1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
|
/*
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Authors: Rusty Russell <rusty@rustcorp.com.au>
* Christoffer Dall <c.dall@virtualopensystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/bsearch.h>
#include <linux/mm.h>
#include <linux/kvm_host.h>
#include <linux/uaccess.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_host.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
#include <asm/kvm_mmu.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <trace/events/kvm.h>
#include <asm/vfp.h>
#include "../vfp/vfpinstr.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
#include "coproc.h"
/******************************************************************************
* Co-processor emulation
*****************************************************************************/
static bool write_to_read_only(struct kvm_vcpu *vcpu,
const struct coproc_params *params)
{
WARN_ONCE(1, "CP15 write to read-only register\n");
print_cp_instr(params);
kvm_inject_undefined(vcpu);
return false;
}
static bool read_from_write_only(struct kvm_vcpu *vcpu,
const struct coproc_params *params)
{
WARN_ONCE(1, "CP15 read to write-only register\n");
print_cp_instr(params);
kvm_inject_undefined(vcpu);
return false;
}
/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;
/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12
/*
* kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
* of cp15 registers can be viewed either as couple of two u32 registers
* or one u64 register. Current u64 register encoding is that least
* significant u32 word is followed by most significant u32 word.
*/
static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
const struct coproc_reg *r,
u64 val)
{
vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
}
static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
const struct coproc_reg *r)
{
u64 val;
val = vcpu_cp15(vcpu, r->reg + 1);
val = val << 32;
val = val | vcpu_cp15(vcpu, r->reg);
return val;
}
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
kvm_inject_undefined(vcpu);
return 1;
}
int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
/*
* We can get here, if the host has been built without VFPv3 support,
* but the guest attempted a floating point operation.
*/
kvm_inject_undefined(vcpu);
return 1;
}
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
kvm_inject_undefined(vcpu);
return 1;
}
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
{
/*
* Compute guest MPIDR. We build a virtual cluster out of the
* vcpu_id, but we read the 'U' bit from the underlying
* hardware directly.
*/
vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
(vcpu->vcpu_id & 3));
}
/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
static bool access_actlr(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
return true;
}
/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
static bool access_cbar(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
if (p->is_write)
return write_to_read_only(vcpu, p);
return read_zero(vcpu, p);
}
/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
static bool access_l2ctlr(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
return true;
}
static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
{
u32 l2ctlr, ncores;
asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
l2ctlr &= ~(3 << 24);
ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
/* How many cores in the current cluster and the next ones */
ncores -= (vcpu->vcpu_id & ~3);
/* Cap it to the maximum number of cores in a single cluster */
ncores = min(ncores, 3U);
l2ctlr |= (ncores & 3) << 24;
vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
}
static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
{
u32 actlr;
/* ACTLR contains SMP bit: make sure you create all cpus first! */
asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
/* Make the SMP bit consistent with the guest configuration */
if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
actlr |= 1U << 6;
else
actlr &= ~(1U << 6);
vcpu_cp15(vcpu, c1_ACTLR) = actlr;
}
/*
* TRM entries: A7:4.3.50, A15:4.3.49
* R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
*/
static bool access_l2ectlr(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
*vcpu_reg(vcpu, p->Rt1) = 0;
return true;
}
/*
* See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
*/
static bool access_dcsw(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
if (!p->is_write)
return read_from_write_only(vcpu, p);
kvm_set_way_flush(vcpu);
return true;
}
/*
* Generic accessor for VM registers. Only called as long as HCR_TVM
* is set. If the guest enables the MMU, we stop trapping the VM
* sys_regs and leave it in complete control of the caches.
*
* Used by the cpu-specific code.
*/
bool access_vm_reg(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
bool was_enabled = vcpu_has_cache_enabled(vcpu);
BUG_ON(!p->is_write);
vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
if (p->is_64bit)
vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
kvm_toggle_cache(vcpu, was_enabled);
return true;
}
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
u64 reg;
bool g1;
if (!p->is_write)
return read_from_write_only(vcpu, p);
reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
reg |= *vcpu_reg(vcpu, p->Rt1) ;
/*
* In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
* Group0 SGIs only, while ICC_SGI1R can generate either group,
* depending on the SGI configuration. ICC_ASGI1R is effectively
* equivalent to ICC_SGI0R, as there is no "alternative" secure
* group.
*/
switch (p->Op1) {
default: /* Keep GCC quiet */
case 0: /* ICC_SGI1R */
g1 = true;
break;
case 1: /* ICC_ASGI1R */
case 2: /* ICC_SGI0R */
g1 = false;
break;
}
vgic_v3_dispatch_sgi(vcpu, reg, g1);
return true;
}
static bool access_gic_sre(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
return true;
}
static bool access_cntp_tval(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
u32 val;
if (p->is_write) {
val = *vcpu_reg(vcpu, p->Rt1);
kvm_arm_timer_write_sysreg(vcpu,
TIMER_PTIMER, TIMER_REG_TVAL, val);
} else {
val = kvm_arm_timer_read_sysreg(vcpu,
TIMER_PTIMER, TIMER_REG_TVAL);
*vcpu_reg(vcpu, p->Rt1) = val;
}
return true;
}
static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
u32 val;
if (p->is_write) {
val = *vcpu_reg(vcpu, p->Rt1);
kvm_arm_timer_write_sysreg(vcpu,
TIMER_PTIMER, TIMER_REG_CTL, val);
} else {
val = kvm_arm_timer_read_sysreg(vcpu,
TIMER_PTIMER, TIMER_REG_CTL);
*vcpu_reg(vcpu, p->Rt1) = val;
}
return true;
}
static bool access_cntp_cval(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
u64 val;
if (p->is_write) {
val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
val |= *vcpu_reg(vcpu, p->Rt1);
kvm_arm_timer_write_sysreg(vcpu,
TIMER_PTIMER, TIMER_REG_CVAL, val);
} else {
val = kvm_arm_timer_read_sysreg(vcpu,
TIMER_PTIMER, TIMER_REG_CVAL);
*vcpu_reg(vcpu, p->Rt1) = val;
*vcpu_reg(vcpu, p->Rt2) = val >> 32;
}
return true;
}
/*
* We could trap ID_DFR0 and tell the guest we don't support performance
* monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
* NAKed, so it will read the PMCR anyway.
*
* Therefore we tell the guest we have 0 counters. Unfortunately, we
* must always support PMCCNTR (the cycle counter): we just RAZ/WI for
* all PM registers, which doesn't crash the guest kernel at least.
*/
static bool trap_raz_wi(struct kvm_vcpu *vcpu,
const struct coproc_params *p,
const struct coproc_reg *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
else
return read_zero(vcpu, p);
}
#define access_pmcr trap_raz_wi
#define access_pmcntenset trap_raz_wi
#define access_pmcntenclr trap_raz_wi
#define access_pmovsr trap_raz_wi
#define access_pmselr trap_raz_wi
#define access_pmceid0 trap_raz_wi
#define access_pmceid1 trap_raz_wi
#define access_pmccntr trap_raz_wi
#define access_pmxevtyper trap_raz_wi
#define access_pmxevcntr trap_raz_wi
#define access_pmuserenr trap_raz_wi
#define access_pmintenset trap_raz_wi
#define access_pmintenclr trap_raz_wi
/* Architected CP15 registers.
* CRn denotes the primary register number, but is copied to the CRm in the
* user space API for 64-bit register access in line with the terminology used
* in the ARM ARM.
* Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
* registers preceding 32-bit ones.
*/
static const struct coproc_reg cp15_regs[] = {
/* MPIDR: we use VMPIDR for guest access. */
{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
NULL, reset_mpidr, c0_MPIDR },
/* CSSELR: swapped by interrupt.S. */
{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
NULL, reset_unknown, c0_CSSELR },
/* ACTLR: trapped by HCR.TAC bit. */
{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
access_actlr, reset_actlr, c1_ACTLR },
/* CPACR: swapped by interrupt.S. */
{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
NULL, reset_val, c1_CPACR, 0x00000000 },
/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
access_vm_reg, reset_unknown, c2_TTBR0 },
{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
access_vm_reg, reset_unknown, c2_TTBR1 },
{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
/* DACR: swapped by interrupt.S. */
{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
access_vm_reg, reset_unknown, c3_DACR },
/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
access_vm_reg, reset_unknown, c5_DFSR },
{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
access_vm_reg, reset_unknown, c5_IFSR },
{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
access_vm_reg, reset_unknown, c5_ADFSR },
{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
access_vm_reg, reset_unknown, c5_AIFSR },
/* DFAR/IFAR: swapped by interrupt.S. */
{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
access_vm_reg, reset_unknown, c6_DFAR },
{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
access_vm_reg, reset_unknown, c6_IFAR },
/* PAR swapped by interrupt.S */
{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
/*
* DC{C,I,CI}SW operations:
*/
{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
/*
* L2CTLR access (guest wants to know #CPUs).
*/
{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
/*
* Dummy performance monitor implementation.
*/
{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
access_vm_reg, reset_unknown, c10_PRRR},
{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
access_vm_reg, reset_unknown, c10_NMRR},
/* AMAIR0/AMAIR1: swapped by interrupt.S. */
{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
access_vm_reg, reset_unknown, c10_AMAIR0},
{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
access_vm_reg, reset_unknown, c10_AMAIR1},
/* ICC_SGI1R */
{ CRm64(12), Op1( 0), is64, access_gic_sgi},
/* VBAR: swapped by interrupt.S. */
{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
NULL, reset_val, c12_VBAR, 0x00000000 },
/* ICC_ASGI1R */
{ CRm64(12), Op1( 1), is64, access_gic_sgi},
/* ICC_SGI0R */
{ CRm64(12), Op1( 2), is64, access_gic_sgi},
/* ICC_SRE */
{ CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
access_vm_reg, reset_val, c13_CID, 0x00000000 },
{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
NULL, reset_unknown, c13_TID_URW },
{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
NULL, reset_unknown, c13_TID_URO },
{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
NULL, reset_unknown, c13_TID_PRIV },
/* CNTP */
{ CRm64(14), Op1( 2), is64, access_cntp_cval},
/* CNTKCTL: swapped by interrupt.S. */
{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
NULL, reset_val, c14_CNTKCTL, 0x00000000 },
/* CNTP */
{ CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
{ CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
/* The Configuration Base Address Register. */
{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
};
static int check_reg_table(const struct coproc_reg *table, unsigned int n)
{
unsigned int i;
for (i = 1; i < n; i++) {
if (cmp_reg(&table[i-1], &table[i]) >= 0) {
kvm_err("reg table %p out of order (%d)\n", table, i - 1);
return 1;
}
}
return 0;
}
/* Target specific emulation tables */
static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
{
BUG_ON(check_reg_table(table->table, table->num));
target_tables[table->target] = table;
}
/* Get specific register table for this target. */
static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
{
struct kvm_coproc_target_table *table;
table = target_tables[target];
*num = table->num;
return table->table;
}
#define reg_to_match_value(x) \
({ \
unsigned long val; \
val = (x)->CRn << 11; \
val |= (x)->CRm << 7; \
val |= (x)->Op1 << 4; \
val |= (x)->Op2 << 1; \
val |= !(x)->is_64bit; \
val; \
})
static int match_reg(const void *key, const void *elt)
{
const unsigned long pval = (unsigned long)key;
const struct coproc_reg *r = elt;
return pval - reg_to_match_value(r);
}
static const struct coproc_reg *find_reg(const struct coproc_params *params,
const struct coproc_reg table[],
unsigned int num)
{
unsigned long pval = reg_to_match_value(params);
return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
}
static int emulate_cp15(struct kvm_vcpu *vcpu,
const struct coproc_params *params)
{
size_t num;
const struct coproc_reg *table, *r;
trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
params->CRm, params->Op2, params->is_write);
table = get_target_table(vcpu->arch.target, &num);
/* Search target-specific then generic table. */
r = find_reg(params, table, num);
if (!r)
r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
if (likely(r)) {
/* If we don't have an accessor, we should never get here! */
BUG_ON(!r->access);
if (likely(r->access(vcpu, params, r))) {
/* Skip instruction, since it was emulated */
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
}
} else {
/* If access function fails, it should complain. */
kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
print_cp_instr(params);
kvm_inject_undefined(vcpu);
}
return 1;
}
static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
{
struct coproc_params params;
params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
params.is_64bit = true;
params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
params.Op2 = 0;
params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
params.CRm = 0;
return params;
}
/**
* kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
struct coproc_params params = decode_64bit_hsr(vcpu);
return emulate_cp15(vcpu, ¶ms);
}
/**
* kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
struct coproc_params params = decode_64bit_hsr(vcpu);
/* raz_wi cp14 */
trap_raz_wi(vcpu, ¶ms, NULL);
/* handled */
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
return 1;
}
static void reset_coproc_regs(struct kvm_vcpu *vcpu,
const struct coproc_reg *table, size_t num)
{
unsigned long i;
for (i = 0; i < num; i++)
if (table[i].reset)
table[i].reset(vcpu, &table[i]);
}
static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
{
struct coproc_params params;
params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
params.is_64bit = false;
params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
params.Rt2 = 0;
return params;
}
/**
* kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
struct coproc_params params = decode_32bit_hsr(vcpu);
return emulate_cp15(vcpu, ¶ms);
}
/**
* kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
* @vcpu: The VCPU pointer
* @run: The kvm_run struct
*/
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
struct coproc_params params = decode_32bit_hsr(vcpu);
/* raz_wi cp14 */
trap_raz_wi(vcpu, ¶ms, NULL);
/* handled */
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
return 1;
}
/******************************************************************************
* Userspace API
*****************************************************************************/
static bool index_to_params(u64 id, struct coproc_params *params)
{
switch (id & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
/* Any unused index bits means it's not valid. */
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
| KVM_REG_ARM_COPROC_MASK
| KVM_REG_ARM_32_CRN_MASK
| KVM_REG_ARM_CRM_MASK
| KVM_REG_ARM_OPC1_MASK
| KVM_REG_ARM_32_OPC2_MASK))
return false;
params->is_64bit = false;
params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
>> KVM_REG_ARM_32_CRN_SHIFT);
params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
>> KVM_REG_ARM_CRM_SHIFT);
params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
>> KVM_REG_ARM_OPC1_SHIFT);
params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
>> KVM_REG_ARM_32_OPC2_SHIFT);
return true;
case KVM_REG_SIZE_U64:
/* Any unused index bits means it's not valid. */
if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
| KVM_REG_ARM_COPROC_MASK
| KVM_REG_ARM_CRM_MASK
| KVM_REG_ARM_OPC1_MASK))
return false;
params->is_64bit = true;
/* CRm to CRn: see cp15_to_index for details */
params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
>> KVM_REG_ARM_CRM_SHIFT);
params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
>> KVM_REG_ARM_OPC1_SHIFT);
params->Op2 = 0;
params->CRm = 0;
return true;
default:
return false;
}
}
/* Decode an index value, and find the cp15 coproc_reg entry. */
static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
u64 id)
{
size_t num;
const struct coproc_reg *table, *r;
struct coproc_params params;
/* We only do cp15 for now. */
if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
return NULL;
if (!index_to_params(id, ¶ms))
return NULL;
table = get_target_table(vcpu->arch.target, &num);
r = find_reg(¶ms, table, num);
if (!r)
r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
/* Not saved in the cp15 array? */
if (r && !r->reg)
r = NULL;
return r;
}
/*
* These are the invariant cp15 registers: we let the guest see the host
* versions of these, so they're part of the guest state.
*
* A future CPU may provide a mechanism to present different values to
* the guest, or a future kvm may trap them.
*/
/* Unfortunately, there's no register-argument for mrc, so generate. */
#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
static void get_##name(struct kvm_vcpu *v, \
const struct coproc_reg *r) \
{ \
u32 val; \
\
asm volatile("mrc p15, " __stringify(op1) \
", %0, c" __stringify(crn) \
", c" __stringify(crm) \
", " __stringify(op2) "\n" : "=r" (val)); \
((struct coproc_reg *)r)->val = val; \
}
FUNCTION_FOR32(0, 0, 0, 0, MIDR)
FUNCTION_FOR32(0, 0, 0, 1, CTR)
FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
FUNCTION_FOR32(0, 0, 1, 7, AIDR)
/* ->val is filled in by kvm_invariant_coproc_table_init() */
static struct coproc_reg invariant_cp15[] = {
{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
};
/*
* Reads a register value from a userspace address to a kernel
* variable. Make sure that register size matches sizeof(*__val).
*/
static int reg_from_user(void *val, const void __user *uaddr, u64 id)
{
if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
return -EFAULT;
return 0;
}
/*
* Writes a register value to a userspace address from a kernel variable.
* Make sure that register size matches sizeof(*__val).
*/
static int reg_to_user(void __user *uaddr, const void *val, u64 id)
{
if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
return -EFAULT;
return 0;
}
static int get_invariant_cp15(u64 id, void __user *uaddr)
{
struct coproc_params params;
const struct coproc_reg *r;
int ret;
if (!index_to_params(id, ¶ms))
return -ENOENT;
r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
if (!r)
return -ENOENT;
ret = -ENOENT;
if (KVM_REG_SIZE(id) == 4) {
u32 val = r->val;
ret = reg_to_user(uaddr, &val, id);
} else if (KVM_REG_SIZE(id) == 8) {
ret = reg_to_user(uaddr, &r->val, id);
}
return ret;
}
static int set_invariant_cp15(u64 id, void __user *uaddr)
{
struct coproc_params params;
const struct coproc_reg *r;
int err;
u64 val;
if (!index_to_params(id, ¶ms))
return -ENOENT;
r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
if (!r)
return -ENOENT;
err = -ENOENT;
if (KVM_REG_SIZE(id) == 4) {
u32 val32;
err = reg_from_user(&val32, uaddr, id);
if (!err)
val = val32;
} else if (KVM_REG_SIZE(id) == 8) {
err = reg_from_user(&val, uaddr, id);
}
if (err)
return err;
/* This is what we mean by invariant: you can't change it. */
if (r->val != val)
return -EINVAL;
return 0;
}
static bool is_valid_cache(u32 val)
{
u32 level, ctype;
if (val >= CSSELR_MAX)
return false;
/* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
level = (val >> 1);
ctype = (cache_levels >> (level * 3)) & 7;
switch (ctype) {
case 0: /* No cache */
return false;
case 1: /* Instruction cache only */
return (val & 1);
case 2: /* Data cache only */
case 4: /* Unified cache */
return !(val & 1);
case 3: /* Separate instruction and data caches */
return true;
default: /* Reserved: we can't know instruction or data. */
return false;
}
}
/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
u32 ccsidr;
/* Make sure noone else changes CSSELR during this! */
local_irq_disable();
/* Put value into CSSELR */
asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
isb();
/* Read result out of CCSIDR */
asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
local_irq_enable();
return ccsidr;
}
static int demux_c15_get(u64 id, void __user *uaddr)
{
u32 val;
u32 __user *uval = uaddr;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
if (!is_valid_cache(val))
return -ENOENT;
return put_user(get_ccsidr(val), uval);
default:
return -ENOENT;
}
}
static int demux_c15_set(u64 id, void __user *uaddr)
{
u32 val, newval;
u32 __user *uval = uaddr;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
if (!is_valid_cache(val))
return -ENOENT;
if (get_user(newval, uval))
return -EFAULT;
/* This is also invariant: you can't change it. */
if (newval != get_ccsidr(val))
return -EINVAL;
return 0;
default:
return -ENOENT;
}
}
#ifdef CONFIG_VFPv3
static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
KVM_REG_ARM_VFP_FPSCR,
KVM_REG_ARM_VFP_FPINST,
KVM_REG_ARM_VFP_FPINST2,
KVM_REG_ARM_VFP_MVFR0,
KVM_REG_ARM_VFP_MVFR1,
KVM_REG_ARM_VFP_FPSID };
static unsigned int num_fp_regs(void)
{
if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
return 32;
else
return 16;
}
static unsigned int num_vfp_regs(void)
{
/* Normal FP regs + control regs. */
return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
}
static int copy_vfp_regids(u64 __user *uindices)
{
unsigned int i;
const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
for (i = 0; i < num_fp_regs(); i++) {
if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
uindices))
return -EFAULT;
uindices++;
}
for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
if (put_user(u32reg | vfp_sysregs[i], uindices))
return -EFAULT;
uindices++;
}
return num_vfp_regs();
}
static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
{
u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
u32 val;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
if (vfpid < num_fp_regs()) {
if (KVM_REG_SIZE(id) != 8)
return -ENOENT;
return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
id);
}
/* FP control registers are all 32 bit. */
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
switch (vfpid) {
case KVM_REG_ARM_VFP_FPEXC:
return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
case KVM_REG_ARM_VFP_FPSCR:
return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
case KVM_REG_ARM_VFP_FPINST:
return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
case KVM_REG_ARM_VFP_FPINST2:
return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
case KVM_REG_ARM_VFP_MVFR0:
val = fmrx(MVFR0);
return reg_to_user(uaddr, &val, id);
case KVM_REG_ARM_VFP_MVFR1:
val = fmrx(MVFR1);
return reg_to_user(uaddr, &val, id);
case KVM_REG_ARM_VFP_FPSID:
val = fmrx(FPSID);
return reg_to_user(uaddr, &val, id);
default:
return -ENOENT;
}
}
static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
{
u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
u32 val;
/* Fail if we have unknown bits set. */
if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
| ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
return -ENOENT;
if (vfpid < num_fp_regs()) {
if (KVM_REG_SIZE(id) != 8)
return -ENOENT;
return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
uaddr, id);
}
/* FP control registers are all 32 bit. */
if (KVM_REG_SIZE(id) != 4)
return -ENOENT;
switch (vfpid) {
case KVM_REG_ARM_VFP_FPEXC:
return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
case KVM_REG_ARM_VFP_FPSCR:
return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
case KVM_REG_ARM_VFP_FPINST:
return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
case KVM_REG_ARM_VFP_FPINST2:
return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
/* These are invariant. */
case KVM_REG_ARM_VFP_MVFR0:
if (reg_from_user(&val, uaddr, id))
return -EFAULT;
if (val != fmrx(MVFR0))
return -EINVAL;
return 0;
case KVM_REG_ARM_VFP_MVFR1:
if (reg_from_user(&val, uaddr, id))
return -EFAULT;
if (val != fmrx(MVFR1))
return -EINVAL;
return 0;
case KVM_REG_ARM_VFP_FPSID:
if (reg_from_user(&val, uaddr, id))
return -EFAULT;
if (val != fmrx(FPSID))
return -EINVAL;
return 0;
default:
return -ENOENT;
}
}
#else /* !CONFIG_VFPv3 */
static unsigned int num_vfp_regs(void)
{
return 0;
}
static int copy_vfp_regids(u64 __user *uindices)
{
return 0;
}
static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
{
return -ENOENT;
}
static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
{
return -ENOENT;
}
#endif /* !CONFIG_VFPv3 */
int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
const struct coproc_reg *r;
void __user *uaddr = (void __user *)(long)reg->addr;
int ret;
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return demux_c15_get(reg->id, uaddr);
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
return vfp_get_reg(vcpu, reg->id, uaddr);
r = index_to_coproc_reg(vcpu, reg->id);
if (!r)
return get_invariant_cp15(reg->id, uaddr);
ret = -ENOENT;
if (KVM_REG_SIZE(reg->id) == 8) {
u64 val;
val = vcpu_cp15_reg64_get(vcpu, r);
ret = reg_to_user(uaddr, &val, reg->id);
} else if (KVM_REG_SIZE(reg->id) == 4) {
ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
}
return ret;
}
int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
const struct coproc_reg *r;
void __user *uaddr = (void __user *)(long)reg->addr;
int ret;
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
return demux_c15_set(reg->id, uaddr);
if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
return vfp_set_reg(vcpu, reg->id, uaddr);
r = index_to_coproc_reg(vcpu, reg->id);
if (!r)
return set_invariant_cp15(reg->id, uaddr);
ret = -ENOENT;
if (KVM_REG_SIZE(reg->id) == 8) {
u64 val;
ret = reg_from_user(&val, uaddr, reg->id);
if (!ret)
vcpu_cp15_reg64_set(vcpu, r, val);
} else if (KVM_REG_SIZE(reg->id) == 4) {
ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
}
return ret;
}
static unsigned int num_demux_regs(void)
{
unsigned int i, count = 0;
for (i = 0; i < CSSELR_MAX; i++)
if (is_valid_cache(i))
count++;
return count;
}
static int write_demux_regids(u64 __user *uindices)
{
u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
unsigned int i;
val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
for (i = 0; i < CSSELR_MAX; i++) {
if (!is_valid_cache(i))
continue;
if (put_user(val | i, uindices))
return -EFAULT;
uindices++;
}
return 0;
}
static u64 cp15_to_index(const struct coproc_reg *reg)
{
u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
if (reg->is_64bit) {
val |= KVM_REG_SIZE_U64;
val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
/*
* CRn always denotes the primary coproc. reg. nr. for the
* in-kernel representation, but the user space API uses the
* CRm for the encoding, because it is modelled after the
* MRRC/MCRR instructions: see the ARM ARM rev. c page
* B3-1445
*/
val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
} else {
val |= KVM_REG_SIZE_U32;
val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
}
return val;
}
static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
{
if (!*uind)
return true;
if (put_user(cp15_to_index(reg), *uind))
return false;
(*uind)++;
return true;
}
/* Assumed ordered tables, see kvm_coproc_table_init. */
static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
{
const struct coproc_reg *i1, *i2, *end1, *end2;
unsigned int total = 0;
size_t num;
/* We check for duplicates here, to allow arch-specific overrides. */
i1 = get_target_table(vcpu->arch.target, &num);
end1 = i1 + num;
i2 = cp15_regs;
end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
BUG_ON(i1 == end1 || i2 == end2);
/* Walk carefully, as both tables may refer to the same register. */
while (i1 || i2) {
int cmp = cmp_reg(i1, i2);
/* target-specific overrides generic entry. */
if (cmp <= 0) {
/* Ignore registers we trap but don't save. */
if (i1->reg) {
if (!copy_reg_to_user(i1, &uind))
return -EFAULT;
total++;
}
} else {
/* Ignore registers we trap but don't save. */
if (i2->reg) {
if (!copy_reg_to_user(i2, &uind))
return -EFAULT;
total++;
}
}
if (cmp <= 0 && ++i1 == end1)
i1 = NULL;
if (cmp >= 0 && ++i2 == end2)
i2 = NULL;
}
return total;
}
unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
{
return ARRAY_SIZE(invariant_cp15)
+ num_demux_regs()
+ num_vfp_regs()
+ walk_cp15(vcpu, (u64 __user *)NULL);
}
int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
unsigned int i;
int err;
/* Then give them all the invariant registers' indices. */
for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
return -EFAULT;
uindices++;
}
err = walk_cp15(vcpu, uindices);
if (err < 0)
return err;
uindices += err;
err = copy_vfp_regids(uindices);
if (err < 0)
return err;
uindices += err;
return write_demux_regids(uindices);
}
void kvm_coproc_table_init(void)
{
unsigned int i;
/* Make sure tables are unique and in order. */
BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
/* We abuse the reset function to overwrite the table itself. */
for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
/*
* CLIDR format is awkward, so clean it up. See ARM B4.1.20:
*
* If software reads the Cache Type fields from Ctype1
* upwards, once it has seen a value of 0b000, no caches
* exist at further-out levels of the hierarchy. So, for
* example, if Ctype3 is the first Cache Type field with a
* value of 0b000, the values of Ctype4 to Ctype7 must be
* ignored.
*/
asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
for (i = 0; i < 7; i++)
if (((cache_levels >> (i*3)) & 7) == 0)
break;
/* Clear all higher bits. */
cache_levels &= (1 << (i*3))-1;
}
/**
* kvm_reset_coprocs - sets cp15 registers to reset value
* @vcpu: The VCPU pointer
*
* This function finds the right table above and sets the registers on the
* virtual CPU struct to their architecturally defined reset values.
*/
void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
{
size_t num;
const struct coproc_reg *table;
/* Catch someone adding a register without putting in reset entry. */
memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
/* Generic chip reset first (so target could override). */
reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
table = get_target_table(vcpu->arch.target, &num);
reset_coproc_regs(vcpu, table, num);
for (num = 1; num < NR_CP15_REGS; num++)
if (vcpu_cp15(vcpu, num) == 0x42424242)
panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
}
|