1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
|
============
Architecture
============
This document describes the **Distributed Switch Architecture (DSA)** subsystem
design principles, limitations, interactions with other subsystems, and how to
develop drivers for this subsystem as well as a TODO for developers interested
in joining the effort.
Design principles
=================
The Distributed Switch Architecture is a subsystem which was primarily designed
to support Marvell Ethernet switches (MV88E6xxx, a.k.a Linkstreet product line)
using Linux, but has since evolved to support other vendors as well.
The original philosophy behind this design was to be able to use unmodified
Linux tools such as bridge, iproute2, ifconfig to work transparently whether
they configured/queried a switch port network device or a regular network
device.
An Ethernet switch is typically comprised of multiple front-panel ports, and one
or more CPU or management port. The DSA subsystem currently relies on the
presence of a management port connected to an Ethernet controller capable of
receiving Ethernet frames from the switch. This is a very common setup for all
kinds of Ethernet switches found in Small Home and Office products: routers,
gateways, or even top-of-the rack switches. This host Ethernet controller will
be later referred to as "master" and "cpu" in DSA terminology and code.
The D in DSA stands for Distributed, because the subsystem has been designed
with the ability to configure and manage cascaded switches on top of each other
using upstream and downstream Ethernet links between switches. These specific
ports are referred to as "dsa" ports in DSA terminology and code. A collection
of multiple switches connected to each other is called a "switch tree".
For each front-panel port, DSA will create specialized network devices which are
used as controlling and data-flowing endpoints for use by the Linux networking
stack. These specialized network interfaces are referred to as "slave" network
interfaces in DSA terminology and code.
The ideal case for using DSA is when an Ethernet switch supports a "switch tag"
which is a hardware feature making the switch insert a specific tag for each
Ethernet frames it received to/from specific ports to help the management
interface figure out:
- what port is this frame coming from
- what was the reason why this frame got forwarded
- how to send CPU originated traffic to specific ports
The subsystem does support switches not capable of inserting/stripping tags, but
the features might be slightly limited in that case (traffic separation relies
on Port-based VLAN IDs).
Note that DSA does not currently create network interfaces for the "cpu" and
"dsa" ports because:
- the "cpu" port is the Ethernet switch facing side of the management
controller, and as such, would create a duplication of feature, since you
would get two interfaces for the same conduit: master netdev, and "cpu" netdev
- the "dsa" port(s) are just conduits between two or more switches, and as such
cannot really be used as proper network interfaces either, only the
downstream, or the top-most upstream interface makes sense with that model
Switch tagging protocols
------------------------
DSA supports many vendor-specific tagging protocols, one software-defined
tagging protocol, and a tag-less mode as well (``DSA_TAG_PROTO_NONE``).
The exact format of the tag protocol is vendor specific, but in general, they
all contain something which:
- identifies which port the Ethernet frame came from/should be sent to
- provides a reason why this frame was forwarded to the management interface
All tagging protocols are in ``net/dsa/tag_*.c`` files and implement the
methods of the ``struct dsa_device_ops`` structure, which are detailed below.
Tagging protocols generally fall in one of three categories:
1. The switch-specific frame header is located before the Ethernet header,
shifting to the right (from the perspective of the DSA master's frame
parser) the MAC DA, MAC SA, EtherType and the entire L2 payload.
2. The switch-specific frame header is located before the EtherType, keeping
the MAC DA and MAC SA in place from the DSA master's perspective, but
shifting the 'real' EtherType and L2 payload to the right.
3. The switch-specific frame header is located at the tail of the packet,
keeping all frame headers in place and not altering the view of the packet
that the DSA master's frame parser has.
A tagging protocol may tag all packets with switch tags of the same length, or
the tag length might vary (for example packets with PTP timestamps might
require an extended switch tag, or there might be one tag length on TX and a
different one on RX). Either way, the tagging protocol driver must populate the
``struct dsa_device_ops::needed_headroom`` and/or ``struct dsa_device_ops::needed_tailroom``
with the length in octets of the longest switch frame header/trailer. The DSA
framework will automatically adjust the MTU of the master interface to
accommodate for this extra size in order for DSA user ports to support the
standard MTU (L2 payload length) of 1500 octets. The ``needed_headroom`` and
``needed_tailroom`` properties are also used to request from the network stack,
on a best-effort basis, the allocation of packets with enough extra space such
that the act of pushing the switch tag on transmission of a packet does not
cause it to reallocate due to lack of memory.
Even though applications are not expected to parse DSA-specific frame headers,
the format on the wire of the tagging protocol represents an Application Binary
Interface exposed by the kernel towards user space, for decoders such as
``libpcap``. The tagging protocol driver must populate the ``proto`` member of
``struct dsa_device_ops`` with a value that uniquely describes the
characteristics of the interaction required between the switch hardware and the
data path driver: the offset of each bit field within the frame header and any
stateful processing required to deal with the frames (as may be required for
PTP timestamping).
From the perspective of the network stack, all switches within the same DSA
switch tree use the same tagging protocol. In case of a packet transiting a
fabric with more than one switch, the switch-specific frame header is inserted
by the first switch in the fabric that the packet was received on. This header
typically contains information regarding its type (whether it is a control
frame that must be trapped to the CPU, or a data frame to be forwarded).
Control frames should be decapsulated only by the software data path, whereas
data frames might also be autonomously forwarded towards other user ports of
other switches from the same fabric, and in this case, the outermost switch
ports must decapsulate the packet.
Note that in certain cases, it might be the case that the tagging format used
by a leaf switch (not connected directly to the CPU) to not be the same as what
the network stack sees. This can be seen with Marvell switch trees, where the
CPU port can be configured to use either the DSA or the Ethertype DSA (EDSA)
format, but the DSA links are configured to use the shorter (without Ethertype)
DSA frame header, in order to reduce the autonomous packet forwarding overhead.
It still remains the case that, if the DSA switch tree is configured for the
EDSA tagging protocol, the operating system sees EDSA-tagged packets from the
leaf switches that tagged them with the shorter DSA header. This can be done
because the Marvell switch connected directly to the CPU is configured to
perform tag translation between DSA and EDSA (which is simply the operation of
adding or removing the ``ETH_P_EDSA`` EtherType and some padding octets).
It is possible to construct cascaded setups of DSA switches even if their
tagging protocols are not compatible with one another. In this case, there are
no DSA links in this fabric, and each switch constitutes a disjoint DSA switch
tree. The DSA links are viewed as simply a pair of a DSA master (the out-facing
port of the upstream DSA switch) and a CPU port (the in-facing port of the
downstream DSA switch).
The tagging protocol of the attached DSA switch tree can be viewed through the
``dsa/tagging`` sysfs attribute of the DSA master::
cat /sys/class/net/eth0/dsa/tagging
If the hardware and driver are capable, the tagging protocol of the DSA switch
tree can be changed at runtime. This is done by writing the new tagging
protocol name to the same sysfs device attribute as above (the DSA master and
all attached switch ports must be down while doing this).
It is desirable that all tagging protocols are testable with the ``dsa_loop``
mockup driver, which can be attached to any network interface. The goal is that
any network interface should be capable of transmitting the same packet in the
same way, and the tagger should decode the same received packet in the same way
regardless of the driver used for the switch control path, and the driver used
for the DSA master.
The transmission of a packet goes through the tagger's ``xmit`` function.
The passed ``struct sk_buff *skb`` has ``skb->data`` pointing at
``skb_mac_header(skb)``, i.e. at the destination MAC address, and the passed
``struct net_device *dev`` represents the virtual DSA user network interface
whose hardware counterpart the packet must be steered to (i.e. ``swp0``).
The job of this method is to prepare the skb in a way that the switch will
understand what egress port the packet is for (and not deliver it towards other
ports). Typically this is fulfilled by pushing a frame header. Checking for
insufficient size in the skb headroom or tailroom is unnecessary provided that
the ``needed_headroom`` and ``needed_tailroom`` properties were filled out
properly, because DSA ensures there is enough space before calling this method.
The reception of a packet goes through the tagger's ``rcv`` function. The
passed ``struct sk_buff *skb`` has ``skb->data`` pointing at
``skb_mac_header(skb) + ETH_ALEN`` octets, i.e. to where the first octet after
the EtherType would have been, were this frame not tagged. The role of this
method is to consume the frame header, adjust ``skb->data`` to really point at
the first octet after the EtherType, and to change ``skb->dev`` to point to the
virtual DSA user network interface corresponding to the physical front-facing
switch port that the packet was received on.
Since tagging protocols in category 1 and 2 break software (and most often also
hardware) packet dissection on the DSA master, features such as RPS (Receive
Packet Steering) on the DSA master would be broken. The DSA framework deals
with this by hooking into the flow dissector and shifting the offset at which
the IP header is to be found in the tagged frame as seen by the DSA master.
This behavior is automatic based on the ``overhead`` value of the tagging
protocol. If not all packets are of equal size, the tagger can implement the
``flow_dissect`` method of the ``struct dsa_device_ops`` and override this
default behavior by specifying the correct offset incurred by each individual
RX packet. Tail taggers do not cause issues to the flow dissector.
Due to various reasons (most common being category 1 taggers being associated
with DSA-unaware masters, mangling what the master perceives as MAC DA), the
tagging protocol may require the DSA master to operate in promiscuous mode, to
receive all frames regardless of the value of the MAC DA. This can be done by
setting the ``promisc_on_master`` property of the ``struct dsa_device_ops``.
Note that this assumes a DSA-unaware master driver, which is the norm.
Hardware manufacturers are strongly discouraged to do this, but some tagging
protocols might not provide source port information on RX for all packets, but
e.g. only for control traffic (link-local PDUs). In this case, by implementing
the ``filter`` method of ``struct dsa_device_ops``, the tagger might select
which packets are to be redirected on RX towards the virtual DSA user network
interfaces, and which are to be left in the DSA master's RX data path.
It might also happen (although silicon vendors are strongly discouraged to
produce hardware like this) that a tagging protocol splits the switch-specific
information into a header portion and a tail portion, therefore not falling
cleanly into any of the above 3 categories. DSA does not support this
configuration.
Master network devices
----------------------
Master network devices are regular, unmodified Linux network device drivers for
the CPU/management Ethernet interface. Such a driver might occasionally need to
know whether DSA is enabled (e.g.: to enable/disable specific offload features),
but the DSA subsystem has been proven to work with industry standard drivers:
``e1000e,`` ``mv643xx_eth`` etc. without having to introduce modifications to these
drivers. Such network devices are also often referred to as conduit network
devices since they act as a pipe between the host processor and the hardware
Ethernet switch.
Networking stack hooks
----------------------
When a master netdev is used with DSA, a small hook is placed in the
networking stack is in order to have the DSA subsystem process the Ethernet
switch specific tagging protocol. DSA accomplishes this by registering a
specific (and fake) Ethernet type (later becoming ``skb->protocol``) with the
networking stack, this is also known as a ``ptype`` or ``packet_type``. A typical
Ethernet Frame receive sequence looks like this:
Master network device (e.g.: e1000e):
1. Receive interrupt fires:
- receive function is invoked
- basic packet processing is done: getting length, status etc.
- packet is prepared to be processed by the Ethernet layer by calling
``eth_type_trans``
2. net/ethernet/eth.c::
eth_type_trans(skb, dev)
if (dev->dsa_ptr != NULL)
-> skb->protocol = ETH_P_XDSA
3. drivers/net/ethernet/\*::
netif_receive_skb(skb)
-> iterate over registered packet_type
-> invoke handler for ETH_P_XDSA, calls dsa_switch_rcv()
4. net/dsa/dsa.c::
-> dsa_switch_rcv()
-> invoke switch tag specific protocol handler in 'net/dsa/tag_*.c'
5. net/dsa/tag_*.c:
- inspect and strip switch tag protocol to determine originating port
- locate per-port network device
- invoke ``eth_type_trans()`` with the DSA slave network device
- invoked ``netif_receive_skb()``
Past this point, the DSA slave network devices get delivered regular Ethernet
frames that can be processed by the networking stack.
Slave network devices
---------------------
Slave network devices created by DSA are stacked on top of their master network
device, each of these network interfaces will be responsible for being a
controlling and data-flowing end-point for each front-panel port of the switch.
These interfaces are specialized in order to:
- insert/remove the switch tag protocol (if it exists) when sending traffic
to/from specific switch ports
- query the switch for ethtool operations: statistics, link state,
Wake-on-LAN, register dumps...
- external/internal PHY management: link, auto-negotiation etc.
These slave network devices have custom net_device_ops and ethtool_ops function
pointers which allow DSA to introduce a level of layering between the networking
stack/ethtool, and the switch driver implementation.
Upon frame transmission from these slave network devices, DSA will look up which
switch tagging protocol is currently registered with these network devices, and
invoke a specific transmit routine which takes care of adding the relevant
switch tag in the Ethernet frames.
These frames are then queued for transmission using the master network device
``ndo_start_xmit()`` function, since they contain the appropriate switch tag, the
Ethernet switch will be able to process these incoming frames from the
management interface and delivers these frames to the physical switch port.
Graphical representation
------------------------
Summarized, this is basically how DSA looks like from a network device
perspective::
Unaware application
opens and binds socket
| ^
| |
+-----------v--|--------------------+
|+------+ +------+ +------+ +------+|
|| swp0 | | swp1 | | swp2 | | swp3 ||
|+------+-+------+-+------+-+------+|
| DSA switch driver |
+-----------------------------------+
| ^
Tag added by | | Tag consumed by
switch driver | | switch driver
v |
+-----------------------------------+
| Unmodified host interface driver | Software
--------+-----------------------------------+------------
| Host interface (eth0) | Hardware
+-----------------------------------+
| ^
Tag consumed by | | Tag added by
switch hardware | | switch hardware
v |
+-----------------------------------+
| Switch |
|+------+ +------+ +------+ +------+|
|| swp0 | | swp1 | | swp2 | | swp3 ||
++------+-+------+-+------+-+------++
Slave MDIO bus
--------------
In order to be able to read to/from a switch PHY built into it, DSA creates a
slave MDIO bus which allows a specific switch driver to divert and intercept
MDIO reads/writes towards specific PHY addresses. In most MDIO-connected
switches, these functions would utilize direct or indirect PHY addressing mode
to return standard MII registers from the switch builtin PHYs, allowing the PHY
library and/or to return link status, link partner pages, auto-negotiation
results etc..
For Ethernet switches which have both external and internal MDIO busses, the
slave MII bus can be utilized to mux/demux MDIO reads and writes towards either
internal or external MDIO devices this switch might be connected to: internal
PHYs, external PHYs, or even external switches.
Data structures
---------------
DSA data structures are defined in ``include/net/dsa.h`` as well as
``net/dsa/dsa_priv.h``:
- ``dsa_chip_data``: platform data configuration for a given switch device,
this structure describes a switch device's parent device, its address, as
well as various properties of its ports: names/labels, and finally a routing
table indication (when cascading switches)
- ``dsa_platform_data``: platform device configuration data which can reference
a collection of dsa_chip_data structure if multiples switches are cascaded,
the master network device this switch tree is attached to needs to be
referenced
- ``dsa_switch_tree``: structure assigned to the master network device under
``dsa_ptr``, this structure references a dsa_platform_data structure as well as
the tagging protocol supported by the switch tree, and which receive/transmit
function hooks should be invoked, information about the directly attached
switch is also provided: CPU port. Finally, a collection of dsa_switch are
referenced to address individual switches in the tree.
- ``dsa_switch``: structure describing a switch device in the tree, referencing
a ``dsa_switch_tree`` as a backpointer, slave network devices, master network
device, and a reference to the backing``dsa_switch_ops``
- ``dsa_switch_ops``: structure referencing function pointers, see below for a
full description.
Design limitations
==================
Lack of CPU/DSA network devices
-------------------------------
DSA does not currently create slave network devices for the CPU or DSA ports, as
described before. This might be an issue in the following cases:
- inability to fetch switch CPU port statistics counters using ethtool, which
can make it harder to debug MDIO switch connected using xMII interfaces
- inability to configure the CPU port link parameters based on the Ethernet
controller capabilities attached to it: http://patchwork.ozlabs.org/patch/509806/
- inability to configure specific VLAN IDs / trunking VLANs between switches
when using a cascaded setup
Common pitfalls using DSA setups
--------------------------------
Once a master network device is configured to use DSA (dev->dsa_ptr becomes
non-NULL), and the switch behind it expects a tagging protocol, this network
interface can only exclusively be used as a conduit interface. Sending packets
directly through this interface (e.g.: opening a socket using this interface)
will not make us go through the switch tagging protocol transmit function, so
the Ethernet switch on the other end, expecting a tag will typically drop this
frame.
Interactions with other subsystems
==================================
DSA currently leverages the following subsystems:
- MDIO/PHY library: ``drivers/net/phy/phy.c``, ``mdio_bus.c``
- Switchdev:``net/switchdev/*``
- Device Tree for various of_* functions
- Devlink: ``net/core/devlink.c``
MDIO/PHY library
----------------
Slave network devices exposed by DSA may or may not be interfacing with PHY
devices (``struct phy_device`` as defined in ``include/linux/phy.h)``, but the DSA
subsystem deals with all possible combinations:
- internal PHY devices, built into the Ethernet switch hardware
- external PHY devices, connected via an internal or external MDIO bus
- internal PHY devices, connected via an internal MDIO bus
- special, non-autonegotiated or non MDIO-managed PHY devices: SFPs, MoCA; a.k.a
fixed PHYs
The PHY configuration is done by the ``dsa_slave_phy_setup()`` function and the
logic basically looks like this:
- if Device Tree is used, the PHY device is looked up using the standard
"phy-handle" property, if found, this PHY device is created and registered
using ``of_phy_connect()``
- if Device Tree is used, and the PHY device is "fixed", that is, conforms to
the definition of a non-MDIO managed PHY as defined in
``Documentation/devicetree/bindings/net/fixed-link.txt``, the PHY is registered
and connected transparently using the special fixed MDIO bus driver
- finally, if the PHY is built into the switch, as is very common with
standalone switch packages, the PHY is probed using the slave MII bus created
by DSA
SWITCHDEV
---------
DSA directly utilizes SWITCHDEV when interfacing with the bridge layer, and
more specifically with its VLAN filtering portion when configuring VLANs on top
of per-port slave network devices. As of today, the only SWITCHDEV objects
supported by DSA are the FDB and VLAN objects.
Devlink
-------
DSA registers one devlink device per physical switch in the fabric.
For each devlink device, every physical port (i.e. user ports, CPU ports, DSA
links or unused ports) is exposed as a devlink port.
DSA drivers can make use of the following devlink features:
- Regions: debugging feature which allows user space to dump driver-defined
areas of hardware information in a low-level, binary format. Both global
regions as well as per-port regions are supported. It is possible to export
devlink regions even for pieces of data that are already exposed in some way
to the standard iproute2 user space programs (ip-link, bridge), like address
tables and VLAN tables. For example, this might be useful if the tables
contain additional hardware-specific details which are not visible through
the iproute2 abstraction, or it might be useful to inspect these tables on
the non-user ports too, which are invisible to iproute2 because no network
interface is registered for them.
- Params: a feature which enables user to configure certain low-level tunable
knobs pertaining to the device. Drivers may implement applicable generic
devlink params, or may add new device-specific devlink params.
- Resources: a monitoring feature which enables users to see the degree of
utilization of certain hardware tables in the device, such as FDB, VLAN, etc.
- Shared buffers: a QoS feature for adjusting and partitioning memory and frame
reservations per port and per traffic class, in the ingress and egress
directions, such that low-priority bulk traffic does not impede the
processing of high-priority critical traffic.
For more details, consult ``Documentation/networking/devlink/``.
Device Tree
-----------
DSA features a standardized binding which is documented in
``Documentation/devicetree/bindings/net/dsa/dsa.txt``. PHY/MDIO library helper
functions such as ``of_get_phy_mode()``, ``of_phy_connect()`` are also used to query
per-port PHY specific details: interface connection, MDIO bus location etc..
Driver development
==================
DSA switch drivers need to implement a dsa_switch_ops structure which will
contain the various members described below.
``register_switch_driver()`` registers this dsa_switch_ops in its internal list
of drivers to probe for. ``unregister_switch_driver()`` does the exact opposite.
Unless requested differently by setting the priv_size member accordingly, DSA
does not allocate any driver private context space.
Switch configuration
--------------------
- ``tag_protocol``: this is to indicate what kind of tagging protocol is supported,
should be a valid value from the ``dsa_tag_protocol`` enum
- ``probe``: probe routine which will be invoked by the DSA platform device upon
registration to test for the presence/absence of a switch device. For MDIO
devices, it is recommended to issue a read towards internal registers using
the switch pseudo-PHY and return whether this is a supported device. For other
buses, return a non-NULL string
- ``setup``: setup function for the switch, this function is responsible for setting
up the ``dsa_switch_ops`` private structure with all it needs: register maps,
interrupts, mutexes, locks etc.. This function is also expected to properly
configure the switch to separate all network interfaces from each other, that
is, they should be isolated by the switch hardware itself, typically by creating
a Port-based VLAN ID for each port and allowing only the CPU port and the
specific port to be in the forwarding vector. Ports that are unused by the
platform should be disabled. Past this function, the switch is expected to be
fully configured and ready to serve any kind of request. It is recommended
to issue a software reset of the switch during this setup function in order to
avoid relying on what a previous software agent such as a bootloader/firmware
may have previously configured.
PHY devices and link management
-------------------------------
- ``get_phy_flags``: Some switches are interfaced to various kinds of Ethernet PHYs,
if the PHY library PHY driver needs to know about information it cannot obtain
on its own (e.g.: coming from switch memory mapped registers), this function
should return a 32-bits bitmask of "flags", that is private between the switch
driver and the Ethernet PHY driver in ``drivers/net/phy/\*``.
- ``phy_read``: Function invoked by the DSA slave MDIO bus when attempting to read
the switch port MDIO registers. If unavailable, return 0xffff for each read.
For builtin switch Ethernet PHYs, this function should allow reading the link
status, auto-negotiation results, link partner pages etc..
- ``phy_write``: Function invoked by the DSA slave MDIO bus when attempting to write
to the switch port MDIO registers. If unavailable return a negative error
code.
- ``adjust_link``: Function invoked by the PHY library when a slave network device
is attached to a PHY device. This function is responsible for appropriately
configuring the switch port link parameters: speed, duplex, pause based on
what the ``phy_device`` is providing.
- ``fixed_link_update``: Function invoked by the PHY library, and specifically by
the fixed PHY driver asking the switch driver for link parameters that could
not be auto-negotiated, or obtained by reading the PHY registers through MDIO.
This is particularly useful for specific kinds of hardware such as QSGMII,
MoCA or other kinds of non-MDIO managed PHYs where out of band link
information is obtained
Ethtool operations
------------------
- ``get_strings``: ethtool function used to query the driver's strings, will
typically return statistics strings, private flags strings etc.
- ``get_ethtool_stats``: ethtool function used to query per-port statistics and
return their values. DSA overlays slave network devices general statistics:
RX/TX counters from the network device, with switch driver specific statistics
per port
- ``get_sset_count``: ethtool function used to query the number of statistics items
- ``get_wol``: ethtool function used to obtain Wake-on-LAN settings per-port, this
function may, for certain implementations also query the master network device
Wake-on-LAN settings if this interface needs to participate in Wake-on-LAN
- ``set_wol``: ethtool function used to configure Wake-on-LAN settings per-port,
direct counterpart to set_wol with similar restrictions
- ``set_eee``: ethtool function which is used to configure a switch port EEE (Green
Ethernet) settings, can optionally invoke the PHY library to enable EEE at the
PHY level if relevant. This function should enable EEE at the switch port MAC
controller and data-processing logic
- ``get_eee``: ethtool function which is used to query a switch port EEE settings,
this function should return the EEE state of the switch port MAC controller
and data-processing logic as well as query the PHY for its currently configured
EEE settings
- ``get_eeprom_len``: ethtool function returning for a given switch the EEPROM
length/size in bytes
- ``get_eeprom``: ethtool function returning for a given switch the EEPROM contents
- ``set_eeprom``: ethtool function writing specified data to a given switch EEPROM
- ``get_regs_len``: ethtool function returning the register length for a given
switch
- ``get_regs``: ethtool function returning the Ethernet switch internal register
contents. This function might require user-land code in ethtool to
pretty-print register values and registers
Power management
----------------
- ``suspend``: function invoked by the DSA platform device when the system goes to
suspend, should quiesce all Ethernet switch activities, but keep ports
participating in Wake-on-LAN active as well as additional wake-up logic if
supported
- ``resume``: function invoked by the DSA platform device when the system resumes,
should resume all Ethernet switch activities and re-configure the switch to be
in a fully active state
- ``port_enable``: function invoked by the DSA slave network device ndo_open
function when a port is administratively brought up, this function should be
fully enabling a given switch port. DSA takes care of marking the port with
``BR_STATE_BLOCKING`` if the port is a bridge member, or ``BR_STATE_FORWARDING`` if it
was not, and propagating these changes down to the hardware
- ``port_disable``: function invoked by the DSA slave network device ndo_close
function when a port is administratively brought down, this function should be
fully disabling a given switch port. DSA takes care of marking the port with
``BR_STATE_DISABLED`` and propagating changes to the hardware if this port is
disabled while being a bridge member
Bridge layer
------------
- ``port_bridge_join``: bridge layer function invoked when a given switch port is
added to a bridge, this function should be doing the necessary at the switch
level to permit the joining port from being added to the relevant logical
domain for it to ingress/egress traffic with other members of the bridge.
- ``port_bridge_leave``: bridge layer function invoked when a given switch port is
removed from a bridge, this function should be doing the necessary at the
switch level to deny the leaving port from ingress/egress traffic from the
remaining bridge members. When the port leaves the bridge, it should be aged
out at the switch hardware for the switch to (re) learn MAC addresses behind
this port.
- ``port_stp_state_set``: bridge layer function invoked when a given switch port STP
state is computed by the bridge layer and should be propagated to switch
hardware to forward/block/learn traffic. The switch driver is responsible for
computing a STP state change based on current and asked parameters and perform
the relevant ageing based on the intersection results
- ``port_bridge_flags``: bridge layer function invoked when a port must
configure its settings for e.g. flooding of unknown traffic or source address
learning. The switch driver is responsible for initial setup of the
standalone ports with address learning disabled and egress flooding of all
types of traffic, then the DSA core notifies of any change to the bridge port
flags when the port joins and leaves a bridge. DSA does not currently manage
the bridge port flags for the CPU port. The assumption is that address
learning should be statically enabled (if supported by the hardware) on the
CPU port, and flooding towards the CPU port should also be enabled, due to a
lack of an explicit address filtering mechanism in the DSA core.
Bridge VLAN filtering
---------------------
- ``port_vlan_filtering``: bridge layer function invoked when the bridge gets
configured for turning on or off VLAN filtering. If nothing specific needs to
be done at the hardware level, this callback does not need to be implemented.
When VLAN filtering is turned on, the hardware must be programmed with
rejecting 802.1Q frames which have VLAN IDs outside of the programmed allowed
VLAN ID map/rules. If there is no PVID programmed into the switch port,
untagged frames must be rejected as well. When turned off the switch must
accept any 802.1Q frames irrespective of their VLAN ID, and untagged frames are
allowed.
- ``port_vlan_add``: bridge layer function invoked when a VLAN is configured
(tagged or untagged) for the given switch port. If the operation is not
supported by the hardware, this function should return ``-EOPNOTSUPP`` to
inform the bridge code to fallback to a software implementation.
- ``port_vlan_del``: bridge layer function invoked when a VLAN is removed from the
given switch port
- ``port_vlan_dump``: bridge layer function invoked with a switchdev callback
function that the driver has to call for each VLAN the given port is a member
of. A switchdev object is used to carry the VID and bridge flags.
- ``port_fdb_add``: bridge layer function invoked when the bridge wants to install a
Forwarding Database entry, the switch hardware should be programmed with the
specified address in the specified VLAN Id in the forwarding database
associated with this VLAN ID. If the operation is not supported, this
function should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to
a software implementation.
.. note:: VLAN ID 0 corresponds to the port private database, which, in the context
of DSA, would be its port-based VLAN, used by the associated bridge device.
- ``port_fdb_del``: bridge layer function invoked when the bridge wants to remove a
Forwarding Database entry, the switch hardware should be programmed to delete
the specified MAC address from the specified VLAN ID if it was mapped into
this port forwarding database
- ``port_fdb_dump``: bridge layer function invoked with a switchdev callback
function that the driver has to call for each MAC address known to be behind
the given port. A switchdev object is used to carry the VID and FDB info.
- ``port_mdb_add``: bridge layer function invoked when the bridge wants to install
a multicast database entry. If the operation is not supported, this function
should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to a
software implementation. The switch hardware should be programmed with the
specified address in the specified VLAN ID in the forwarding database
associated with this VLAN ID.
.. note:: VLAN ID 0 corresponds to the port private database, which, in the context
of DSA, would be its port-based VLAN, used by the associated bridge device.
- ``port_mdb_del``: bridge layer function invoked when the bridge wants to remove a
multicast database entry, the switch hardware should be programmed to delete
the specified MAC address from the specified VLAN ID if it was mapped into
this port forwarding database.
- ``port_mdb_dump``: bridge layer function invoked with a switchdev callback
function that the driver has to call for each MAC address known to be behind
the given port. A switchdev object is used to carry the VID and MDB info.
Link aggregation
----------------
Link aggregation is implemented in the Linux networking stack by the bonding
and team drivers, which are modeled as virtual, stackable network interfaces.
DSA is capable of offloading a link aggregation group (LAG) to hardware that
supports the feature, and supports bridging between physical ports and LAGs,
as well as between LAGs. A bonding/team interface which holds multiple physical
ports constitutes a logical port, although DSA has no explicit concept of a
logical port at the moment. Due to this, events where a LAG joins/leaves a
bridge are treated as if all individual physical ports that are members of that
LAG join/leave the bridge. Switchdev port attributes (VLAN filtering, STP
state, etc) and objects (VLANs, MDB entries) offloaded to a LAG as bridge port
are treated similarly: DSA offloads the same switchdev object / port attribute
on all members of the LAG. Static bridge FDB entries on a LAG are not yet
supported, since the DSA driver API does not have the concept of a logical port
ID.
- ``port_lag_join``: function invoked when a given switch port is added to a
LAG. The driver may return ``-EOPNOTSUPP``, and in this case, DSA will fall
back to a software implementation where all traffic from this port is sent to
the CPU.
- ``port_lag_leave``: function invoked when a given switch port leaves a LAG
and returns to operation as a standalone port.
- ``port_lag_change``: function invoked when the link state of any member of
the LAG changes, and the hashing function needs rebalancing to only make use
of the subset of physical LAG member ports that are up.
Drivers that benefit from having an ID associated with each offloaded LAG
can optionally populate ``ds->num_lag_ids`` from the ``dsa_switch_ops::setup``
method. The LAG ID associated with a bonding/team interface can then be
retrieved by a DSA switch driver using the ``dsa_lag_id`` function.
IEC 62439-2 (MRP)
-----------------
The Media Redundancy Protocol is a topology management protocol optimized for
fast fault recovery time for ring networks, which has some components
implemented as a function of the bridge driver. MRP uses management PDUs
(Test, Topology, LinkDown/Up, Option) sent at a multicast destination MAC
address range of 01:15:4e:00:00:0x and with an EtherType of 0x88e3.
Depending on the node's role in the ring (MRM: Media Redundancy Manager,
MRC: Media Redundancy Client, MRA: Media Redundancy Automanager), certain MRP
PDUs might need to be terminated locally and others might need to be forwarded.
An MRM might also benefit from offloading to hardware the creation and
transmission of certain MRP PDUs (Test).
Normally an MRP instance can be created on top of any network interface,
however in the case of a device with an offloaded data path such as DSA, it is
necessary for the hardware, even if it is not MRP-aware, to be able to extract
the MRP PDUs from the fabric before the driver can proceed with the software
implementation. DSA today has no driver which is MRP-aware, therefore it only
listens for the bare minimum switchdev objects required for the software assist
to work properly. The operations are detailed below.
- ``port_mrp_add`` and ``port_mrp_del``: notifies driver when an MRP instance
with a certain ring ID, priority, primary port and secondary port is
created/deleted.
- ``port_mrp_add_ring_role`` and ``port_mrp_del_ring_role``: function invoked
when an MRP instance changes ring roles between MRM or MRC. This affects
which MRP PDUs should be trapped to software and which should be autonomously
forwarded.
IEC 62439-3 (HSR/PRP)
---------------------
The Parallel Redundancy Protocol (PRP) is a network redundancy protocol which
works by duplicating and sequence numbering packets through two independent L2
networks (which are unaware of the PRP tail tags carried in the packets), and
eliminating the duplicates at the receiver. The High-availability Seamless
Redundancy (HSR) protocol is similar in concept, except all nodes that carry
the redundant traffic are aware of the fact that it is HSR-tagged (because HSR
uses a header with an EtherType of 0x892f) and are physically connected in a
ring topology. Both HSR and PRP use supervision frames for monitoring the
health of the network and for discovery of other nodes.
In Linux, both HSR and PRP are implemented in the hsr driver, which
instantiates a virtual, stackable network interface with two member ports.
The driver only implements the basic roles of DANH (Doubly Attached Node
implementing HSR) and DANP (Doubly Attached Node implementing PRP); the roles
of RedBox and QuadBox are not implemented (therefore, bridging a hsr network
interface with a physical switch port does not produce the expected result).
A driver which is able of offloading certain functions of a DANP or DANH should
declare the corresponding netdev features as indicated by the documentation at
``Documentation/networking/netdev-features.rst``. Additionally, the following
methods must be implemented:
- ``port_hsr_join``: function invoked when a given switch port is added to a
DANP/DANH. The driver may return ``-EOPNOTSUPP`` and in this case, DSA will
fall back to a software implementation where all traffic from this port is
sent to the CPU.
- ``port_hsr_leave``: function invoked when a given switch port leaves a
DANP/DANH and returns to normal operation as a standalone port.
TODO
====
Making SWITCHDEV and DSA converge towards an unified codebase
-------------------------------------------------------------
SWITCHDEV properly takes care of abstracting the networking stack with offload
capable hardware, but does not enforce a strict switch device driver model. On
the other DSA enforces a fairly strict device driver model, and deals with most
of the switch specific. At some point we should envision a merger between these
two subsystems and get the best of both worlds.
Other hanging fruits
--------------------
- allowing more than one CPU/management interface:
http://comments.gmane.org/gmane.linux.network/365657
|