1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
/*
* linux/arch/cris/arch-v10/kernel/time.c
*
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
* Copyright (C) 1999-2002 Axis Communications AB
*
*/
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/interrupt.h>
#include <linux/swap.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <arch/svinto.h>
#include <asm/types.h>
#include <asm/signal.h>
#include <asm/io.h>
#include <asm/delay.h>
#include <asm/irq_regs.h>
/* define this if you need to use print_timestamp */
/* it will make jiffies at 96 hz instead of 100 hz though */
#undef USE_CASCADE_TIMERS
unsigned long get_ns_in_jiffie(void)
{
unsigned char timer_count, t1;
unsigned short presc_count;
unsigned long ns;
unsigned long flags;
local_irq_save(flags);
timer_count = *R_TIMER0_DATA;
presc_count = *R_TIM_PRESC_STATUS;
/* presc_count might be wrapped */
t1 = *R_TIMER0_DATA;
if (timer_count != t1){
/* it wrapped, read prescaler again... */
presc_count = *R_TIM_PRESC_STATUS;
timer_count = t1;
}
local_irq_restore(flags);
if (presc_count >= PRESCALE_VALUE/2 ){
presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
} else {
presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
}
ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
( (presc_count) * (1000000000/PRESCALE_FREQ));
return ns;
}
static u32 cris_v10_gettimeoffset(void)
{
u32 count;
/* The timer interrupt comes from Etrax timer 0. In order to get
* better precision, we check the current value. It might have
* underflowed already though.
*/
count = *R_TIMER0_DATA;
/* Convert timer value to nsec */
return (TIMER0_DIV - count) * (NSEC_PER_SEC/HZ)/TIMER0_DIV;
}
/* Excerpt from the Etrax100 HSDD about the built-in watchdog:
*
* 3.10.4 Watchdog timer
* When the watchdog timer is started, it generates an NMI if the watchdog
* isn't restarted or stopped within 0.1 s. If it still isn't restarted or
* stopped after an additional 3.3 ms, the watchdog resets the chip.
* The watchdog timer is stopped after reset. The watchdog timer is controlled
* by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
* and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
* described in the table below:
*
* Watchdog Value written:
* state: To enable: To key: Operation:
* -------- ---------- ------- ----------
* stopped 0 X No effect.
* stopped 1 key_val Start watchdog with key = key_val.
* started 0 ~key Stop watchdog
* started 1 ~key Restart watchdog with key = ~key.
* started X new_key_val Change key to new_key_val.
*
* Note: '~' is the bitwise NOT operator.
*
*/
/* right now, starting the watchdog is the same as resetting it */
#define start_watchdog reset_watchdog
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
static int watchdog_key = 0; /* arbitrary number */
#endif
/* number of pages to consider "out of memory". it is normal that the memory
* is used though, so put this really low.
*/
#define WATCHDOG_MIN_FREE_PAGES 8
void
reset_watchdog(void)
{
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
/* only keep watchdog happy as long as we have memory left! */
if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
/* reset the watchdog with the inverse of the old key */
watchdog_key ^= 0x7; /* invert key, which is 3 bits */
*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
IO_STATE(R_WATCHDOG, enable, start);
}
#endif
}
/* stop the watchdog - we still need the correct key */
void
stop_watchdog(void)
{
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
watchdog_key ^= 0x7; /* invert key, which is 3 bits */
*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
IO_STATE(R_WATCHDOG, enable, stop);
#endif
}
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "xtime_update()" routine every clocktick
*/
//static unsigned short myjiff; /* used by our debug routine print_timestamp */
extern void cris_do_profile(struct pt_regs *regs);
static inline irqreturn_t
timer_interrupt(int irq, void *dev_id)
{
struct pt_regs *regs = get_irq_regs();
/* acknowledge the timer irq */
#ifdef USE_CASCADE_TIMERS
*R_TIMER_CTRL =
IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
IO_STATE( R_TIMER_CTRL, i1, clr) |
IO_STATE( R_TIMER_CTRL, tm1, run) |
IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
IO_STATE( R_TIMER_CTRL, i0, clr) |
IO_STATE( R_TIMER_CTRL, tm0, run) |
IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
#else
*R_TIMER_CTRL = r_timer_ctrl_shadow |
IO_STATE(R_TIMER_CTRL, i0, clr);
#endif
/* reset watchdog otherwise it resets us! */
reset_watchdog();
/* Update statistics. */
update_process_times(user_mode(regs));
/* call the real timer interrupt handler */
xtime_update(1);
cris_do_profile(regs); /* Save profiling information */
return IRQ_HANDLED;
}
/* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain */
static struct irqaction irq2 = {
.handler = timer_interrupt,
.flags = IRQF_SHARED,
.name = "timer",
};
void __init
time_init(void)
{
arch_gettimeoffset = cris_v10_gettimeoffset;
/* probe for the RTC and read it if it exists
* Before the RTC can be probed the loops_per_usec variable needs
* to be initialized to make usleep work. A better value for
* loops_per_usec is calculated by the kernel later once the
* clock has started.
*/
loops_per_usec = 50;
/* Setup the etrax timers
* Base frequency is 25000 hz, divider 250 -> 100 HZ
* In normal mode, we use timer0, so timer1 is free. In cascade
* mode (which we sometimes use for debugging) both timers are used.
* Remember that linux/timex.h contains #defines that rely on the
* timer settings below (hz and divide factor) !!!
*/
#ifdef USE_CASCADE_TIMERS
*R_TIMER_CTRL =
IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
IO_STATE( R_TIMER_CTRL, i1, nop) |
IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
IO_STATE( R_TIMER_CTRL, i0, nop) |
IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
*R_TIMER_CTRL = r_timer_ctrl_shadow =
IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
IO_STATE( R_TIMER_CTRL, i1, nop) |
IO_STATE( R_TIMER_CTRL, tm1, run) |
IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
IO_STATE( R_TIMER_CTRL, i0, nop) |
IO_STATE( R_TIMER_CTRL, tm0, run) |
IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
#else
*R_TIMER_CTRL =
IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
IO_STATE(R_TIMER_CTRL, i1, nop) |
IO_STATE(R_TIMER_CTRL, tm1, stop_ld) |
IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
IO_STATE(R_TIMER_CTRL, i0, nop) |
IO_STATE(R_TIMER_CTRL, tm0, stop_ld) |
IO_STATE(R_TIMER_CTRL, clksel0, flexible);
*R_TIMER_CTRL = r_timer_ctrl_shadow =
IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
IO_STATE(R_TIMER_CTRL, i1, nop) |
IO_STATE(R_TIMER_CTRL, tm1, run) |
IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
IO_STATE(R_TIMER_CTRL, i0, nop) |
IO_STATE(R_TIMER_CTRL, tm0, run) |
IO_STATE(R_TIMER_CTRL, clksel0, flexible);
*R_TIMER_PRESCALE = PRESCALE_VALUE;
#endif
*R_IRQ_MASK0_SET =
IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
/* now actually register the timer irq handler that calls timer_interrupt() */
setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
/* enable watchdog if we should use one */
#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
printk("Enabling watchdog...\n");
start_watchdog();
/* If we use the hardware watchdog, we want to trap it as an NMI
and dump registers before it resets us. For this to happen, we
must set the "m" NMI enable flag (which once set, is unset only
when an NMI is taken).
The same goes for the external NMI, but that doesn't have any
driver or infrastructure support yet. */
asm ("setf m");
*R_IRQ_MASK0_SET =
IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
*R_VECT_MASK_SET =
IO_STATE(R_VECT_MASK_SET, nmi, set);
#endif
}
|