summaryrefslogtreecommitdiffstats
path: root/virt/kvm/arm/arm.c
AgeCommit message (Collapse)AuthorFilesLines
2020-05-16KVM: arm64: Move virt/kvm/arm to arch/arm64Marc Zyngier1-1681/+0
Now that the 32bit KVM/arm host is a distant memory, let's move the whole of the KVM/arm64 code into the arm64 tree. As they said in the song: Welcome Home (Sanitarium). Signed-off-by: Marc Zyngier <maz@kernel.org> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20200513104034.74741-1-maz@kernel.org
2020-03-31KVM: Pass kvm_init()'s opaque param to additional arch funcsSean Christopherson1-2/+2
Pass @opaque to kvm_arch_hardware_setup() and kvm_arch_check_processor_compat() to allow architecture specific code to reference @opaque without having to stash it away in a temporary global variable. This will enable x86 to separate its vendor specific callback ops, which are passed via @opaque, into "init" and "runtime" ops without having to stash away the "init" ops. No functional change intended. Reviewed-by: Cornelia Huck <cohuck@redhat.com> Tested-by: Cornelia Huck <cohuck@redhat.com> #s390 Acked-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20200321202603.19355-2-sean.j.christopherson@intel.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-31Merge tag 'kvmarm-5.7' of ↵Paolo Bonzini1-2/+8
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm updates for Linux 5.7 - GICv4.1 support - 32bit host removal
2020-03-24KVM: arm64: GICv4.1: Reload VLPI configuration on distributor enable/disableMarc Zyngier1-0/+8
Each time a Group-enable bit gets flipped, the state of these bits needs to be forwarded to the hardware. This is a pretty heavy handed operation, requiring all vcpus to reload their GICv4 configuration. It is thus implemented as a new request type. These enable bits are programmed into the HW by setting the VGrp{0,1}En fields of GICR_VPENDBASER when the vPEs are made resident again. Of course, we only support Group-1 for now... Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Link: https://lore.kernel.org/r/20200304203330.4967-22-maz@kernel.org
2020-03-16KVM: Provide common implementation for generic dirty log functionsSean Christopherson1-44/+4
Move the implementations of KVM_GET_DIRTY_LOG and KVM_CLEAR_DIRTY_LOG for CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT into common KVM code. The arch specific implemenations are extremely similar, differing only in whether the dirty log needs to be sync'd from hardware (x86) and how the TLBs are flushed. Add new arch hooks to handle sync and TLB flush; the sync will also be used for non-generic dirty log support in a future patch (s390). The ulterior motive for providing a common implementation is to eliminate the dependency between arch and common code with respect to the memslot referenced by the dirty log, i.e. to make it obvious in the code that the validity of the memslot is guaranteed, as a future patch will rework memslot handling such that id_to_memslot() can return NULL. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-28Merge tag 'kvmarm-fixes-5.6-1' of ↵Paolo Bonzini1-2/+0
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm fixes for 5.6, take #1 - Fix compilation on 32bit - Move VHE guest entry/exit into the VHE-specific entry code - Make sure all functions called by the non-VHE HYP code is tagged as __always_inline
2020-02-17kvm: arm/arm64: Fold VHE entry/exit work into kvm_vcpu_run_vhe()Mark Rutland1-2/+0
With VHE, running a vCPU always requires the sequence: 1. kvm_arm_vhe_guest_enter(); 2. kvm_vcpu_run_vhe(); 3. kvm_arm_vhe_guest_exit() ... and as we invoke this from the shared arm/arm64 KVM code, 32-bit arm has to provide stubs for all three functions. To simplify the common code, and make it easier to make further modifications to the arm64-specific portions in the near future, let's fold kvm_arm_vhe_guest_enter() and kvm_arm_vhe_guest_exit() into kvm_vcpu_run_vhe(). The 32-bit stubs for kvm_arm_vhe_guest_enter() and kvm_arm_vhe_guest_exit() are removed, as they are no longer used. The 32-bit stub for kvm_vcpu_run_vhe() is left as-is. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200210114757.2889-1-mark.rutland@arm.com
2020-01-30Merge tag 'kvmarm-5.6' of ↵Paolo Bonzini1-3/+1
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm updates for Linux 5.6 - Fix MMIO sign extension - Fix HYP VA tagging on tag space exhaustion - Fix PSTATE/CPSR handling when generating exception - Fix MMU notifier's advertizing of young pages - Fix poisoned page handling - Fix PMU SW event handling - Fix TVAL register access - Fix AArch32 external abort injection - Fix ITS unmapped collection handling - Various cleanups
2020-01-27KVM: Move running VCPU from ARM to common codePaolo Bonzini1-29/+0
For ring-based dirty log tracking, it will be more efficient to account writes during schedule-out or schedule-in to the currently running VCPU. We would like to do it even if the write doesn't use the current VCPU's address space, as is the case for cached writes (see commit 4e335d9e7ddb, "Revert "KVM: Support vCPU-based gfn->hva cache"", 2017-05-02). Therefore, add a mechanism to track the currently-loaded kvm_vcpu struct. There is already something similar in KVM/ARM; one important difference is that kvm_arch_vcpu_{load,put} have two callers in virt/kvm/kvm_main.c: we have to update both the architecture-independent vcpu_{load,put} and the preempt notifiers. Another change made in the process is to allow using kvm_get_running_vcpu() in preemptible code. This is allowed because preempt notifiers ensure that the value does not change even after the VCPU thread is migrated. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: Drop kvm_arch_vcpu_init() and kvm_arch_vcpu_uninit()Sean Christopherson1-5/+0
Remove kvm_arch_vcpu_init() and kvm_arch_vcpu_uninit() now that all arch specific implementations are nops. Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: arm64: Free sve_state via arm specific hookSean Christopherson1-0/+2
Add an arm specific hook to free the arm64-only sve_state. Doing so eliminates the last functional code from kvm_arch_vcpu_uninit() across all architectures and paves the way for removing kvm_arch_vcpu_init() and kvm_arch_vcpu_uninit() entirely. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: ARM: Move all vcpu init code into kvm_arch_vcpu_create()Sean Christopherson1-14/+20
Fold init() into create() now that the two are called back-to-back by common KVM code (kvm_vcpu_init() calls kvm_arch_vcpu_init() as its last action, and kvm_vm_ioctl_create_vcpu() calls kvm_arch_vcpu_create() immediately thereafter). This paves the way for removing kvm_arch_vcpu_{un}init() entirely. Note, there is no associated unwinding in kvm_arch_vcpu_uninit() that needs to be relocated (to kvm_arch_vcpu_destroy()). No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: Move vcpu alloc and init invocation to common codeSean Christopherson1-27/+2
Now that all architectures tightly couple vcpu allocation/free with the mandatory calls to kvm_{un}init_vcpu(), move the sequences verbatim to common KVM code. Move both allocation and initialization in a single patch to eliminate thrash in arch specific code. The bisection benefits of moving the two pieces in separate patches is marginal at best, whereas the odds of introducing a transient arch specific bug are non-zero. Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24KVM: Introduce kvm_vcpu_destroy()Sean Christopherson1-1/+1
Add kvm_vcpu_destroy() and wire up all architectures to call the common function instead of their arch specific implementation. The common destruction function will be used by future patches to move allocation and initialization of vCPUs to common KVM code, i.e. to free resources that are allocated by arch agnostic code. No functional change intended. Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24KVM: Add kvm_arch_vcpu_precreate() to handle pre-allocation issuesSean Christopherson1-10/+11
Add a pre-allocation arch hook to handle checks that are currently done by arch specific code prior to allocating the vCPU object. This paves the way for moving the allocation to common KVM code. Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24KVM: arm: Drop kvm_arch_vcpu_free()Sean Christopherson1-7/+2
Remove the superfluous kvm_arch_vcpu_free() as it is no longer called from commmon KVM code. Note, kvm_arch_vcpu_destroy() *is* called from common code, i.e. choosing which function to whack is not completely arbitrary. Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-19KVM: arm: Remove duplicate includeYueHaibing1-2/+0
Remove duplicate header which is included twice. Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Steven Price <steven.price@arm.com> Link: https://lore.kernel.org/r/20191113014045.15276-1-yuehaibing@huawei.com
2020-01-19KVM: ARM: Call hyp_cpu_pm_exit at the right placeShannon Zhao1-1/+1
It doesn't needs to call hyp_cpu_pm_exit() in init_hyp_mode() when some error occurs. hyp_cpu_pm_exit() only needs to be called in kvm_arch_init() if init_subsystems() fails. So move hyp_cpu_pm_exit() out from teardown_hyp_mode() and call it directly in kvm_arch_init(). Signed-off-by: Shannon Zhao <shannon.zhao@linux.alibaba.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/1575272531-3204-1-git-send-email-shannon.zhao@linux.alibaba.com
2019-12-06KVM: arm/arm64: Get rid of unused arg in cpu_init_hyp_mode()Miaohe Lin1-2/+2
As arg dummy is not really needed, there's no need to pass NULL when calling cpu_init_hyp_mode(). So clean it up. Fixes: 67f691976662 ("arm64: kvm: allows kvm cpu hotplug") Reviewed-by: Steven Price <steven.price@arm.com> Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/1574320559-5662-1-git-send-email-linmiaohe@huawei.com
2019-11-08Merge remote-tracking branch 'kvmarm/misc-5.5' into kvmarm/nextMarc Zyngier1-6/+10
2019-11-08KVM: arm64: Opportunistically turn off WFI trapping when using direct LPI ↵Marc Zyngier1-2/+2
injection Just like we do for WFE trapping, it can be useful to turn off WFI trapping when the physical CPU is not oversubscribed (that is, the vcpu is the only runnable process on this CPU) *and* that we're using direct injection of interrupts. The conditions are reevaluated on each vcpu_load(), ensuring that we don't switch to this mode on a busy system. On a GICv4 system, this has the effect of reducing the generation of doorbell interrupts to zero when the right conditions are met, which is a huge improvement over the current situation (where the doorbells are screaming if the CPU ever hits a blocking WFI). Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Link: https://lore.kernel.org/r/20191107160412.30301-3-maz@kernel.org
2019-10-28KVM: arm64: vgic-v4: Move the GICv4 residency flow to be driven by vcpu_load/putMarc Zyngier1-4/+8
When the VHE code was reworked, a lot of the vgic stuff was moved around, but the GICv4 residency code did stay untouched, meaning that we come in and out of residency on each flush/sync, which is obviously suboptimal. To address this, let's move things around a bit: - Residency entry (flush) moves to vcpu_load - Residency exit (sync) moves to vcpu_put - On blocking (entry to WFI), we "put" - On unblocking (exit from WFI), we "load" Because these can nest (load/block/put/load/unblock/put, for example), we now have per-VPE tracking of the residency state. Additionally, vgic_v4_put gains a "need doorbell" parameter, which only gets set to true when blocking because of a WFI. This allows a finer control of the doorbell, which now also gets disabled as soon as it gets signaled. Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20191027144234.8395-2-maz@kernel.org
2019-10-24Merge remote-tracking branch 'kvmarm/kvm-arm64/stolen-time' into ↵Marc Zyngier1-0/+11
kvmarm-master/next
2019-10-21KVM: arm64: Support stolen time reporting via shared structureSteven Price1-0/+11
Implement the service call for configuring a shared structure between a VCPU and the hypervisor in which the hypervisor can write the time stolen from the VCPU's execution time by other tasks on the host. User space allocates memory which is placed at an IPA also chosen by user space. The hypervisor then updates the shared structure using kvm_put_guest() to ensure single copy atomicity of the 64-bit value reporting the stolen time in nanoseconds. Whenever stolen time is enabled by the guest, the stolen time counter is reset. The stolen time itself is retrieved from the sched_info structure maintained by the Linux scheduler code. We enable SCHEDSTATS when selecting KVM Kconfig to ensure this value is meaningful. Signed-off-by: Steven Price <steven.price@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-21KVM: arm/arm64: Allow user injection of external data abortsChristoffer Dall1-0/+1
In some scenarios, such as buggy guest or incorrect configuration of the VMM and firmware description data, userspace will detect a memory access to a portion of the IPA, which is not mapped to any MMIO region. For this purpose, the appropriate action is to inject an external abort to the guest. The kernel already has functionality to inject an external abort, but we need to wire up a signal from user space that lets user space tell the kernel to do this. It turns out, we already have the set event functionality which we can perfectly reuse for this. Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-10-21KVM: arm/arm64: Allow reporting non-ISV data aborts to userspaceChristoffer Dall1-0/+21
For a long time, if a guest accessed memory outside of a memslot using any of the load/store instructions in the architecture which doesn't supply decoding information in the ESR_EL2 (the ISV bit is not set), the kernel would print the following message and terminate the VM as a result of returning -ENOSYS to userspace: load/store instruction decoding not implemented The reason behind this message is that KVM assumes that all accesses outside a memslot is an MMIO access which should be handled by userspace, and we originally expected to eventually implement some sort of decoding of load/store instructions where the ISV bit was not set. However, it turns out that many of the instructions which don't provide decoding information on abort are not safe to use for MMIO accesses, and the remaining few that would potentially make sense to use on MMIO accesses, such as those with register writeback, are not used in practice. It also turns out that fetching an instruction from guest memory can be a pretty horrible affair, involving stopping all CPUs on SMP systems, handling multiple corner cases of address translation in software, and more. It doesn't appear likely that we'll ever implement this in the kernel. What is much more common is that a user has misconfigured his/her guest and is actually not accessing an MMIO region, but just hitting some random hole in the IPA space. In this scenario, the error message above is almost misleading and has led to a great deal of confusion over the years. It is, nevertheless, ABI to userspace, and we therefore need to introduce a new capability that userspace explicitly enables to change behavior. This patch introduces KVM_CAP_ARM_NISV_TO_USER (NISV meaning Non-ISV) which does exactly that, and introduces a new exit reason to report the event to userspace. User space can then emulate an exception to the guest, restart the guest, suspend the guest, or take any other appropriate action as per the policy of the running system. Reported-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Alexander Graf <graf@amazon.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-09-09KVM: arm/arm64: vgic: Allow more than 256 vcpus for KVM_IRQ_LINEMarc Zyngier1-0/+2
While parts of the VGIC support a large number of vcpus (we bravely allow up to 512), other parts are more limited. One of these limits is visible in the KVM_IRQ_LINE ioctl, which only allows 256 vcpus to be signalled when using the CPU or PPI types. Unfortunately, we've cornered ourselves badly by allocating all the bits in the irq field. Since the irq_type subfield (8 bit wide) is currently only taking the values 0, 1 and 2 (and we have been careful not to allow anything else), let's reduce this field to only 4 bits, and allocate the remaining 4 bits to a vcpu2_index, which acts as a multiplier: vcpu_id = 256 * vcpu2_index + vcpu_index With that, and a new capability (KVM_CAP_ARM_IRQ_LINE_LAYOUT_2) allowing this to be discovered, it becomes possible to inject PPIs to up to 4096 vcpus. But please just don't. Whilst we're there, add a clarification about the use of KVM_IRQ_LINE on arm, which is not completely conditionned by KVM_CAP_IRQCHIP. Reported-by: Zenghui Yu <yuzenghui@huawei.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-09Merge tag 'kvmarm-fixes-for-5.3-2' of ↵Paolo Bonzini1-0/+11
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm fixes for 5.3, take #2 - Fix our system register reset so that we stop writing non-sensical values to them, and track which registers get reset instead. - Sync VMCR back from the GIC on WFI so that KVM has an exact vue of PMR. - Reevaluate state of HW-mapped, level triggered interrupts on enable.
2019-08-09Merge tag 'kvmarm-fixes-for-5.3' of ↵Paolo Bonzini1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm fixes for 5.3 - A bunch of switch/case fall-through annotation, fixing one actual bug - Fix PMU reset bug - Add missing exception class debug strings
2019-08-05KVM: arm/arm64: Sync ICH_VMCR_EL2 back when about to blockMarc Zyngier1-0/+11
Since commit commit 328e56647944 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put"), we leave ICH_VMCR_EL2 (or its GICv2 equivalent) loaded as long as we can, only syncing it back when we're scheduled out. There is a small snag with that though: kvm_vgic_vcpu_pending_irq(), which is indirectly called from kvm_vcpu_check_block(), needs to evaluate the guest's view of ICC_PMR_EL1. At the point were we call kvm_vcpu_check_block(), the vcpu is still loaded, and whatever changes to PMR is not visible in memory until we do a vcpu_put(). Things go really south if the guest does the following: mov x0, #0 // or any small value masking interrupts msr ICC_PMR_EL1, x0 [vcpu preempted, then rescheduled, VMCR sampled] mov x0, #ff // allow all interrupts msr ICC_PMR_EL1, x0 wfi // traps to EL2, so samping of VMCR [interrupt arrives just after WFI] Here, the hypervisor's view of PMR is zero, while the guest has enabled its interrupts. kvm_vgic_vcpu_pending_irq() will then say that no interrupts are pending (despite an interrupt being received) and we'll block for no reason. If the guest doesn't have a periodic interrupt firing once it has blocked, it will stay there forever. To avoid this unfortuante situation, let's resync VMCR from kvm_arch_vcpu_blocking(), ensuring that a following kvm_vcpu_check_block() will observe the latest value of PMR. This has been found by booting an arm64 Linux guest with the pseudo NMI feature, and thus using interrupt priorities to mask interrupts instead of the usual PSTATE masking. Cc: stable@vger.kernel.org # 4.12 Fixes: 328e56647944 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put") Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-08-05KVM: remove kvm_arch_has_vcpu_debugfs()Paolo Bonzini1-5/+0
There is no need for this function as all arches have to implement kvm_arch_create_vcpu_debugfs() no matter what. A #define symbol let us actually simplify the code. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-07-24Documentation: move Documentation/virtual to Documentation/virtChristoph Hellwig1-1/+1
Renaming docs seems to be en vogue at the moment, so fix on of the grossly misnamed directories. We usually never use "virtual" as a shortcut for virtualization in the kernel, but always virt, as seen in the virt/ top-level directory. Fix up the documentation to match that. Fixes: ed16648eb5b8 ("Move kvm, uml, and lguest subdirectories under a common "virtual" directory, I.E:") Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-07-23KVM: arm/arm64: Introduce kvm_pmu_vcpu_init() to setup PMU counter indexZenghui Yu1-0/+2
We use "pmc->idx" and the "chained" bitmap to determine if the pmc is chained, in kvm_pmu_pmc_is_chained(). But idx might be uninitialized (and random) when we doing this decision, through a KVM_ARM_VCPU_INIT ioctl -> kvm_pmu_vcpu_reset(). And the test_bit() against this random idx will potentially hit a KASAN BUG [1]. In general, idx is the static property of a PMU counter that is not expected to be modified across resets, as suggested by Julien. It looks more reasonable if we can setup the PMU counter idx for a vcpu in its creation time. Introduce a new function - kvm_pmu_vcpu_init() for this basic setup. Oh, and the KASAN BUG will get fixed this way. [1] https://www.spinics.net/lists/kvm-arm/msg36700.html Fixes: 80f393a23be6 ("KVM: arm/arm64: Support chained PMU counters") Suggested-by: Andrew Murray <andrew.murray@arm.com> Suggested-by: Julien Thierry <julien.thierry@arm.com> Acked-by: Julien Thierry <julien.thierry@arm.com> Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-07-11Merge tag 'kvm-arm-for-5.3' of ↵Paolo Bonzini1-14/+3
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm updates for 5.3 - Add support for chained PMU counters in guests - Improve SError handling - Handle Neoverse N1 erratum #1349291 - Allow side-channel mitigation status to be migrated - Standardise most AArch64 system register accesses to msr_s/mrs_s - Fix host MPIDR corruption on 32bit
2019-07-08KVM: arm/arm64: Initialise host's MPIDRs by reading the actual registerMarc Zyngier1-1/+2
As part of setting up the host context, we populate its MPIDR by using cpu_logical_map(). It turns out that contrary to arm64, cpu_logical_map() on 32bit ARM doesn't return the *full* MPIDR, but a truncated version. This leaves the host MPIDR slightly corrupted after the first run of a VM, since we won't correctly restore the MPIDR on exit. Oops. Since we cannot trust cpu_logical_map(), let's adopt a different strategy. We move the initialization of the host CPU context as part of the per-CPU initialization (which, in retrospect, makes a lot of sense), and directly read the MPIDR from the HW. This is guaranteed to work on both arm and arm64. Reported-by: Andre Przywara <Andre.Przywara@arm.com> Tested-by: Andre Przywara <Andre.Przywara@arm.com> Fixes: 32f139551954 ("arm/arm64: KVM: Statically configure the host's view of MPIDR") Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-06-05treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 266Thomas Gleixner1-13/+1
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not write to the free software foundation 51 franklin street fifth floor boston ma 02110 1301 usa extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 67 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Alexios Zavras <alexios.zavras@intel.com> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190529141333.953658117@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-04KVM: Directly return result from kvm_arch_check_processor_compat()Sean Christopherson1-2/+2
Add a wrapper to invoke kvm_arch_check_processor_compat() so that the boilerplate ugliness of checking virtualization support on all CPUs is hidden from the arch specific code. x86's implementation in particular is quite heinous, as it unnecessarily propagates the out-param pattern into kvm_x86_ops. While the x86 specific issue could be resolved solely by changing kvm_x86_ops, make the change for all architectures as returning a value directly is prettier and technically more robust, e.g. s390 doesn't set the out param, which could lead to subtle breakage in the (highly unlikely) scenario where the out-param was not pre-initialized by the caller. Opportunistically annotate svm_check_processor_compat() with __init. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-05-28KVM: s390: Do not report unusabled IDs via KVM_CAP_MAX_VCPU_IDThomas Huth1-0/+3
KVM_CAP_MAX_VCPU_ID is currently always reporting KVM_MAX_VCPU_ID on all architectures. However, on s390x, the amount of usable CPUs is determined during runtime - it is depending on the features of the machine the code is running on. Since we are using the vcpu_id as an index into the SCA structures that are defined by the hardware (see e.g. the sca_add_vcpu() function), it is not only the amount of CPUs that is limited by the hard- ware, but also the range of IDs that we can use. Thus KVM_CAP_MAX_VCPU_ID must be determined during runtime on s390x, too. So the handling of KVM_CAP_MAX_VCPU_ID has to be moved from the common code into the architecture specific code, and on s390x we have to return the same value here as for KVM_CAP_MAX_VCPUS. This problem has been discovered with the kvm_create_max_vcpus selftest. With this change applied, the selftest now passes on s390x, too. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Thomas Huth <thuth@redhat.com> Message-Id: <20190523164309.13345-9-thuth@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2019-05-17Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-9/+34
Pull KVM updates from Paolo Bonzini: "ARM: - support for SVE and Pointer Authentication in guests - PMU improvements POWER: - support for direct access to the POWER9 XIVE interrupt controller - memory and performance optimizations x86: - support for accessing memory not backed by struct page - fixes and refactoring Generic: - dirty page tracking improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits) kvm: fix compilation on aarch64 Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU" kvm: x86: Fix L1TF mitigation for shadow MMU KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing" KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete tests: kvm: Add tests for KVM_SET_NESTED_STATE KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID tests: kvm: Add tests to .gitignore KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one KVM: Fix the bitmap range to copy during clear dirty KVM: arm64: Fix ptrauth ID register masking logic KVM: x86: use direct accessors for RIP and RSP KVM: VMX: Use accessors for GPRs outside of dedicated caching logic KVM: x86: Omit caching logic for always-available GPRs kvm, x86: Properly check whether a pfn is an MMIO or not ...
2019-05-15Merge tag 'kvmarm-for-v5.2' of ↵Paolo Bonzini1-6/+34
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm updates for 5.2 - guest SVE support - guest Pointer Authentication support - Better discrimination of perf counters between host and guests Conflicts: include/uapi/linux/kvm.h
2019-04-25KVM: arm/arm64: Ensure vcpu target is unset on reset failureAndrew Jones1-3/+8
A failed KVM_ARM_VCPU_INIT should not set the vcpu target, as the vcpu target is used by kvm_vcpu_initialized() to determine if other vcpu ioctls may proceed. We need to set the target before calling kvm_reset_vcpu(), but if that call fails, we should then unset it and clear the feature bitmap while we're at it. Signed-off-by: Andrew Jones <drjones@redhat.com> [maz: Simplified patch, completed commit message] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24arm64: KVM: Enable VHE support for :G/:H perf event modifiersAndrew Murray1-0/+2
With VHE different exception levels are used between the host (EL2) and guest (EL1) with a shared exception level for userpace (EL0). We can take advantage of this and use the PMU's exception level filtering to avoid enabling/disabling counters in the world-switch code. Instead we just modify the counter type to include or exclude EL0 at vcpu_{load,put} time. We also ensure that trapped PMU system register writes do not re-enable EL0 when reconfiguring the backing perf events. This approach completely avoids blackout windows seen with !VHE. Suggested-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Andrew Murray <andrew.murray@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24arm64: KVM: Encapsulate kvm_cpu_context in kvm_host_dataAndrew Murray1-6/+8
The virt/arm core allocates a kvm_cpu_context_t percpu, at present this is a typedef to kvm_cpu_context and is used to store host cpu context. The kvm_cpu_context structure is also used elsewhere to hold vcpu context. In order to use the percpu to hold additional future host information we encapsulate kvm_cpu_context in a new structure and rename the typedef and percpu to match. Signed-off-by: Andrew Murray <andrew.murray@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24KVM: arm/arm64: Context-switch ptrauth registersMark Rutland1-0/+2
When pointer authentication is supported, a guest may wish to use it. This patch adds the necessary KVM infrastructure for this to work, with a semi-lazy context switch of the pointer auth state. Pointer authentication feature is only enabled when VHE is built in the kernel and present in the CPU implementation so only VHE code paths are modified. When we schedule a vcpu, we disable guest usage of pointer authentication instructions and accesses to the keys. While these are disabled, we avoid context-switching the keys. When we trap the guest trying to use pointer authentication functionality, we change to eagerly context-switching the keys, and enable the feature. The next time the vcpu is scheduled out/in, we start again. However the host key save is optimized and implemented inside ptrauth instruction/register access trap. Pointer authentication consists of address authentication and generic authentication, and CPUs in a system might have varied support for either. Where support for either feature is not uniform, it is hidden from guests via ID register emulation, as a result of the cpufeature framework in the host. Unfortunately, address authentication and generic authentication cannot be trapped separately, as the architecture provides a single EL2 trap covering both. If we wish to expose one without the other, we cannot prevent a (badly-written) guest from intermittently using a feature which is not uniformly supported (when scheduled on a physical CPU which supports the relevant feature). Hence, this patch expects both type of authentication to be present in a cpu. This switch of key is done from guest enter/exit assembly as preparation for the upcoming in-kernel pointer authentication support. Hence, these key switching routines are not implemented in C code as they may cause pointer authentication key signing error in some situations. Signed-off-by: Mark Rutland <mark.rutland@arm.com> [Only VHE, key switch in full assembly, vcpu_has_ptrauth checks , save host key in ptrauth exception trap] Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: kvmarm@lists.cs.columbia.edu [maz: various fixups] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-18KVM: arm/arm64: Demote kvm_arm_init_arch_resources() to just set up SVEDave Martin1-1/+1
The introduction of kvm_arm_init_arch_resources() looks like premature factoring, since nothing else uses this hook yet and it is not clear what will use it in the future. For now, let's not pretend that this is a general thing: This patch simply renames the function to kvm_arm_init_sve(), retaining the arm stub version under the new name. Suggested-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-16kvm: move KVM_CAP_NR_MEMSLOTS to common codePaolo Bonzini1-3/+0
All architectures except MIPS were defining it in the same way, and memory slots are handled entirely by common code so there is no point in keeping the definition per-architecture. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-29KVM: arm/arm64: Add KVM_ARM_VCPU_FINALIZE ioctlDave Martin1-0/+18
Some aspects of vcpu configuration may be too complex to be completed inside KVM_ARM_VCPU_INIT. Thus, there may be a requirement for userspace to do some additional configuration before various other ioctls will work in a consistent way. In particular this will be the case for SVE, where userspace will need to negotiate the set of vector lengths to be made available to the guest before the vcpu becomes fully usable. In order to provide an explicit way for userspace to confirm that it has finished setting up a particular vcpu feature, this patch adds a new ioctl KVM_ARM_VCPU_FINALIZE. When userspace has opted into a feature that requires finalization, typically by means of a feature flag passed to KVM_ARM_VCPU_INIT, a matching call to KVM_ARM_VCPU_FINALIZE is now required before KVM_RUN or KVM_GET_REG_LIST is allowed. Individual features may impose additional restrictions where appropriate. No existing vcpu features are affected by this, so current userspace implementations will continue to work exactly as before, with no need to issue KVM_ARM_VCPU_FINALIZE. As implemented in this patch, KVM_ARM_VCPU_FINALIZE is currently a placeholder: no finalizable features exist yet, so ioctl is not required and will always yield EINVAL. Subsequent patches will add the finalization logic to make use of this ioctl for SVE. No functional change for existing userspace. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29KVM: arm/arm64: Add hook for arch-specific KVM initialisationDave Martin1-0/+4
This patch adds a kvm_arm_init_arch_resources() hook to perform subarch-specific initialisation when starting up KVM. This will be used in a subsequent patch for global SVE-related setup on arm64. No functional change. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-15Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-41/+23
Pull KVM updates from Paolo Bonzini: "ARM: - some cleanups - direct physical timer assignment - cache sanitization for 32-bit guests s390: - interrupt cleanup - introduction of the Guest Information Block - preparation for processor subfunctions in cpu models PPC: - bug fixes and improvements, especially related to machine checks and protection keys x86: - many, many cleanups, including removing a bunch of MMU code for unnecessary optimizations - AVIC fixes Generic: - memcg accounting" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits) kvm: vmx: fix formatting of a comment KVM: doc: Document the life cycle of a VM and its resources MAINTAINERS: Add KVM selftests to existing KVM entry Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()" KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char() KVM: PPC: Fix compilation when KVM is not enabled KVM: Minor cleanups for kvm_main.c KVM: s390: add debug logging for cpu model subfunctions KVM: s390: implement subfunction processor calls arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2 KVM: arm/arm64: Remove unused timer variable KVM: PPC: Book3S: Improve KVM reference counting KVM: PPC: Book3S HV: Fix build failure without IOMMU support Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()" x86: kvmguest: use TSC clocksource if invariant TSC is exposed KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes() KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children ...
2019-02-19KVM: arm/arm64: fix spelling mistake: "auxilary" -> "auxiliary"Colin Ian King1-1/+1
There is a spelling mistake in a kvm_err error message. Fix it. Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>