summaryrefslogtreecommitdiffstats
path: root/arch/Kconfig
blob: 2dd8fdd7ea9f231318d38d1010cfd6ffc4d78f65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#
# General architecture dependent options
#

config OPROFILE
	tristate "OProfile system profiling"
	depends on PROFILING
	depends on HAVE_OPROFILE
	select RING_BUFFER
	select RING_BUFFER_ALLOW_SWAP
	help
	  OProfile is a profiling system capable of profiling the
	  whole system, include the kernel, kernel modules, libraries,
	  and applications.

	  If unsure, say N.

config OPROFILE_EVENT_MULTIPLEX
	bool "OProfile multiplexing support (EXPERIMENTAL)"
	default n
	depends on OPROFILE && X86
	help
	  The number of hardware counters is limited. The multiplexing
	  feature enables OProfile to gather more events than counters
	  are provided by the hardware. This is realized by switching
	  between events at an user specified time interval.

	  If unsure, say N.

config HAVE_OPROFILE
	bool

config OPROFILE_NMI_TIMER
	def_bool y
	depends on PERF_EVENTS && HAVE_PERF_EVENTS_NMI

config KPROBES
	bool "Kprobes"
	depends on MODULES
	depends on HAVE_KPROBES
	select KALLSYMS
	help
	  Kprobes allows you to trap at almost any kernel address and
	  execute a callback function.  register_kprobe() establishes
	  a probepoint and specifies the callback.  Kprobes is useful
	  for kernel debugging, non-intrusive instrumentation and testing.
	  If in doubt, say "N".

config JUMP_LABEL
       bool "Optimize very unlikely/likely branches"
       depends on HAVE_ARCH_JUMP_LABEL
       help
         This option enables a transparent branch optimization that
	 makes certain almost-always-true or almost-always-false branch
	 conditions even cheaper to execute within the kernel.

	 Certain performance-sensitive kernel code, such as trace points,
	 scheduler functionality, networking code and KVM have such
	 branches and include support for this optimization technique.

         If it is detected that the compiler has support for "asm goto",
	 the kernel will compile such branches with just a nop
	 instruction. When the condition flag is toggled to true, the
	 nop will be converted to a jump instruction to execute the
	 conditional block of instructions.

	 This technique lowers overhead and stress on the branch prediction
	 of the processor and generally makes the kernel faster. The update
	 of the condition is slower, but those are always very rare.

	 ( On 32-bit x86, the necessary options added to the compiler
	   flags may increase the size of the kernel slightly. )

config OPTPROBES
	def_bool y
	depends on KPROBES && HAVE_OPTPROBES
	depends on !PREEMPT

config HAVE_EFFICIENT_UNALIGNED_ACCESS
	bool
	help
	  Some architectures are unable to perform unaligned accesses
	  without the use of get_unaligned/put_unaligned. Others are
	  unable to perform such accesses efficiently (e.g. trap on
	  unaligned access and require fixing it up in the exception
	  handler.)

	  This symbol should be selected by an architecture if it can
	  perform unaligned accesses efficiently to allow different
	  code paths to be selected for these cases. Some network
	  drivers, for example, could opt to not fix up alignment
	  problems with received packets if doing so would not help
	  much.

	  See Documentation/unaligned-memory-access.txt for more
	  information on the topic of unaligned memory accesses.

config HAVE_SYSCALL_WRAPPERS
	bool

config KRETPROBES
	def_bool y
	depends on KPROBES && HAVE_KRETPROBES

config USER_RETURN_NOTIFIER
	bool
	depends on HAVE_USER_RETURN_NOTIFIER
	help
	  Provide a kernel-internal notification when a cpu is about to
	  switch to user mode.

config HAVE_IOREMAP_PROT
	bool

config HAVE_KPROBES
	bool

config HAVE_KRETPROBES
	bool

config HAVE_OPTPROBES
	bool

config HAVE_NMI_WATCHDOG
	bool
#
# An arch should select this if it provides all these things:
#
#	task_pt_regs()		in asm/processor.h or asm/ptrace.h
#	arch_has_single_step()	if there is hardware single-step support
#	arch_has_block_step()	if there is hardware block-step support
#	asm/syscall.h		supplying asm-generic/syscall.h interface
#	linux/regset.h		user_regset interfaces
#	CORE_DUMP_USE_REGSET	#define'd in linux/elf.h
#	TIF_SYSCALL_TRACE	calls tracehook_report_syscall_{entry,exit}
#	TIF_NOTIFY_RESUME	calls tracehook_notify_resume()
#	signal delivery		calls tracehook_signal_handler()
#
config HAVE_ARCH_TRACEHOOK
	bool

config HAVE_DMA_ATTRS
	bool

config USE_GENERIC_SMP_HELPERS
	bool

config GENERIC_SMP_IDLE_THREAD
       bool

config HAVE_GENERIC_INIT_TASK
       bool

config HAVE_REGS_AND_STACK_ACCESS_API
	bool
	help
	  This symbol should be selected by an architecure if it supports
	  the API needed to access registers and stack entries from pt_regs,
	  declared in asm/ptrace.h
	  For example the kprobes-based event tracer needs this API.

config HAVE_CLK
	bool
	help
	  The <linux/clk.h> calls support software clock gating and
	  thus are a key power management tool on many systems.

config HAVE_DMA_API_DEBUG
	bool

config HAVE_HW_BREAKPOINT
	bool
	depends on PERF_EVENTS

config HAVE_MIXED_BREAKPOINTS_REGS
	bool
	depends on HAVE_HW_BREAKPOINT
	help
	  Depending on the arch implementation of hardware breakpoints,
	  some of them have separate registers for data and instruction
	  breakpoints addresses, others have mixed registers to store
	  them but define the access type in a control register.
	  Select this option if your arch implements breakpoints under the
	  latter fashion.

config HAVE_USER_RETURN_NOTIFIER
	bool

config HAVE_PERF_EVENTS_NMI
	bool
	help
	  System hardware can generate an NMI using the perf event
	  subsystem.  Also has support for calculating CPU cycle events
	  to determine how many clock cycles in a given period.

config HAVE_ARCH_JUMP_LABEL
	bool

config HAVE_ARCH_MUTEX_CPU_RELAX
	bool

config HAVE_RCU_TABLE_FREE
	bool

config ARCH_HAVE_NMI_SAFE_CMPXCHG
	bool

config HAVE_ALIGNED_STRUCT_PAGE
	bool
	help
	  This makes sure that struct pages are double word aligned and that
	  e.g. the SLUB allocator can perform double word atomic operations
	  on a struct page for better performance. However selecting this
	  might increase the size of a struct page by a word.

config HAVE_CMPXCHG_LOCAL
	bool

config HAVE_CMPXCHG_DOUBLE
	bool

config ARCH_WANT_OLD_COMPAT_IPC
	bool

source "kernel/gcov/Kconfig"