1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
|
/*
* Versatile Express Serial Power Controller (SPC) support
*
* Copyright (C) 2013 ARM Ltd.
*
* Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
* Achin Gupta <achin.gupta@arm.com>
* Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/semaphore.h>
#include <asm/cacheflush.h>
#define SPCLOG "vexpress-spc: "
#define PERF_LVL_A15 0x00
#define PERF_REQ_A15 0x04
#define PERF_LVL_A7 0x08
#define PERF_REQ_A7 0x0c
#define COMMS 0x10
#define COMMS_REQ 0x14
#define PWC_STATUS 0x18
#define PWC_FLAG 0x1c
/* SPC wake-up IRQs status and mask */
#define WAKE_INT_MASK 0x24
#define WAKE_INT_RAW 0x28
#define WAKE_INT_STAT 0x2c
/* SPC power down registers */
#define A15_PWRDN_EN 0x30
#define A7_PWRDN_EN 0x34
/* SPC per-CPU mailboxes */
#define A15_BX_ADDR0 0x68
#define A7_BX_ADDR0 0x78
/* SPC CPU/cluster reset statue */
#define STANDBYWFI_STAT 0x3c
#define STANDBYWFI_STAT_A15_CPU_MASK(cpu) (1 << (cpu))
#define STANDBYWFI_STAT_A7_CPU_MASK(cpu) (1 << (3 + (cpu)))
/* SPC system config interface registers */
#define SYSCFG_WDATA 0x70
#define SYSCFG_RDATA 0x74
/* A15/A7 OPP virtual register base */
#define A15_PERFVAL_BASE 0xC10
#define A7_PERFVAL_BASE 0xC30
/* Config interface control bits */
#define SYSCFG_START (1 << 31)
#define SYSCFG_SCC (6 << 20)
#define SYSCFG_STAT (14 << 20)
/* wake-up interrupt masks */
#define GBL_WAKEUP_INT_MSK (0x3 << 10)
/* TC2 static dual-cluster configuration */
#define MAX_CLUSTERS 2
/*
* Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
* operation, the operation could start just before jiffie is about
* to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
*/
#define TIMEOUT_US 20000
#define MAX_OPPS 8
#define CA15_DVFS 0
#define CA7_DVFS 1
#define SPC_SYS_CFG 2
#define STAT_COMPLETE(type) ((1 << 0) << (type << 2))
#define STAT_ERR(type) ((1 << 1) << (type << 2))
#define RESPONSE_MASK(type) (STAT_COMPLETE(type) | STAT_ERR(type))
struct ve_spc_opp {
unsigned long freq;
unsigned long u_volt;
};
struct ve_spc_drvdata {
void __iomem *baseaddr;
/*
* A15s cluster identifier
* It corresponds to A15 processors MPIDR[15:8] bitfield
*/
u32 a15_clusid;
uint32_t cur_rsp_mask;
uint32_t cur_rsp_stat;
struct semaphore sem;
struct completion done;
struct ve_spc_opp *opps[MAX_CLUSTERS];
int num_opps[MAX_CLUSTERS];
};
static struct ve_spc_drvdata *info;
static inline bool cluster_is_a15(u32 cluster)
{
return cluster == info->a15_clusid;
}
/**
* ve_spc_global_wakeup_irq()
*
* Function to set/clear global wakeup IRQs. Not protected by locking since
* it might be used in code paths where normal cacheable locks are not
* working. Locking must be provided by the caller to ensure atomicity.
*
* @set: if true, global wake-up IRQs are set, if false they are cleared
*/
void ve_spc_global_wakeup_irq(bool set)
{
u32 reg;
reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
if (set)
reg |= GBL_WAKEUP_INT_MSK;
else
reg &= ~GBL_WAKEUP_INT_MSK;
writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
}
/**
* ve_spc_cpu_wakeup_irq()
*
* Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
* it might be used in code paths where normal cacheable locks are not
* working. Locking must be provided by the caller to ensure atomicity.
*
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
* @cpu: mpidr[7:0] bitfield describing cpu affinity level
* @set: if true, wake-up IRQs are set, if false they are cleared
*/
void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
{
u32 mask, reg;
if (cluster >= MAX_CLUSTERS)
return;
mask = 1 << cpu;
if (!cluster_is_a15(cluster))
mask <<= 4;
reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
if (set)
reg |= mask;
else
reg &= ~mask;
writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
}
/**
* ve_spc_set_resume_addr() - set the jump address used for warm boot
*
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
* @cpu: mpidr[7:0] bitfield describing cpu affinity level
* @addr: physical resume address
*/
void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
{
void __iomem *baseaddr;
if (cluster >= MAX_CLUSTERS)
return;
if (cluster_is_a15(cluster))
baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
else
baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
writel_relaxed(addr, baseaddr);
}
/**
* ve_spc_powerdown()
*
* Function to enable/disable cluster powerdown. Not protected by locking
* since it might be used in code paths where normal cacheable locks are not
* working. Locking must be provided by the caller to ensure atomicity.
*
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
* @enable: if true enables powerdown, if false disables it
*/
void ve_spc_powerdown(u32 cluster, bool enable)
{
u32 pwdrn_reg;
if (cluster >= MAX_CLUSTERS)
return;
pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
writel_relaxed(enable, info->baseaddr + pwdrn_reg);
}
static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
{
return cluster_is_a15(cluster) ?
STANDBYWFI_STAT_A15_CPU_MASK(cpu)
: STANDBYWFI_STAT_A7_CPU_MASK(cpu);
}
/**
* ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
*
* @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
* @cluster: mpidr[15:8] bitfield describing cluster affinity level
*
* @return: non-zero if and only if the specified CPU is in WFI
*
* Take care when interpreting the result of this function: a CPU might
* be in WFI temporarily due to idle, and is not necessarily safely
* parked.
*/
int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
{
int ret;
u32 mask = standbywfi_cpu_mask(cpu, cluster);
if (cluster >= MAX_CLUSTERS)
return 1;
ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
__func__, STANDBYWFI_STAT, ret, mask);
return ret & mask;
}
static int ve_spc_get_performance(int cluster, u32 *freq)
{
struct ve_spc_opp *opps = info->opps[cluster];
u32 perf_cfg_reg = 0;
u32 perf;
perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
if (perf >= info->num_opps[cluster])
return -EINVAL;
opps += perf;
*freq = opps->freq;
return 0;
}
/* find closest match to given frequency in OPP table */
static int ve_spc_round_performance(int cluster, u32 freq)
{
int idx, max_opp = info->num_opps[cluster];
struct ve_spc_opp *opps = info->opps[cluster];
u32 fmin = 0, fmax = ~0, ftmp;
freq /= 1000; /* OPP entries in kHz */
for (idx = 0; idx < max_opp; idx++, opps++) {
ftmp = opps->freq;
if (ftmp >= freq) {
if (ftmp <= fmax)
fmax = ftmp;
} else {
if (ftmp >= fmin)
fmin = ftmp;
}
}
if (fmax != ~0)
return fmax * 1000;
else
return fmin * 1000;
}
static int ve_spc_find_performance_index(int cluster, u32 freq)
{
int idx, max_opp = info->num_opps[cluster];
struct ve_spc_opp *opps = info->opps[cluster];
for (idx = 0; idx < max_opp; idx++, opps++)
if (opps->freq == freq)
break;
return (idx == max_opp) ? -EINVAL : idx;
}
static int ve_spc_waitforcompletion(int req_type)
{
int ret = wait_for_completion_interruptible_timeout(
&info->done, usecs_to_jiffies(TIMEOUT_US));
if (ret == 0)
ret = -ETIMEDOUT;
else if (ret > 0)
ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
return ret;
}
static int ve_spc_set_performance(int cluster, u32 freq)
{
u32 perf_cfg_reg, perf_stat_reg;
int ret, perf, req_type;
if (cluster_is_a15(cluster)) {
req_type = CA15_DVFS;
perf_cfg_reg = PERF_LVL_A15;
perf_stat_reg = PERF_REQ_A15;
} else {
req_type = CA7_DVFS;
perf_cfg_reg = PERF_LVL_A7;
perf_stat_reg = PERF_REQ_A7;
}
perf = ve_spc_find_performance_index(cluster, freq);
if (perf < 0)
return perf;
if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
return -ETIME;
init_completion(&info->done);
info->cur_rsp_mask = RESPONSE_MASK(req_type);
writel(perf, info->baseaddr + perf_cfg_reg);
ret = ve_spc_waitforcompletion(req_type);
info->cur_rsp_mask = 0;
up(&info->sem);
return ret;
}
static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
{
int ret;
if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
return -ETIME;
init_completion(&info->done);
info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
/* Set the control value */
writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
if (ret == 0)
*data = readl(info->baseaddr + SYSCFG_RDATA);
info->cur_rsp_mask = 0;
up(&info->sem);
return ret;
}
static irqreturn_t ve_spc_irq_handler(int irq, void *data)
{
struct ve_spc_drvdata *drv_data = data;
uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
if (info->cur_rsp_mask & status) {
info->cur_rsp_stat = status;
complete(&drv_data->done);
}
return IRQ_HANDLED;
}
/*
* +--------------------------+
* | 31 20 | 19 0 |
* +--------------------------+
* | m_volt | freq(kHz) |
* +--------------------------+
*/
#define MULT_FACTOR 20
#define VOLT_SHIFT 20
#define FREQ_MASK (0xFFFFF)
static int ve_spc_populate_opps(uint32_t cluster)
{
uint32_t data = 0, off, ret, idx;
struct ve_spc_opp *opps;
opps = kzalloc(sizeof(*opps) * MAX_OPPS, GFP_KERNEL);
if (!opps)
return -ENOMEM;
info->opps[cluster] = opps;
off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
if (!ret) {
opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
opps->u_volt = (data >> VOLT_SHIFT) * 1000;
} else {
break;
}
}
info->num_opps[cluster] = idx;
return ret;
}
static int ve_init_opp_table(struct device *cpu_dev)
{
int cluster;
int idx, ret = 0, max_opp;
struct ve_spc_opp *opps;
cluster = topology_physical_package_id(cpu_dev->id);
cluster = cluster < 0 ? 0 : cluster;
max_opp = info->num_opps[cluster];
opps = info->opps[cluster];
for (idx = 0; idx < max_opp; idx++, opps++) {
ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
if (ret) {
dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
opps->freq, opps->u_volt);
return ret;
}
}
return ret;
}
int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
{
int ret;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
pr_err(SPCLOG "unable to allocate mem\n");
return -ENOMEM;
}
info->baseaddr = baseaddr;
info->a15_clusid = a15_clusid;
if (irq <= 0) {
pr_err(SPCLOG "Invalid IRQ %d\n", irq);
kfree(info);
return -EINVAL;
}
init_completion(&info->done);
readl_relaxed(info->baseaddr + PWC_STATUS);
ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
| IRQF_ONESHOT, "vexpress-spc", info);
if (ret) {
pr_err(SPCLOG "IRQ %d request failed\n", irq);
kfree(info);
return -ENODEV;
}
sema_init(&info->sem, 1);
/*
* Multi-cluster systems may need this data when non-coherent, during
* cluster power-up/power-down. Make sure driver info reaches main
* memory.
*/
sync_cache_w(info);
sync_cache_w(&info);
return 0;
}
struct clk_spc {
struct clk_hw hw;
int cluster;
};
#define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
static unsigned long spc_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_spc *spc = to_clk_spc(hw);
u32 freq;
if (ve_spc_get_performance(spc->cluster, &freq))
return -EIO;
return freq * 1000;
}
static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
unsigned long *parent_rate)
{
struct clk_spc *spc = to_clk_spc(hw);
return ve_spc_round_performance(spc->cluster, drate);
}
static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_spc *spc = to_clk_spc(hw);
return ve_spc_set_performance(spc->cluster, rate / 1000);
}
static struct clk_ops clk_spc_ops = {
.recalc_rate = spc_recalc_rate,
.round_rate = spc_round_rate,
.set_rate = spc_set_rate,
};
static struct clk *ve_spc_clk_register(struct device *cpu_dev)
{
struct clk_init_data init;
struct clk_spc *spc;
spc = kzalloc(sizeof(*spc), GFP_KERNEL);
if (!spc) {
pr_err("could not allocate spc clk\n");
return ERR_PTR(-ENOMEM);
}
spc->hw.init = &init;
spc->cluster = topology_physical_package_id(cpu_dev->id);
spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
init.name = dev_name(cpu_dev);
init.ops = &clk_spc_ops;
init.flags = CLK_IS_ROOT | CLK_GET_RATE_NOCACHE;
init.num_parents = 0;
return devm_clk_register(cpu_dev, &spc->hw);
}
static int __init ve_spc_clk_init(void)
{
int cpu;
struct clk *clk;
if (!info)
return 0; /* Continue only if SPC is initialised */
if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
pr_err("failed to build OPP table\n");
return -ENODEV;
}
for_each_possible_cpu(cpu) {
struct device *cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_warn("failed to get cpu%d device\n", cpu);
continue;
}
clk = ve_spc_clk_register(cpu_dev);
if (IS_ERR(clk)) {
pr_warn("failed to register cpu%d clock\n", cpu);
continue;
}
if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
pr_warn("failed to register cpu%d clock lookup\n", cpu);
continue;
}
if (ve_init_opp_table(cpu_dev))
pr_warn("failed to initialise cpu%d opp table\n", cpu);
}
platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
return 0;
}
device_initcall(ve_spc_clk_init);
|