summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm/hyp/nvhe/mem_protect.c
blob: 4b60c0056c041521ffba9b9f0505ca605404aed2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2020 Google LLC
 * Author: Quentin Perret <qperret@google.com>
 */

#include <linux/kvm_host.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_pgtable.h>
#include <asm/stage2_pgtable.h>

#include <hyp/switch.h>

#include <nvhe/gfp.h>
#include <nvhe/memory.h>
#include <nvhe/mem_protect.h>
#include <nvhe/mm.h>

#define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)

extern unsigned long hyp_nr_cpus;
struct host_kvm host_kvm;

static struct hyp_pool host_s2_mem;
static struct hyp_pool host_s2_dev;

/*
 * Copies of the host's CPU features registers holding sanitized values.
 */
u64 id_aa64mmfr0_el1_sys_val;
u64 id_aa64mmfr1_el1_sys_val;

static const u8 pkvm_hyp_id = 1;

static void *host_s2_zalloc_pages_exact(size_t size)
{
	return hyp_alloc_pages(&host_s2_mem, get_order(size));
}

static void *host_s2_zalloc_page(void *pool)
{
	return hyp_alloc_pages(pool, 0);
}

static int prepare_s2_pools(void *mem_pgt_pool, void *dev_pgt_pool)
{
	unsigned long nr_pages, pfn;
	int ret;

	pfn = hyp_virt_to_pfn(mem_pgt_pool);
	nr_pages = host_s2_mem_pgtable_pages();
	ret = hyp_pool_init(&host_s2_mem, pfn, nr_pages, 0);
	if (ret)
		return ret;

	pfn = hyp_virt_to_pfn(dev_pgt_pool);
	nr_pages = host_s2_dev_pgtable_pages();
	ret = hyp_pool_init(&host_s2_dev, pfn, nr_pages, 0);
	if (ret)
		return ret;

	host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
		.zalloc_page = host_s2_zalloc_page,
		.phys_to_virt = hyp_phys_to_virt,
		.virt_to_phys = hyp_virt_to_phys,
		.page_count = hyp_page_count,
		.get_page = hyp_get_page,
		.put_page = hyp_put_page,
	};

	return 0;
}

static void prepare_host_vtcr(void)
{
	u32 parange, phys_shift;

	/* The host stage 2 is id-mapped, so use parange for T0SZ */
	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);

	host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
					  id_aa64mmfr1_el1_sys_val, phys_shift);
}

int kvm_host_prepare_stage2(void *mem_pgt_pool, void *dev_pgt_pool)
{
	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
	int ret;

	prepare_host_vtcr();
	hyp_spin_lock_init(&host_kvm.lock);

	ret = prepare_s2_pools(mem_pgt_pool, dev_pgt_pool);
	if (ret)
		return ret;

	ret = kvm_pgtable_stage2_init_flags(&host_kvm.pgt, &host_kvm.arch,
					    &host_kvm.mm_ops, KVM_HOST_S2_FLAGS);
	if (ret)
		return ret;

	mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
	mmu->arch = &host_kvm.arch;
	mmu->pgt = &host_kvm.pgt;
	mmu->vmid.vmid_gen = 0;
	mmu->vmid.vmid = 0;

	return 0;
}

int __pkvm_prot_finalize(void)
{
	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);

	params->vttbr = kvm_get_vttbr(mmu);
	params->vtcr = host_kvm.arch.vtcr;
	params->hcr_el2 |= HCR_VM;
	kvm_flush_dcache_to_poc(params, sizeof(*params));

	write_sysreg(params->hcr_el2, hcr_el2);
	__load_stage2(&host_kvm.arch.mmu, host_kvm.arch.vtcr);

	/*
	 * Make sure to have an ISB before the TLB maintenance below but only
	 * when __load_stage2() doesn't include one already.
	 */
	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));

	/* Invalidate stale HCR bits that may be cached in TLBs */
	__tlbi(vmalls12e1);
	dsb(nsh);
	isb();

	return 0;
}

static int host_stage2_unmap_dev_all(void)
{
	struct kvm_pgtable *pgt = &host_kvm.pgt;
	struct memblock_region *reg;
	u64 addr = 0;
	int i, ret;

	/* Unmap all non-memory regions to recycle the pages */
	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
		reg = &hyp_memory[i];
		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
		if (ret)
			return ret;
	}
	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
}

static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
{
	int cur, left = 0, right = hyp_memblock_nr;
	struct memblock_region *reg;
	phys_addr_t end;

	range->start = 0;
	range->end = ULONG_MAX;

	/* The list of memblock regions is sorted, binary search it */
	while (left < right) {
		cur = (left + right) >> 1;
		reg = &hyp_memory[cur];
		end = reg->base + reg->size;
		if (addr < reg->base) {
			right = cur;
			range->end = reg->base;
		} else if (addr >= end) {
			left = cur + 1;
			range->start = end;
		} else {
			range->start = reg->base;
			range->end = end;
			return true;
		}
	}

	return false;
}

static bool range_is_memory(u64 start, u64 end)
{
	struct kvm_mem_range r1, r2;

	if (!find_mem_range(start, &r1) || !find_mem_range(end, &r2))
		return false;
	if (r1.start != r2.start)
		return false;

	return true;
}

static inline int __host_stage2_idmap(u64 start, u64 end,
				      enum kvm_pgtable_prot prot,
				      struct hyp_pool *pool)
{
	return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
				      prot, pool);
}

static int host_stage2_idmap(u64 addr)
{
	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_W;
	struct kvm_mem_range range;
	bool is_memory = find_mem_range(addr, &range);
	struct hyp_pool *pool = is_memory ? &host_s2_mem : &host_s2_dev;
	int ret;

	if (is_memory)
		prot |= KVM_PGTABLE_PROT_X;

	hyp_spin_lock(&host_kvm.lock);
	ret = kvm_pgtable_stage2_find_range(&host_kvm.pgt, addr, prot, &range);
	if (ret)
		goto unlock;

	ret = __host_stage2_idmap(range.start, range.end, prot, pool);
	if (is_memory || ret != -ENOMEM)
		goto unlock;

	/*
	 * host_s2_mem has been provided with enough pages to cover all of
	 * memory with page granularity, so we should never hit the ENOMEM case.
	 * However, it is difficult to know how much of the MMIO range we will
	 * need to cover upfront, so we may need to 'recycle' the pages if we
	 * run out.
	 */
	ret = host_stage2_unmap_dev_all();
	if (ret)
		goto unlock;

	ret = __host_stage2_idmap(range.start, range.end, prot, pool);

unlock:
	hyp_spin_unlock(&host_kvm.lock);

	return ret;
}

int __pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
{
	int ret;

	/*
	 * host_stage2_unmap_dev_all() currently relies on MMIO mappings being
	 * non-persistent, so don't allow changing page ownership in MMIO range.
	 */
	if (!range_is_memory(start, end))
		return -EINVAL;

	hyp_spin_lock(&host_kvm.lock);
	ret = kvm_pgtable_stage2_set_owner(&host_kvm.pgt, start, end - start,
					   &host_s2_mem, pkvm_hyp_id);
	hyp_spin_unlock(&host_kvm.lock);

	return ret != -EAGAIN ? ret : 0;
}

void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
{
	struct kvm_vcpu_fault_info fault;
	u64 esr, addr;
	int ret = 0;

	esr = read_sysreg_el2(SYS_ESR);
	BUG_ON(!__get_fault_info(esr, &fault));

	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
	ret = host_stage2_idmap(addr);
	BUG_ON(ret && ret != -EAGAIN);
}