summaryrefslogtreecommitdiffstats
path: root/Documentation/gdb-kernel-debugging.txt
blob: 4ab7d43d07544f7a22b35e49f9eb691eb3e9204d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
Debugging kernel and modules via gdb
====================================

The kernel debugger kgdb, hypervisors like QEMU or JTAG-based hardware
interfaces allow to debug the Linux kernel and its modules during runtime
using gdb. Gdb comes with a powerful scripting interface for python. The
kernel provides a collection of helper scripts that can simplify typical
kernel debugging steps. This is a short tutorial about how to enable and use
them. It focuses on QEMU/KVM virtual machines as target, but the examples can
be transferred to the other gdb stubs as well.


Requirements
------------

 o gdb 7.2+ (recommended: 7.4+) with python support enabled (typically true
   for distributions)


Setup
-----

 o Create a virtual Linux machine for QEMU/KVM (see www.linux-kvm.org and
   www.qemu.org for more details). For cross-development,
   http://landley.net/aboriginal/bin keeps a pool of machine images and
   toolchains that can be helpful to start from.

 o Build the kernel with CONFIG_GDB_SCRIPTS enabled, but leave
   CONFIG_DEBUG_INFO_REDUCED off. If your architecture supports
   CONFIG_FRAME_POINTER, keep it enabled.

 o Install that kernel on the guest.

   Alternatively, QEMU allows to boot the kernel directly using -kernel,
   -append, -initrd command line switches. This is generally only useful if
   you do not depend on modules. See QEMU documentation for more details on
   this mode.

 o Enable the gdb stub of QEMU/KVM, either
    - at VM startup time by appending "-s" to the QEMU command line
   or
    - during runtime by issuing "gdbserver" from the QEMU monitor
      console

 o cd /path/to/linux-build

 o Start gdb: gdb vmlinux

   Note: Some distros may restrict auto-loading of gdb scripts to known safe
   directories. In case gdb reports to refuse loading vmlinux-gdb.py, add

    add-auto-load-safe-path /path/to/linux-build

   to ~/.gdbinit. See gdb help for more details.

 o Attach to the booted guest:
    (gdb) target remote :1234


Examples of using the Linux-provided gdb helpers
------------------------------------------------

 o Load module (and main kernel) symbols:
    (gdb) lx-symbols
    loading vmlinux
    scanning for modules in /home/user/linux/build
    loading @0xffffffffa0020000: /home/user/linux/build/net/netfilter/xt_tcpudp.ko
    loading @0xffffffffa0016000: /home/user/linux/build/net/netfilter/xt_pkttype.ko
    loading @0xffffffffa0002000: /home/user/linux/build/net/netfilter/xt_limit.ko
    loading @0xffffffffa00ca000: /home/user/linux/build/net/packet/af_packet.ko
    loading @0xffffffffa003c000: /home/user/linux/build/fs/fuse/fuse.ko
    ...
    loading @0xffffffffa0000000: /home/user/linux/build/drivers/ata/ata_generic.ko

 o Set a breakpoint on some not yet loaded module function, e.g.:
    (gdb) b btrfs_init_sysfs
    Function "btrfs_init_sysfs" not defined.
    Make breakpoint pending on future shared library load? (y or [n]) y
    Breakpoint 1 (btrfs_init_sysfs) pending.

 o Continue the target
    (gdb) c

 o Load the module on the target and watch the symbols being loaded as well as
   the breakpoint hit:
    loading @0xffffffffa0034000: /home/user/linux/build/lib/libcrc32c.ko
    loading @0xffffffffa0050000: /home/user/linux/build/lib/lzo/lzo_compress.ko
    loading @0xffffffffa006e000: /home/user/linux/build/lib/zlib_deflate/zlib_deflate.ko
    loading @0xffffffffa01b1000: /home/user/linux/build/fs/btrfs/btrfs.ko

    Breakpoint 1, btrfs_init_sysfs () at /home/user/linux/fs/btrfs/sysfs.c:36
    36              btrfs_kset = kset_create_and_add("btrfs", NULL, fs_kobj);

 o Dump the log buffer of the target kernel:
    (gdb) lx-dmesg
    [     0.000000] Initializing cgroup subsys cpuset
    [     0.000000] Initializing cgroup subsys cpu
    [     0.000000] Linux version 3.8.0-rc4-dbg+ (...
    [     0.000000] Command line: root=/dev/sda2 resume=/dev/sda1 vga=0x314
    [     0.000000] e820: BIOS-provided physical RAM map:
    [     0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
    [     0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
    ....

 o Examine fields of the current task struct:
    (gdb) p $lx_current().pid
    $1 = 4998
    (gdb) p $lx_current().comm
    $2 = "modprobe\000\000\000\000\000\000\000"

 o Make use of the per-cpu function for the current or a specified CPU:
    (gdb) p $lx_per_cpu("runqueues").nr_running
    $3 = 1
    (gdb) p $lx_per_cpu("runqueues", 2).nr_running
    $4 = 0

 o Dig into hrtimers using the container_of helper:
    (gdb) set $next = $lx_per_cpu("hrtimer_bases").clock_base[0].active.next
    (gdb) p *$container_of($next, "struct hrtimer", "node")
    $5 = {
      node = {
        node = {
          __rb_parent_color = 18446612133355256072,
          rb_right = 0x0 <irq_stack_union>,
          rb_left = 0x0 <irq_stack_union>
        },
        expires = {
          tv64 = 1835268000000
        }
      },
      _softexpires = {
        tv64 = 1835268000000
      },
      function = 0xffffffff81078232 <tick_sched_timer>,
      base = 0xffff88003fd0d6f0,
      state = 1,
      start_pid = 0,
      start_site = 0xffffffff81055c1f <hrtimer_start_range_ns+20>,
      start_comm = "swapper/2\000\000\000\000\000\000"
    }

 o Dig into a radix tree data structure, such as the IRQ descriptors:
    (gdb) print (struct irq_desc)$lx_radix_tree_lookup(irq_desc_tree, 18)
    $6 = {
      irq_common_data = {
        state_use_accessors = 67584,
        handler_data = 0x0 <__vectors_start>,
        msi_desc = 0x0 <__vectors_start>,
        affinity = {{
            bits = {65535}
          }}
      },
      irq_data = {
        mask = 0,
        irq = 18,
        hwirq = 27,
        common = 0xee803d80,
        chip = 0xc0eb0854 <gic_data>,
        domain = 0xee808000,
        parent_data = 0x0 <__vectors_start>,
        chip_data = 0xc0eb0854 <gic_data>
      } <... trimmed ...>

List of commands and functions
------------------------------

The number of commands and convenience functions may evolve over the time,
this is just a snapshot of the initial version:

 (gdb) apropos lx
 function lx_current -- Return current task
 function lx_module -- Find module by name and return the module variable
 function lx_per_cpu -- Return per-cpu variable
 function lx_task_by_pid -- Find Linux task by PID and return the task_struct variable
 function lx_thread_info -- Calculate Linux thread_info from task variable
 lx-dmesg -- Print Linux kernel log buffer
 lx-lsmod -- List currently loaded modules
 lx-symbols -- (Re-)load symbols of Linux kernel and currently loaded modules

Detailed help can be obtained via "help <command-name>" for commands and "help
function <function-name>" for convenience functions.