(IEEE754_UNDERFLOW);
		return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm);
	} else {
		assert((xm >> (SP_FBITS + 1)) == 0);	/* no execess */
		assert(xm & SP_HIDDEN_BIT);

		return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT);
	}
}