Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull initial set_fs() removal from Al Viro:
"Christoph's set_fs base series + fixups"
* 'work.set_fs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Allow a NULL pos pointer to __kernel_read
fs: Allow a NULL pos pointer to __kernel_write
powerpc: remove address space overrides using set_fs()
powerpc: use non-set_fs based maccess routines
x86: remove address space overrides using set_fs()
x86: make TASK_SIZE_MAX usable from assembly code
x86: move PAGE_OFFSET, TASK_SIZE & friends to page_{32,64}_types.h
lkdtm: remove set_fs-based tests
test_bitmap: remove user bitmap tests
uaccess: add infrastructure for kernel builds with set_fs()
fs: don't allow splice read/write without explicit ops
fs: don't allow kernel reads and writes without iter ops
sysctl: Convert to iter interfaces
proc: add a read_iter method to proc proc_ops
proc: cleanup the compat vs no compat file ops
proc: remove a level of indentation in proc_get_inode
|
|
Pull nfsd updates from Bruce Fields:
"The one new feature this time, from Anna Schumaker, is READ_PLUS,
which has the same arguments as READ but allows the server to return
an array of data and hole extents.
Otherwise it's a lot of cleanup and bugfixes"
* tag 'nfsd-5.10' of git://linux-nfs.org/~bfields/linux: (43 commits)
NFSv4.2: Fix NFS4ERR_STALE error when doing inter server copy
SUNRPC: fix copying of multiple pages in gss_read_proxy_verf()
sunrpc: raise kernel RPC channel buffer size
svcrdma: fix bounce buffers for unaligned offsets and multiple pages
nfsd: remove unneeded break
net/sunrpc: Fix return value for sysctl sunrpc.transports
NFSD: Encode a full READ_PLUS reply
NFSD: Return both a hole and a data segment
NFSD: Add READ_PLUS hole segment encoding
NFSD: Add READ_PLUS data support
NFSD: Hoist status code encoding into XDR encoder functions
NFSD: Map nfserr_wrongsec outside of nfsd_dispatch
NFSD: Remove the RETURN_STATUS() macro
NFSD: Call NFSv2 encoders on error returns
NFSD: Fix .pc_release method for NFSv2
NFSD: Remove vestigial typedefs
NFSD: Refactor nfsd_dispatch() error paths
NFSD: Clean up nfsd_dispatch() variables
NFSD: Clean up stale comments in nfsd_dispatch()
NFSD: Clean up switch statement in nfsd_dispatch()
...
|
|
Pull XArray updates from Matthew Wilcox:
- Fix the test suite after introduction of the local_lock
- Fix a bug in the IDA spotted by Coverity
- Change the API that allows the workingset code to delete a node
- Fix xas_reload() when dealing with entries that occupy multiple
indices
- Add a few more tests to the test suite
- Fix an unsigned int being shifted into an unsigned long
* tag 'xarray-5.9' of git://git.infradead.org/users/willy/xarray:
XArray: Fix xas_create_range for ranges above 4 billion
radix-tree: fix the comment of radix_tree_next_slot()
XArray: Fix xas_reload for multi-index entries
XArray: Add private interface for workingset node deletion
XArray: Fix xas_for_each_conflict documentation
XArray: Test marked multiorder iterations
XArray: Test two more things about xa_cmpxchg
ida: Free allocated bitmap in error path
radix tree test suite: Fix compilation
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest
Pull more Kunit updates from Shuah Khan:
- add Kunit to kernel_init() and remove KUnit from init calls entirely.
This addresses the concern that Kunit would not work correctly during
late init phase.
- add a linker section where KUnit can put references to its test
suites.
This is the first step in transitioning to dispatching all KUnit
tests from a centralized executor rather than having each as its own
separate late_initcall.
- add a centralized executor to dispatch tests rather than relying on
late_initcall to schedule each test suite separately. Centralized
execution is for built-in tests only; modules will execute tests when
loaded.
- convert bitfield test to use KUnit framework
- Documentation updates for naming guidelines and how
kunit_test_suite() works.
- add test plan to KUnit TAP format
* tag 'linux-kselftest-kunit-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest:
lib: kunit: Fix compilation test when using TEST_BIT_FIELD_COMPILE
lib: kunit: add bitfield test conversion to KUnit
Documentation: kunit: add a brief blurb about kunit_test_suite
kunit: test: add test plan to KUnit TAP format
init: main: add KUnit to kernel init
kunit: test: create a single centralized executor for all tests
vmlinux.lds.h: add linker section for KUnit test suites
Documentation: kunit: Add naming guidelines
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU changes from Ingo Molnar:
- Debugging for smp_call_function()
- RT raw/non-raw lock ordering fixes
- Strict grace periods for KASAN
- New smp_call_function() torture test
- Torture-test updates
- Documentation updates
- Miscellaneous fixes
[ This doesn't actually pull the tag - I've dropped the last merge from
the RCU branch due to questions about the series. - Linus ]
* tag 'core-rcu-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (77 commits)
smp: Make symbol 'csd_bug_count' static
kernel/smp: Provide CSD lock timeout diagnostics
smp: Add source and destination CPUs to __call_single_data
rcu: Shrink each possible cpu krcp
rcu/segcblist: Prevent useless GP start if no CBs to accelerate
torture: Add gdb support
rcutorture: Allow pointer leaks to test diagnostic code
rcutorture: Hoist OOM registry up one level
refperf: Avoid null pointer dereference when buf fails to allocate
rcutorture: Properly synchronize with OOM notifier
rcutorture: Properly set rcu_fwds for OOM handling
torture: Add kvm.sh --help and update help message
rcutorture: Add CONFIG_PROVE_RCU_LIST to TREE05
torture: Update initrd documentation
rcutorture: Replace HTTP links with HTTPS ones
locktorture: Make function torture_percpu_rwsem_init() static
torture: document --allcpus argument added to the kvm.sh script
rcutorture: Output number of elapsed grace periods
rcutorture: Remove KCSAN stubs
rcu: Remove unused "cpu" parameter from rcu_report_qs_rdp()
...
|
|
This patch reduces the running time for hmm-tests from about 10+ seconds,
to just under 1.0 second, for an approximately 10x speedup. That brings
it in line with most of the other tests in selftests/vm, which mostly run
in < 1 sec.
This is done with a one-line change that simply reduces the number of
iterations of several tests, from 256, to 10. Thanks to Ralph Campbell
for suggesting changing NTIMES as a way to get the speedup.
Suggested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: SeongJae Park <sj38.park@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: https://lkml.kernel.org/r/20201003011721.44238-1-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux
Pull perf tools updates from Arnaldo Carvalho de Melo:
- cgroup improvements for 'perf stat', allowing for compact
specification of events and cgroups in the command line.
- Support per thread topdown metrics in 'perf stat'.
- Support sample-read topdown metric group in 'perf record'
- Show start of latency in addition to its start in 'perf sched
latency'.
- Add min, max to 'perf script' futex-contention output, in addition to
avg.
- Allow usage of 'perf_event_attr->exclusive' attribute via the new
':e' event modifier.
- Add 'snapshot' command to 'perf record --control', using it with
Intel PT.
- Support FIFO file names as alternative options to 'perf record
--control'.
- Introduce branch history "streams", to compare 'perf record' runs
with 'perf diff' based on branch records and report hot streams.
- Support PE executable symbol tables using libbfd, to profile, for
instance, wine binaries.
- Add filter support for option 'perf ftrace -F/--funcs'.
- Allow configuring the 'disassembler_style' 'perf annotate' knob via
'perf config'
- Update CascadelakeX and SkylakeX JSON vendor events files.
- Add support for parsing perchip/percore JSON vendor events.
- Add power9 hv_24x7 core level metric events.
- Add L2 prefetch, ITLB instruction fetch hits JSON events for AMD
zen1.
- Enable Family 19h users by matching Zen2 AMD vendor events.
- Use debuginfod in 'perf probe' when required debug files not found
locally.
- Display negative tid in non-sample events in 'perf script'.
- Make GTK2 support opt-in
- Add build test with GTK+
- Add missing -lzstd to the fast path feature detection
- Add scripts to auto generate 'mmap', 'mremap' string<->id tables for
use in 'perf trace'.
- Show python test script in verbose mode.
- Fix uncore metric expressions
- Msan uninitialized use fixes.
- Use condition variables in 'perf bench numa'
- Autodetect python3 binary in systems without python2.
- Support md5 build ids in addition to sha1.
- Add build id 'perf test' regression test.
- Fix printable strings in python3 scripts.
- Fix off by ones in 'perf trace' in arches using libaudit.
- Fix JSON event code for events referencing std arch events.
- Introduce 'perf test' shell script for Arm CoreSight testing.
- Add rdtsc() for Arm64 for used in the PERF_RECORD_TIME_CONV metadata
event and in 'perf test tsc'.
- 'perf c2c' improvements: Add "RMT Load Hit" metric, "Total Stores",
fixes and documentation update.
- Fix usage of reloc_sym in 'perf probe' when using both kallsyms and
debuginfo files.
- Do not print 'Metric Groups:' unnecessarily in 'perf list'
- Refcounting fixes in the event parsing code.
- Add expand cgroup event 'perf test' entry.
- Fix out of bounds CPU map access when handling armv8_pmu events in
'perf stat'.
- Add build-id injection 'perf bench' benchmark.
- Enter namespace when reading build-id in 'perf inject'.
- Do not load map/dso when injecting build-id speeding up the 'perf
inject' process.
- Add --buildid-all option to avoid processing all samples, just the
mmap metadata events.
- Add feature test to check if libbfd has buildid support
- Add 'perf test' entry for PE binary format support.
- Fix typos in power8 PMU vendor events JSON files.
- Hide libtraceevent non API functions.
* tag 'perf-tools-for-v5.10-2020-10-15' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux: (113 commits)
perf c2c: Update documentation for metrics reorganization
perf c2c: Add metrics "RMT Load Hit"
perf c2c: Correct LLC load hit metrics
perf c2c: Change header for LLC local hit
perf c2c: Use more explicit headers for HITM
perf c2c: Change header from "LLC Load Hitm" to "Load Hitm"
perf c2c: Organize metrics based on memory hierarchy
perf c2c: Display "Total Stores" as a standalone metrics
perf c2c: Display the total numbers continuously
perf bench: Use condition variables in numa.
perf jevents: Fix event code for events referencing std arch events
perf diff: Support hot streams comparison
perf streams: Report hot streams
perf streams: Calculate the sum of total streams hits
perf streams: Link stream pair
perf streams: Compare two streams
perf streams: Get the evsel_streams by evsel_idx
perf streams: Introduce branch history "streams"
perf intel-pt: Improve PT documentation slightly
perf tools: Add support for exclusive groups/events
...
|
|
Pull rdma updates from Jason Gunthorpe:
"A usual cycle for RDMA with a typical mix of driver and core subsystem
updates:
- Driver minor changes and bug fixes for mlx5, efa, rxe, vmw_pvrdma,
hns, usnic, qib, qedr, cxgb4, hns, bnxt_re
- Various rtrs fixes and updates
- Bug fix for mlx4 CM emulation for virtualization scenarios where
MRA wasn't working right
- Use tracepoints instead of pr_debug in the CM code
- Scrub the locking in ucma and cma to close more syzkaller bugs
- Use tasklet_setup in the subsystem
- Revert the idea that 'destroy' operations are not allowed to fail
at the driver level. This proved unworkable from a HW perspective.
- Revise how the umem API works so drivers make fewer mistakes using
it
- XRC support for qedr
- Convert uverbs objects RWQ and MW to new the allocation scheme
- Large queue entry sizes for hns
- Use hmm_range_fault() for mlx5 On Demand Paging
- uverbs APIs to inspect the GID table instead of sysfs
- Move some of the RDMA code for building large page SGLs into
lib/scatterlist"
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (191 commits)
RDMA/ucma: Fix use after free in destroy id flow
RDMA/rxe: Handle skb_clone() failure in rxe_recv.c
RDMA/rxe: Move the definitions for rxe_av.network_type to uAPI
RDMA: Explicitly pass in the dma_device to ib_register_device
lib/scatterlist: Do not limit max_segment to PAGE_ALIGNED values
IB/mlx4: Convert rej_tmout radix-tree to XArray
RDMA/rxe: Fix bug rejecting all multicast packets
RDMA/rxe: Fix skb lifetime in rxe_rcv_mcast_pkt()
RDMA/rxe: Remove duplicate entries in struct rxe_mr
IB/hfi,rdmavt,qib,opa_vnic: Update MAINTAINERS
IB/rdmavt: Fix sizeof mismatch
MAINTAINERS: CISCO VIC LOW LATENCY NIC DRIVER
RDMA/bnxt_re: Fix sizeof mismatch for allocation of pbl_tbl.
RDMA/bnxt_re: Use rdma_umem_for_each_dma_block()
RDMA/umem: Move to allocate SG table from pages
lib/scatterlist: Add support in dynamic allocation of SG table from pages
tools/testing/scatterlist: Show errors in human readable form
tools/testing/scatterlist: Rejuvenate bit-rotten test
RDMA/ipoib: Set rtnl_link_ops for ipoib interfaces
RDMA/uverbs: Expose the new GID query API to user space
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- A series from Nick adding ARCH_WANT_IRQS_OFF_ACTIVATE_MM & selecting
it for powerpc, as well as a related fix for sparc.
- Remove support for PowerPC 601.
- Some fixes for watchpoints & addition of a new ptrace flag for
detecting ISA v3.1 (Power10) watchpoint features.
- A fix for kernels using 4K pages and the hash MMU on bare metal
Power9 systems with > 16TB of RAM, or RAM on the 2nd node.
- A basic idle driver for shallow stop states on Power10.
- Tweaks to our sched domains code to better inform the scheduler about
the hardware topology on Power9/10, where two SMT4 cores can be
presented by firmware as an SMT8 core.
- A series doing further reworks & cleanups of our EEH code.
- Addition of a filter for RTAS (firmware) calls done via sys_rtas(),
to prevent root from overwriting kernel memory.
- Other smaller features, fixes & cleanups.
Thanks to: Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V,
Athira Rajeev, Biwen Li, Cameron Berkenpas, Cédric Le Goater, Christophe
Leroy, Christoph Hellwig, Colin Ian King, Daniel Axtens, David Dai, Finn
Thain, Frederic Barrat, Gautham R. Shenoy, Greg Kurz, Gustavo Romero,
Ira Weiny, Jason Yan, Joel Stanley, Jordan Niethe, Kajol Jain, Konrad
Rzeszutek Wilk, Laurent Dufour, Leonardo Bras, Liu Shixin, Luca
Ceresoli, Madhavan Srinivasan, Mahesh Salgaonkar, Nathan Lynch, Nicholas
Mc Guire, Nicholas Piggin, Nick Desaulniers, Oliver O'Halloran, Pedro
Miraglia Franco de Carvalho, Pratik Rajesh Sampat, Qian Cai, Qinglang
Miao, Ravi Bangoria, Russell Currey, Satheesh Rajendran, Scott Cheloha,
Segher Boessenkool, Srikar Dronamraju, Stan Johnson, Stephen Kitt,
Stephen Rothwell, Thiago Jung Bauermann, Tyrel Datwyler, Vaibhav Jain,
Vaidyanathan Srinivasan, Vasant Hegde, Wang Wensheng, Wolfram Sang, Yang
Yingliang, zhengbin.
* tag 'powerpc-5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (228 commits)
Revert "powerpc/pci: unmap legacy INTx interrupts when a PHB is removed"
selftests/powerpc: Fix eeh-basic.sh exit codes
cpufreq: powernv: Fix frame-size-overflow in powernv_cpufreq_reboot_notifier
powerpc/time: Make get_tb() common to PPC32 and PPC64
powerpc/time: Make get_tbl() common to PPC32 and PPC64
powerpc/time: Remove get_tbu()
powerpc/time: Avoid using get_tbl() and get_tbu() internally
powerpc/time: Make mftb() common to PPC32 and PPC64
powerpc/time: Rename mftbl() to mftb()
powerpc/32s: Remove #ifdef CONFIG_PPC_BOOK3S_32 in head_book3s_32.S
powerpc/32s: Rename head_32.S to head_book3s_32.S
powerpc/32s: Setup the early hash table at all time.
powerpc/time: Remove ifdef in get_dec() and set_dec()
powerpc: Remove get_tb_or_rtc()
powerpc: Remove __USE_RTC()
powerpc: Tidy up a bit after removal of PowerPC 601.
powerpc: Remove support for PowerPC 601
powerpc: Remove PowerPC 601
powerpc: Drop SYNC_601() ISYNC_601() and SYNC()
powerpc: Remove CONFIG_PPC601_SYNC_FIX
...
|
|
Merge more updates from Andrew Morton:
"155 patches.
Subsystems affected by this patch series: mm (dax, debug, thp,
readahead, page-poison, util, memory-hotplug, zram, cleanups), misc,
core-kernel, get_maintainer, MAINTAINERS, lib, bitops, checkpatch,
binfmt, ramfs, autofs, nilfs, rapidio, panic, relay, kgdb, ubsan,
romfs, and fault-injection"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (155 commits)
lib, uaccess: add failure injection to usercopy functions
lib, include/linux: add usercopy failure capability
ROMFS: support inode blocks calculation
ubsan: introduce CONFIG_UBSAN_LOCAL_BOUNDS for Clang
sched.h: drop in_ubsan field when UBSAN is in trap mode
scripts/gdb/tasks: add headers and improve spacing format
scripts/gdb/proc: add struct mount & struct super_block addr in lx-mounts command
kernel/relay.c: drop unneeded initialization
panic: dump registers on panic_on_warn
rapidio: fix the missed put_device() for rio_mport_add_riodev
rapidio: fix error handling path
nilfs2: fix some kernel-doc warnings for nilfs2
autofs: harden ioctl table
ramfs: fix nommu mmap with gaps in the page cache
mm: remove the now-unnecessary mmget_still_valid() hack
mm/gup: take mmap_lock in get_dump_page()
binfmt_elf, binfmt_elf_fdpic: use a VMA list snapshot
coredump: rework elf/elf_fdpic vma_dump_size() into common helper
coredump: refactor page range dumping into common helper
coredump: let dump_emit() bail out on short writes
...
|
|
This produces a PIE binary with a variety of p_align requirements,
suitable for verifying that the load address meets that alignment
requirement.
Signed-off-by: Chris Kennelly <ckennelly@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fangrui Song <maskray@google.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Sandeep Patil <sspatil@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Link: https://lkml.kernel.org/r/20200820170541.1132271-3-ckennelly@google.com
Link: https://lkml.kernel.org/r/20200821233848.3904680-3-ckennelly@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
- Add redirect_neigh() BPF packet redirect helper, allowing to limit
stack traversal in common container configs and improving TCP
back-pressure.
Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain.
- Expand netlink policy support and improve policy export to user
space. (Ge)netlink core performs request validation according to
declared policies. Expand the expressiveness of those policies
(min/max length and bitmasks). Allow dumping policies for particular
commands. This is used for feature discovery by user space (instead
of kernel version parsing or trial and error).
- Support IGMPv3/MLDv2 multicast listener discovery protocols in
bridge.
- Allow more than 255 IPv4 multicast interfaces.
- Add support for Type of Service (ToS) reflection in SYN/SYN-ACK
packets of TCPv6.
- In Multi-patch TCP (MPTCP) support concurrent transmission of data on
multiple subflows in a load balancing scenario. Enhance advertising
addresses via the RM_ADDR/ADD_ADDR options.
- Support SMC-Dv2 version of SMC, which enables multi-subnet
deployments.
- Allow more calls to same peer in RxRPC.
- Support two new Controller Area Network (CAN) protocols - CAN-FD and
ISO 15765-2:2016.
- Add xfrm/IPsec compat layer, solving the 32bit user space on 64bit
kernel problem.
- Add TC actions for implementing MPLS L2 VPNs.
- Improve nexthop code - e.g. handle various corner cases when nexthop
objects are removed from groups better, skip unnecessary
notifications and make it easier to offload nexthops into HW by
converting to a blocking notifier.
- Support adding and consuming TCP header options by BPF programs,
opening the doors for easy experimental and deployment-specific TCP
option use.
- Reorganize TCP congestion control (CC) initialization to simplify
life of TCP CC implemented in BPF.
- Add support for shipping BPF programs with the kernel and loading
them early on boot via the User Mode Driver mechanism, hence reusing
all the user space infra we have.
- Support sleepable BPF programs, initially targeting LSM and tracing.
- Add bpf_d_path() helper for returning full path for given 'struct
path'.
- Make bpf_tail_call compatible with bpf-to-bpf calls.
- Allow BPF programs to call map_update_elem on sockmaps.
- Add BPF Type Format (BTF) support for type and enum discovery, as
well as support for using BTF within the kernel itself (current use
is for pretty printing structures).
- Support listing and getting information about bpf_links via the bpf
syscall.
- Enhance kernel interfaces around NIC firmware update. Allow
specifying overwrite mask to control if settings etc. are reset
during update; report expected max time operation may take to users;
support firmware activation without machine reboot incl. limits of
how much impact reset may have (e.g. dropping link or not).
- Extend ethtool configuration interface to report IEEE-standard
counters, to limit the need for per-vendor logic in user space.
- Adopt or extend devlink use for debug, monitoring, fw update in many
drivers (dsa loop, ice, ionic, sja1105, qed, mlxsw, mv88e6xxx,
dpaa2-eth).
- In mlxsw expose critical and emergency SFP module temperature alarms.
Refactor port buffer handling to make the defaults more suitable and
support setting these values explicitly via the DCBNL interface.
- Add XDP support for Intel's igb driver.
- Support offloading TC flower classification and filtering rules to
mscc_ocelot switches.
- Add PTP support for Marvell Octeontx2 and PP2.2 hardware, as well as
fixed interval period pulse generator and one-step timestamping in
dpaa-eth.
- Add support for various auth offloads in WiFi APs, e.g. SAE (WPA3)
offload.
- Add Lynx PHY/PCS MDIO module, and convert various drivers which have
this HW to use it. Convert mvpp2 to split PCS.
- Support Marvell Prestera 98DX3255 24-port switch ASICs, as well as
7-port Mediatek MT7531 IP.
- Add initial support for QCA6390 and IPQ6018 in ath11k WiFi driver,
and wcn3680 support in wcn36xx.
- Improve performance for packets which don't require much offloads on
recent Mellanox NICs by 20% by making multiple packets share a
descriptor entry.
- Move chelsio inline crypto drivers (for TLS and IPsec) from the
crypto subtree to drivers/net. Move MDIO drivers out of the phy
directory.
- Clean up a lot of W=1 warnings, reportedly the actively developed
subsections of networking drivers should now build W=1 warning free.
- Make sure drivers don't use in_interrupt() to dynamically adapt their
code. Convert tasklets to use new tasklet_setup API (sadly this
conversion is not yet complete).
* tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2583 commits)
Revert "bpfilter: Fix build error with CONFIG_BPFILTER_UMH"
net, sockmap: Don't call bpf_prog_put() on NULL pointer
bpf, selftest: Fix flaky tcp_hdr_options test when adding addr to lo
bpf, sockmap: Add locking annotations to iterator
netfilter: nftables: allow re-computing sctp CRC-32C in 'payload' statements
net: fix pos incrementment in ipv6_route_seq_next
net/smc: fix invalid return code in smcd_new_buf_create()
net/smc: fix valid DMBE buffer sizes
net/smc: fix use-after-free of delayed events
bpfilter: Fix build error with CONFIG_BPFILTER_UMH
cxgb4/ch_ipsec: Replace the module name to ch_ipsec from chcr
net: sched: Fix suspicious RCU usage while accessing tcf_tunnel_info
bpf: Fix register equivalence tracking.
rxrpc: Fix loss of final ack on shutdown
rxrpc: Fix bundle counting for exclusive connections
netfilter: restore NF_INET_NUMHOOKS
ibmveth: Identify ingress large send packets.
ibmveth: Switch order of ibmveth_helper calls.
cxgb4: handle 4-tuple PEDIT to NAT mode translation
selftests: Add VRF route leaking tests
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"Updates for tracing and bootconfig:
- Add support for "bool" type in synthetic events
- Add per instance tracing for bootconfig
- Support perf-style return probe ("SYMBOL%return") in kprobes and
uprobes
- Allow for kprobes to be enabled earlier in boot up
- Added tracepoint helper function to allow testing if tracepoints
are enabled in headers
- Synthetic events can now have dynamic strings (variable length)
- Various fixes and cleanups"
* tag 'trace-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (58 commits)
tracing: support "bool" type in synthetic trace events
selftests/ftrace: Add test case for synthetic event syntax errors
tracing: Handle synthetic event array field type checking correctly
selftests/ftrace: Change synthetic event name for inter-event-combined test
tracing: Add synthetic event error logging
tracing: Check that the synthetic event and field names are legal
tracing: Move is_good_name() from trace_probe.h to trace.h
tracing: Don't show dynamic string internals in synthetic event description
tracing: Fix some typos in comments
tracing/boot: Add ftrace.instance.*.alloc_snapshot option
tracing: Fix race in trace_open and buffer resize call
tracing: Check return value of __create_val_fields() before using its result
tracing: Fix synthetic print fmt check for use of __get_str()
tracing: Remove a pointless assignment
ftrace: ftrace_global_list is renamed to ftrace_ops_list
ftrace: Format variable declarations of ftrace_allocate_records
ftrace: Simplify the calculation of page number for ftrace_page->records
ftrace: Simplify the dyn_ftrace->flags macro
ftrace: Simplify the hash calculation
ftrace: Use fls() to get the bits for dup_hash()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc updates from Helge Deller:
- Added fw_cfg support for parisc on qemu
- Added font support in sti text console driver for byte- and word-mode
ROMs
- Switch to more fine grained lws locks and improve spinlock handling
- Add ioread64_hi_lo() and iowrite64_hi_lo() to avoid 0-day linking
errors
- Mark pointers volatile in __xchg8(), __xchg32() and __xchg64() to
help compiler
- Header file cleanups, mostly removal of unused HP-UX compat defines
- Drop one bit from our O_NONBLOCK define to become now 000200000
- Add MAP_UNINITIALIZED define to avoid userspace compile errors
- Drop CONFIG_IDE from defconfigs
- Speed up synchronize_caches() on UP machines
- Rewrite tlb flush threshold calculation
- Comment fixes and cleanups
* 'parisc-5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc/sticon: Add user font support
parisc/sticon: Always register sticon console driver
parisc: Add MAP_UNINITIALIZED define
parisc: Improve spinlock handling
parisc: Install vmlinuz instead of zImage file
parisc: Rewrite tlb flush threshold calculation
parisc: Switch to more fine grained lws locks
parisc: Mark pointers volatile in __xchg8(), __xchg32() and __xchg64()
parisc: Fix comments and enable interrupts later
parisc: Add alternative patching to synchronize_caches define
parisc: Add ioread64_hi_lo() and iowrite64_hi_lo()
parisc: disable CONFIG_IDE in defconfigs
parisc: Drop useless comments in uapi/asm/signal.h
parisc: Define O_NONBLOCK to become 000200000
parisc: Drop HP-UX specific fcntl and signal flags
parisc: Avoid external interrupts when IPI finishes
parisc: Add qemu fw_cfg interface
fw_cfg: Add support for parisc architecture
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest
Pull Kunit updates from Shuah Khan:
"Several kunit tool bug fixes in flag handling, run outside kernel
tree, make errors, and generating results"
* tag 'linux-kselftest-kunit-fixes-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest:
kunit: tool: fix display of make errors
kunit: tool: handle when .kunit exists but .kunitconfig does not
kunit: tool: fix --alltests flag
kunit: tool: allow generating test results in JSON
kunit: tool: fix running kunit_tool from outside kernel tree
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest
Pull kselftest updates from Shuah Khan:
- speed up headers_install done during selftest build
- add generic make nesting support
- add support to select individual tests:
Selftests build/install generates run_kselftest.sh script to run
selftests on a target system. Currently the script doesn't have
support for selecting individual tests. Add support for it.
With this enhancement, user can select test collections (or tests)
individually. e.g:
run_kselftest.sh -c seccomp -t timers:posix_timers -t timers:nanosleep
Additionally adds a way to list all known tests with "-l", usage with
"-h", and perform a dry run without running tests with "-n".
* tag 'linux-kselftest-next-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest:
doc: dev-tools: kselftest.rst: Update examples and paths
selftests/run_kselftest.sh: Make each test individually selectable
selftests: Extract run_kselftest.sh and generate stand-alone test list
selftests: Add missing gitignore entries
selftests: more general make nesting support
selftests: use "$(MAKE)" instead of "make" for headers_install
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
Pull trivial updates from Jiri Kosina:
"The latest advances in computer science from the trivial queue"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
xtensa: fix Kconfig typo
spelling.txt: Remove some duplicate entries
mtd: rawnand: oxnas: cleanup/simplify code
selftests: vm: add fragment CONFIG_GUP_BENCHMARK
perf: Fix opt help text for --no-bpf-event
HID: logitech-dj: Fix spelling in comment
bootconfig: Fix kernel message mentioning CONFIG_BOOT_CONFIG
MAINTAINERS: rectify MMP SUPPORT after moving cputype.h
scif: Fix spelling of EACCES
printk: fix global comment
lib/bitmap.c: fix spello
fs: Fix missing 'bit' in comment
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching
Pull livepatching update from Jiri Kosina:
"livepatching kselftest output fix from Miroslav Benes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching:
selftests/livepatch: Do not check order when using "comm" for dmesg checking
|
|
Daniel Borkmann says:
====================
pull-request: bpf-next 2020-10-15
The main changes are:
1) Fix register equivalence tracking in verifier, from Alexei Starovoitov.
2) Fix sockmap error path to not call bpf_prog_put() with NULL, from Alex Dewar.
3) Fix sockmap to add locking annotations to iterator, from Lorenz Bauer.
4) Fix tcp_hdr_options test to use loopback address, from Martin KaFai Lau.
====================
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Minor conflicts in net/mptcp/protocol.h and
tools/testing/selftests/net/Makefile.
In both cases code was added on both sides in the same place
so just keep both.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
The tcp_hdr_options test adds a "::eB9F" addr to the lo dev.
However, this non loopback address will have a race on ipv6 dad
which may lead to EADDRNOTAVAIL error from time to time.
Even nodad is used in the iproute2 command, there is still a race in
when the route will be added. This will then lead to ENETUNREACH from
time to time.
To avoid the above, this patch uses the default loopback address "::1"
to do the test.
Fixes: ad2f8eb0095e ("bpf: selftests: Tcp header options")
Reported-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201012234940.1707941-1-kafai@fb.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the big set of char, misc, and other assorted driver subsystem
patches for 5.10-rc1.
There's a lot of different things in here, all over the drivers/
directory. Some summaries:
- soundwire driver updates
- habanalabs driver updates
- extcon driver updates
- nitro_enclaves new driver
- fsl-mc driver and core updates
- mhi core and bus updates
- nvmem driver updates
- eeprom driver updates
- binder driver updates and fixes
- vbox minor bugfixes
- fsi driver updates
- w1 driver updates
- coresight driver updates
- interconnect driver updates
- misc driver updates
- other minor driver updates
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (396 commits)
binder: fix UAF when releasing todo list
docs: w1: w1_therm: Fix broken xref, mistakes, clarify text
misc: Kconfig: fix a HISI_HIKEY_USB dependency
LSM: Fix type of id parameter in kernel_post_load_data prototype
misc: Kconfig: add a new dependency for HISI_HIKEY_USB
firmware_loader: fix a kernel-doc markup
w1: w1_therm: make w1_poll_completion static
binder: simplify the return expression of binder_mmap
test_firmware: Test partial read support
firmware: Add request_partial_firmware_into_buf()
firmware: Store opt_flags in fw_priv
fs/kernel_file_read: Add "offset" arg for partial reads
IMA: Add support for file reads without contents
LSM: Add "contents" flag to kernel_read_file hook
module: Call security_kernel_post_load_data()
firmware_loader: Use security_post_load_data()
LSM: Introduce kernel_post_load_data() hook
fs/kernel_read_file: Add file_size output argument
fs/kernel_read_file: Switch buffer size arg to size_t
fs/kernel_read_file: Remove redundant size argument
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging
Pull staging / IIO driver updates from Greg KH:
"Here is the large set of staging and IIO driver updates for 5.10-rc1.
Included in here are:
- new IIO drivers
- new IIO driver frameworks
- various IIO driver fixes and updates
- IIO device tree conversions to yaml
- so many minor staging driver coding style cleanups
- most cdev driver moved out of staging
- no staging drivers added or removed
Full details are in the shortlog.
All of these have been in linux-next for a while with no reported
issues"
* tag 'staging-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging: (476 commits)
staging: comedi: check validity of wMaxPacketSize of usb endpoints found
staging: wfx: improve robustness of wfx_get_hw_rate()
staging: wfx: drop unicode characters from strings
staging: wfx: gpiod_get_value() can return an error
staging: wfx: increase robustness of hif_generic_confirm()
staging: wfx: wfx_init_common() returns NULL on error
staging: wfx: standardize the error when vif does not exist
staging: wfx: check memory allocation
staging: wfx: improve error handling of hif_join()
staging: dpaa2-switch: add a dpaa2_switch prefix to all functions in ethsw.c
staging: dpaa2-switch: add a dpaa2_switch_ prefix to all functions in ethsw-ethtool.c
staging: rtl8188eu: Fix long lines
dt-bindings: staging: wfx: silabs,wfx yaml conversion
staging: wfx: update copyrights dates
staging: wfx: fix QoS priority for slow buses
staging: wfx: fix BA sessions for older firmwares
staging: wfx: remove remaining code of 'secure link' feature
staging: wfx: fix handling of MMIC error
staging: vchiq: Fix list_for_each exit tests
staging: greybus: use __force when assigning __u8 value to snd_ctl_elem_type_t
...
|
|
Add a selftest that verifies that the syntax error messages and caret
positions are correct for most of the possible synthetic event syntax
error cases.
Link: https://lkml.kernel.org/r/af611928ce79f86eaf0af8654f1d7802d5cc21ff.1602598160.git.zanussi@kernel.org
Tested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
This test uses waking+wakeup_latency as an event name, which doesn't
make sense since it includes an operator. Illegal names are now
detected by the synthetic event command parsing, which causes this
test to fail. Change the name to 'waking_plus_wakeup_latency' to
prevent this.
Link: https://lkml.kernel.org/r/a1ee2f76ff28ef7166fb788ca8be968887808920.1602598160.git.zanussi@kernel.org
Fixes: f06eec4d0f2c (selftests: ftrace: Add inter-event hist triggers testcases)
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Tested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
The output format for metrics has been reorganized, update documentation
to reflect the changes for it.
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Cc: Al Grant <al.grant@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Ian Rogers <irogers@google.com>
Cc: James Clark <james.clark@arm.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Joe Mario <jmario@redhat.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lore.kernel.org/lkml/20201015144548.18482-10-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
The 64-bit JEQ/JNE handling in reg_set_min_max() was clearing reg->id in either
true or false branch. In the case 'if (reg->id)' check was done on the other
branch the counter part register would have reg->id == 0 when called into
find_equal_scalars(). In such case the helper would incorrectly identify other
registers with id == 0 as equivalent and propagate the state incorrectly.
Fix it by preserving ID across reg_set_min_max().
In other words any kind of comparison operator on the scalar register
should preserve its ID to recognize:
r1 = r2
if (r1 == 20) {
#1 here both r1 and r2 == 20
} else if (r2 < 20) {
#2 here both r1 and r2 < 20
}
The patch is addressing #1 case. The #2 was working correctly already.
Fixes: 75748837b7e5 ("bpf: Propagate scalar ranges through register assignments.")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201014175608.1416-1-alexei.starovoitov@gmail.com
|
|
The metrics "LLC Ld Miss" and "Load Dram" overlap with each other for
accouting items:
"LLC Ld Miss" = "lcl_dram" + "rmt_dram" + "rmt_hit" + "rmt_hitm"
"Load Dram" = "lcl_dram" + "rmt_dram"
Furthermore, the metrics "LLC Ld Miss" is not directive to show
statistics due to it contains summary value and cannot give out
breakdown details.
For this reason, add a new metrics "RMT Load Hit" which is used to
present the remote cache hit; it contains two items:
"RMT Load Hit" = remote hit ("rmt_hit") + remote hitm ("rmt_hitm")
As result, the metrics "LLC Ld Miss" is perfectly divided into two
metrics "RMT Load Hit" and "Load Dram". It's not necessary to keep
metrics "LLC Ld Miss", so remove it.
Before:
# ----------- Cacheline ---------- Tot ------- Load Hitm ------- Total Total Total ---- Stores ---- ----- Core Load Hit ----- - LLC Load Hit -- LLC --- Load Dram ----
# Index Address Node PA cnt Hitm Total LclHitm RmtHitm records Loads Stores L1Hit L1Miss FB L1 L2 LclHit LclHitm Ld Miss Lcl Rmt
# ..... .................. .... ...... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ........ ....... ....... ........ ........
#
0 0x55f07d580100 0 1499 85.89% 481 481 0 7243 3879 3364 2599 765 548 2615 66 169 481 0 0 0
1 0x55f07d580080 0 1 13.93% 78 78 0 664 664 0 0 0 187 361 27 11 78 0 0 0
2 0x55f07d5800c0 0 1 0.18% 1 1 0 405 405 0 0 0 131 0 10 263 1 0 0 0
After:
# ----------- Cacheline ---------- Tot ------- Load Hitm ------- Total Total Total ---- Stores ---- ----- Core Load Hit ----- - LLC Load Hit -- - RMT Load Hit -- --- Load Dram ----
# Index Address Node PA cnt Hitm Total LclHitm RmtHitm records Loads Stores L1Hit L1Miss FB L1 L2 LclHit LclHitm RmtHit RmtHitm Lcl Rmt
# ..... .................. .... ...... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ........ ....... ........ ....... ........ ........
#
0 0x55f07d580100 0 1499 85.89% 481 481 0 7243 3879 3364 2599 765 548 2615 66 169 481 0 0 0 0
1 0x55f07d580080 0 1 13.93% 78 78 0 664 664 0 0 0 187 361 27 11 78 0 0 0 0
2 0x55f07d5800c0 0 1 0.18% 1 1 0 405 405 0 0 0 131 0 10 263 1 0 0 0 0
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-9-leo.yan@linaro.org
|
|
"rmt_hit" is accounted into two metrics: one is accounted into the
metrics "LLC Ld Miss" (see the function llc_miss() for calculation
"llcmiss"); and it's accounted into metrics "LLC Load Hit". Thus,
for the literal meaning, it is contradictory that "rmt_hit" is
accounted for both "LLC Ld Miss" (LLC miss) and "LLC Load Hit"
(LLC hit).
Thus this is easily to introduce confusion: "LLC Load Hit" gives
impression that all items belong to it are LLC hit; in fact "rmt_hit"
is LLC miss and remote cache hit.
To give out clear semantics for metric "LLC Load Hit", "rmt_hit" is
moved out from it and changes "LLC Load Hit" to contain two items:
LLC Load Hit = LLC's hit ("ld_llchit") + LLC's hitm ("lcl_hitm")
For output alignment, adjusts the header for "LLC Load Hit".
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-8-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Replace the header string "Lcl" with "LclHit", which is more explicit
to express the event type is LLC local hit.
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-7-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Local and remote HITM use the headers 'Lcl' and 'Rmt' respectively,
suppose if we want to extend the tool to display these two dimensions
under any one metrics, users cannot understand the semantics if only
based on the header string 'Lcl' or 'Rmt'.
To explicit express the meaning for HITM items, this patch changes the
headers string as "LclHitm" and "RmtHitm", the strings are more readable
and this allows to extend metrics for using HITM items.
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-6-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
The metrics "LLC Load Hitm" contains two items: one is "local Hitm" and
another is "remote Hitm".
"local Hitm" means: L3 HIT and was serviced by another processor core
with a cross core snoop where modified copies were found; it's no doubt
that "local Hitm" belongs to LLC access.
But for "remote Hitm", based on the code in util/mem-events, it's the
event for remote cache HIT and was serviced by another processor core
with modified copies. Thus the remote Hitm is a remote cache's hit and
actually it's LLC load miss.
Now the display format gives users the impression that "local Hitm" and
"remote Hitm" both belong to the LLC load, but this is not the fact as
described.
This patch changes the header from "LLC Load Hitm" to "Load Hitm", this
can avoid the give the wrong impression that all Hitm belong to LLC.
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-5-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
The metrics are not organized based on memory hierarchy, e.g. the tool
doesn't organize the metrics order based on memory nodes from the close
node (e.g. L1/L2 cache) to far node (e.g. L3 cache and DRAM).
To output metrics with more friendly form, this patch refines the
metrics order based on memory hierarchy:
"Core Load Hit" => "LLC Load Hit" => "LLC Ld Miss" => "Load Dram"
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-4-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
The total stores is displayed under the metrics "Store Reference", to
output the same format with total records and all loads, extract the
total stores number as a standalone metrics "Total Stores".
After this patch, the tool shows the summary numbers ("Total records",
"Total loads", "Total Stores") in the unified form.
Before:
# ----------- Cacheline ---------- Tot ----- LLC Load Hitm ----- Total Total ---- Store Reference ---- --- Load Dram ---- LLC ----- Core Load Hit ----- -- LLC Load Hit --
# Index Address Node PA cnt Hitm Total Lcl Rmt records Loads Total L1Hit L1Miss Lcl Rmt Ld Miss FB L1 L2 Llc Rmt
# ..... .................. .... ...... ....... ....... ....... ....... ....... ....... ....... ....... ....... ........ ........ ....... ....... ....... ....... ........ ........
#
0 0x55f07d580100 0 1499 85.89% 481 481 0 7243 3879 3364 2599 765 0 0 0 548 2615 66 169 0
1 0x55f07d580080 0 1 13.93% 78 78 0 664 664 0 0 0 0 0 0 187 361 27 11 0
2 0x55f07d5800c0 0 1 0.18% 1 1 0 405 405 0 0 0 0 0 0 131 0 10 263 0
After:
# ----------- Cacheline ---------- Tot ----- LLC Load Hitm ----- Total Total Total ---- Stores ---- --- Load Dram ---- LLC ----- Core Load Hit ----- -- LLC Load Hit --
# Index Address Node PA cnt Hitm Total Lcl Rmt records Loads Stores L1Hit L1Miss Lcl Rmt Ld Miss FB L1 L2 Llc Rmt
# ..... .................. .... ...... ....... ....... ....... ....... ....... ....... ....... ....... ....... ........ ........ ....... ....... ....... ....... ........ ........
#
0 0x55f07d580100 0 1499 85.89% 481 481 0 7243 3879 3364 2599 765 0 0 0 548 2615 66 169 0
1 0x55f07d580080 0 1 13.93% 78 78 0 664 664 0 0 0 0 0 0 187 361 27 11 0
2 0x55f07d5800c0 0 1 0.18% 1 1 0 405 405 0 0 0 0 0 0 131 0 10 263 0
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-3-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
To view the statistics with "breakdown" mode, it's good to show the
summary numbers for the total records, all stores and all loads, then
the sequential conlumns can be used to break into more detailed items.
To achieve this purpose, this patch displays the summary numbers for
records/stores/loads continuously and places them before breakdown
items, this can allow uses to easily read the summarized statistics.
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/20201014050921.5591-2-leo.yan@linaro.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
We will not allow unitialized anon mmaps, but we need this define
to prevent build errors, e.g. the debian foot package.
Suggested-by: John David Anglin <dave.anglin@bell.net>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
The objective of the tests is to check that ICMP errors generated while
crossing between VRFs are properly routed back to the source host.
The first ttl test sends a ping with a ttl of 1 from h1 to h2 and parses the
output of the command to check that a ttl expired error is received.
The second ttl test runs traceroute from h1 to h2 and parses the output to
check for a hop on r1.
The mtu test sends a ping with a payload of 1450 from h1 to h2, through
r1 which has an interface with a mtu of 1400 and parses the output of the
command to check that a fragmentation needed error is received.
[ The IPv6 MTU test still fails with the symmetric routing setup. It
appears to be caused by source address selection picking ::1. Fixing
this is beyond the scope of this series. ]
Signed-off-by: Michael Jeanson <mjeanson@efficios.com>
Reviewed-by: David Ahern <dsahern@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull pidfd updates from Christian Brauner:
"This introduces a new extension to the pidfd_open() syscall. Users can
now raise the new PIDFD_NONBLOCK flag to support non-blocking pidfd
file descriptors. This has been requested for uses in async process
management libraries such as async-pidfd in Rust.
Ever since the introduction of pidfds and more advanced async io
various programming languages such as Rust have grown support for
async event libraries. These libraries are created to help build
epoll-based event loops around file descriptors. A common pattern is
to automatically make all file descriptors they manage to O_NONBLOCK.
For such libraries the EAGAIN error code is treated specially. When a
function is called that returns EAGAIN the function isn't called again
until the event loop indicates the the file descriptor is ready.
Supporting EAGAIN when waiting on pidfds makes such libraries just
work with little effort.
This introduces a new flag PIDFD_NONBLOCK that is equivalent to
O_NONBLOCK. This follows the same patterns we have for other (anon
inode) file descriptors such as EFD_NONBLOCK, IN_NONBLOCK,
SFD_NONBLOCK, TFD_NONBLOCK and the same for close-on-exec flags.
Passing a non-blocking pidfd to waitid() currently has no effect, i.e.
is not supported. There are users which would like to use waitid() on
pidfds that are O_NONBLOCK and mix it with pidfds that are blocking
and both pass them to waitid().
The expected behavior is to have waitid() return -EAGAIN for
non-blocking pidfds and to block for blocking pidfds without needing
to perform any additional checks for flags set on the pidfd before
passing it to waitid(). Non-blocking pidfds will return EAGAIN from
waitid() when no child process is ready yet. Returning -EAGAIN for
non-blocking pidfds makes it easier for event loops that handle EAGAIN
specially.
It also makes the API more consistent and uniform. In essence,
waitid() is treated like a read on a non-blocking pidfd or a recvmsg()
on a non-blocking socket.
With the addition of support for non-blocking pidfds we support the
same functionality that sockets do. For sockets() recvmsg() supports
MSG_DONTWAIT for pidfds waitid() supports WNOHANG. Both flags are
per-call options. In contrast non-blocking pidfds and non-blocking
sockets are a setting on an open file description affecting all
threads in the calling process as well as other processes that hold
file descriptors referring to the same open file description. Both
behaviors, per call and per open file description, have genuine
use-cases.
The interaction with the WNOHANG flag is documented as follows:
- If a non-blocking pidfd is passed and WNOHANG is not raised we
simply raise the WNOHANG flag internally. When do_wait() returns
indicating that there are eligible child processes but none have
exited yet we set EAGAIN. If no child process exists we continue
returning ECHILD.
- If a non-blocking pidfd is passed and WNOHANG is raised waitid()
will continue returning 0, i.e. it will not set EAGAIN. This ensure
backwards compatibility with applications passing WNOHANG
explicitly with pidfds"
* tag 'threads-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
tests: remove O_NONBLOCK before waiting for WSTOPPED
tests: add waitid() tests for non-blocking pidfds
tests: port pidfd_wait to kselftest harness
pidfd: support PIDFD_NONBLOCK in pidfd_open()
exit: support non-blocking pidfds
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull kernel_clone() updates from Christian Brauner:
"During the v5.9 merge window we reworked the process creation
codepaths across multiple architectures. After this work we were only
left with the _do_fork() helper based on the struct kernel_clone_args
calling convention. As was pointed out _do_fork() isn't valid
kernelese especially for a helper that isn't just static.
This series removes the _do_fork() helper and introduces the new
kernel_clone() helper. The process creation cleanup didn't change the
name to something more reasonable mainly because _do_fork() was used
in quite a few places. So sending this as a separate series seemed the
better strategy.
I originally intended to send this early in the v5.9 development cycle
after the merge window had closed but given that this was touching
quite a few places I decided to defer this until the v5.10 merge
window"
* tag 'kernel-clone-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
sched: remove _do_fork()
tracing: switch to kernel_clone()
kgdbts: switch to kernel_clone()
kprobes: switch to kernel_clone()
x86: switch to kernel_clone()
sparc: switch to kernel_clone()
nios2: switch to kernel_clone()
m68k: switch to kernel_clone()
ia64: switch to kernel_clone()
h8300: switch to kernel_clone()
fork: introduce kernel_clone()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest
Pull kselftest updates from Shuah Khan:
- a selftests harness fix to flush stdout before forking to avoid
parent and child printing duplicates messages. This is evident when
test output is redirected to a file.
- a tools/ wide change to avoid comma separated statements from Joe
Perches. This fix spans tools/lib, tools/power/cpupower, and
selftests.
* tag 'linux-kselftest-fixes-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest:
tools: Avoid comma separated statements
selftests/harness: Flush stdout before forking
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These add support for generic initiator-only proximity domains to the
ACPI NUMA code and the architectures using it, clean up some
non-ACPICA code referring to debug facilities from ACPICA, reduce the
overhead related to accessing GPE registers, add a new DPTF (Dynamic
Power and Thermal Framework) participant driver, update the ACPICA
code in the kernel to upstream revision 20200925, add a new ACPI
backlight whitelist entry, fix a few assorted issues and clean up some
code.
Specifics:
- Add support for generic initiator-only proximity domains to the
ACPI NUMA code and the architectures using it (Jonathan Cameron)
- Clean up some non-ACPICA code referring to debug facilities from
ACPICA that are not actually used in there (Hanjun Guo)
- Add new DPTF driver for the PCH FIVR participant (Srinivas
Pandruvada)
- Reduce overhead related to accessing GPE registers in ACPICA and
the OS interface layer and make it possible to access GPE registers
using logical addresses if they are memory-mapped (Rafael Wysocki)
- Update the ACPICA code in the kernel to upstream revision 20200925
including changes as follows:
+ Add predefined names from the SMBus sepcification (Bob Moore)
+ Update acpi_help UUID list (Bob Moore)
+ Return exceptions for string-to-integer conversions in iASL (Bob
Moore)
+ Add a new "ALL <NameSeg>" debugger command (Bob Moore)
+ Add support for 64 bit risc-v compilation (Colin Ian King)
+ Do assorted cleanups (Bob Moore, Colin Ian King, Randy Dunlap)
- Add new ACPI backlight whitelist entry for HP 635 Notebook (Alex
Hung)
- Move TPS68470 OpRegion driver to drivers/acpi/pmic/ and split out
Kconfig and Makefile specific for ACPI PMIC (Andy Shevchenko)
- Clean up the ACPI SoC driver for AMD SoCs (Hanjun Guo)
- Add missing config_item_put() to fix refcount leak (Hanjun Guo)
- Drop lefrover field from struct acpi_memory_device (Hanjun Guo)
- Make the ACPI extlog driver check for RDMSR failures (Ben
Hutchings)
- Fix handling of lid state changes in the ACPI button driver when
input device is closed (Dmitry Torokhov)
- Fix several assorted build issues (Barnabás Pőcze, John Garry,
Nathan Chancellor, Tian Tao)
- Drop unused inline functions and reduce code duplication by using
kobj_to_dev() in the NFIT parsing code (YueHaibing, Wang Qing)
- Serialize tools/power/acpi Makefile (Thomas Renninger)"
* tag 'acpi-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (64 commits)
ACPICA: Update version to 20200925 Version 20200925
ACPICA: Remove unnecessary semicolon
ACPICA: Debugger: Add a new command: "ALL <NameSeg>"
ACPICA: iASL: Return exceptions for string-to-integer conversions
ACPICA: acpi_help: Update UUID list
ACPICA: Add predefined names found in the SMBus sepcification
ACPICA: Tree-wide: fix various typos and spelling mistakes
ACPICA: Drop the repeated word "an" in a comment
ACPICA: Add support for 64 bit risc-v compilation
ACPI: button: fix handling lid state changes when input device closed
tools/power/acpi: Serialize Makefile
ACPI: scan: Replace ACPI_DEBUG_PRINT() with pr_debug()
ACPI: memhotplug: Remove 'state' from struct acpi_memory_device
ACPI / extlog: Check for RDMSR failure
ACPI: Make acpi_evaluate_dsm() prototype consistent
docs: mm: numaperf.rst Add brief description for access class 1.
node: Add access1 class to represent CPU to memory characteristics
ACPI: HMAT: Fix handling of changes from ACPI 6.2 to ACPI 6.3
ACPI: Let ACPI know we support Generic Initiator Affinity Structures
x86: Support Generic Initiator only proximity domains
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86
Pull x86 platform driver updates from Hans de Goede:
"Rather calm cycle for x86 platform drivers, all these have been in
for-next for a couple of days with no bot complaints.
Highlights:
- PMC TigerLake fixes and new RocketLake support
- various small fixes / updates in other drivers/tools"
* tag 'platform-drivers-x86-v5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86:
MAINTAINERS: update X86 PLATFORM DRIVERS entry with new kernel.org git repo
platform/x86: mlx-platform: Add capability field to platform FAN description
platform_data/mlxreg: Extend core platform structure
platform_data/mlxreg: Update module license
platform/x86: mlx-platform: Remove PSU EEPROM configuration
MAINTAINERS: Update maintainers for pmc_core driver
platform/x86: intel_pmc_core: fix: Replace dev_dbg macro with dev_info()
platform/x86: intel_pmc_core: Add Intel RocketLake (RKL) support
platform/x86: intel_pmc_core: Clean up: Remove the duplicate comments and reorganize
platform/x86: intel_pmc_core: Fix the slp_s0 counter displayed value
platform/x86: intel_pmc_core: Fix TigerLake power gating status map
platform/x86: pmc_core: Use descriptive names for LPM registers
tools/power/x86/intel-speed-select: Update version for v5.10
tools/power/x86/intel-speed-select: Fix missing base-freq core IDs
platform/x86: hp-wmi: add support for thermal policy
|
|
The existing approach to synchronization between threads in the numa
benchmark is unbalanced mutexes.
This synchronization causes thread sanitizer to warn of locks being
taken twice on a thread without an unlock, as well as unlocks with no
corresponding locks.
This change replaces the synchronization with more regular condition
variables.
While this fixes one class of thread sanitizer warnings, there still
remain warnings of data races due to threads reading and writing shared
memory without any atomics.
Committer testing:
Basic run on a non-NUMA machine.
# perf bench numa
# List of available benchmarks for collection 'numa':
mem: Benchmark for NUMA workloads
all: Run all NUMA benchmarks
# perf bench numa all
# Running numa/mem benchmark...
# Running main, "perf bench numa numa-mem"
#
# Running test on: Linux five 5.8.12-200.fc32.x86_64 #1 SMP Mon Sep 28 12:17:31 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
#
# Running RAM-bw-local, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 0 -s 20 -zZq --thp 1 --no-data_rand_walk"
20.076 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.073 secs average thread-runtime
0.190 % difference between max/avg runtime
241.828 GB data processed, per thread
241.828 GB data processed, total
0.083 nsecs/byte/thread runtime
12.045 GB/sec/thread speed
12.045 GB/sec total speed
# Running RAM-bw-local-NOTHP, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 0 -s 20 -zZq --thp 1 --no-data_rand_walk --thp -1"
20.045 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.014 secs average thread-runtime
0.111 % difference between max/avg runtime
234.304 GB data processed, per thread
234.304 GB data processed, total
0.086 nsecs/byte/thread runtime
11.689 GB/sec/thread speed
11.689 GB/sec total speed
# Running RAM-bw-remote, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 1 -s 20 -zZq --thp 1 --no-data_rand_walk"
Test not applicable, system has only 1 nodes.
# Running RAM-bw-local-2x, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,2 -M 0x2 -s 20 -zZq --thp 1 --no-data_rand_walk"
20.138 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.121 secs average thread-runtime
0.342 % difference between max/avg runtime
135.961 GB data processed, per thread
271.922 GB data processed, total
0.148 nsecs/byte/thread runtime
6.752 GB/sec/thread speed
13.503 GB/sec total speed
# Running RAM-bw-remote-2x, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,2 -M 1x2 -s 20 -zZq --thp 1 --no-data_rand_walk"
Test not applicable, system has only 1 nodes.
# Running RAM-bw-cross, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,8 -M 1,0 -s 20 -zZq --thp 1 --no-data_rand_walk"
Test not applicable, system has only 1 nodes.
# Running 1x3-convergence, "perf bench numa mem -p 1 -t 3 -P 512 -s 100 -zZ0qcm --thp 1"
0.747 secs latency to NUMA-converge
0.747 secs slowest (max) thread-runtime
0.000 secs fastest (min) thread-runtime
0.714 secs average thread-runtime
50.000 % difference between max/avg runtime
3.228 GB data processed, per thread
9.683 GB data processed, total
0.231 nsecs/byte/thread runtime
4.321 GB/sec/thread speed
12.964 GB/sec total speed
# Running 1x4-convergence, "perf bench numa mem -p 1 -t 4 -P 512 -s 100 -zZ0qcm --thp 1"
1.127 secs latency to NUMA-converge
1.127 secs slowest (max) thread-runtime
1.000 secs fastest (min) thread-runtime
1.089 secs average thread-runtime
5.624 % difference between max/avg runtime
3.765 GB data processed, per thread
15.062 GB data processed, total
0.299 nsecs/byte/thread runtime
3.342 GB/sec/thread speed
13.368 GB/sec total speed
# Running 1x6-convergence, "perf bench numa mem -p 1 -t 6 -P 1020 -s 100 -zZ0qcm --thp 1"
1.003 secs latency to NUMA-converge
1.003 secs slowest (max) thread-runtime
0.000 secs fastest (min) thread-runtime
0.889 secs average thread-runtime
50.000 % difference between max/avg runtime
2.141 GB data processed, per thread
12.847 GB data processed, total
0.469 nsecs/byte/thread runtime
2.134 GB/sec/thread speed
12.805 GB/sec total speed
# Running 2x3-convergence, "perf bench numa mem -p 2 -t 3 -P 1020 -s 100 -zZ0qcm --thp 1"
1.814 secs latency to NUMA-converge
1.814 secs slowest (max) thread-runtime
1.000 secs fastest (min) thread-runtime
1.716 secs average thread-runtime
22.440 % difference between max/avg runtime
3.747 GB data processed, per thread
22.483 GB data processed, total
0.484 nsecs/byte/thread runtime
2.065 GB/sec/thread speed
12.393 GB/sec total speed
# Running 3x3-convergence, "perf bench numa mem -p 3 -t 3 -P 1020 -s 100 -zZ0qcm --thp 1"
2.065 secs latency to NUMA-converge
2.065 secs slowest (max) thread-runtime
1.000 secs fastest (min) thread-runtime
1.947 secs average thread-runtime
25.788 % difference between max/avg runtime
2.855 GB data processed, per thread
25.694 GB data processed, total
0.723 nsecs/byte/thread runtime
1.382 GB/sec/thread speed
12.442 GB/sec total speed
# Running 4x4-convergence, "perf bench numa mem -p 4 -t 4 -P 512 -s 100 -zZ0qcm --thp 1"
1.912 secs latency to NUMA-converge
1.912 secs slowest (max) thread-runtime
1.000 secs fastest (min) thread-runtime
1.775 secs average thread-runtime
23.852 % difference between max/avg runtime
1.479 GB data processed, per thread
23.668 GB data processed, total
1.293 nsecs/byte/thread runtime
0.774 GB/sec/thread speed
12.378 GB/sec total speed
# Running 4x4-convergence-NOTHP, "perf bench numa mem -p 4 -t 4 -P 512 -s 100 -zZ0qcm --thp 1 --thp -1"
1.783 secs latency to NUMA-converge
1.783 secs slowest (max) thread-runtime
1.000 secs fastest (min) thread-runtime
1.633 secs average thread-runtime
21.960 % difference between max/avg runtime
1.345 GB data processed, per thread
21.517 GB data processed, total
1.326 nsecs/byte/thread runtime
0.754 GB/sec/thread speed
12.067 GB/sec total speed
# Running 4x6-convergence, "perf bench numa mem -p 4 -t 6 -P 1020 -s 100 -zZ0qcm --thp 1"
5.396 secs latency to NUMA-converge
5.396 secs slowest (max) thread-runtime
4.000 secs fastest (min) thread-runtime
4.928 secs average thread-runtime
12.937 % difference between max/avg runtime
2.721 GB data processed, per thread
65.306 GB data processed, total
1.983 nsecs/byte/thread runtime
0.504 GB/sec/thread speed
12.102 GB/sec total speed
# Running 4x8-convergence, "perf bench numa mem -p 4 -t 8 -P 512 -s 100 -zZ0qcm --thp 1"
3.121 secs latency to NUMA-converge
3.121 secs slowest (max) thread-runtime
2.000 secs fastest (min) thread-runtime
2.836 secs average thread-runtime
17.962 % difference between max/avg runtime
1.194 GB data processed, per thread
38.192 GB data processed, total
2.615 nsecs/byte/thread runtime
0.382 GB/sec/thread speed
12.236 GB/sec total speed
# Running 8x4-convergence, "perf bench numa mem -p 8 -t 4 -P 512 -s 100 -zZ0qcm --thp 1"
4.302 secs latency to NUMA-converge
4.302 secs slowest (max) thread-runtime
3.000 secs fastest (min) thread-runtime
4.045 secs average thread-runtime
15.133 % difference between max/avg runtime
1.631 GB data processed, per thread
52.178 GB data processed, total
2.638 nsecs/byte/thread runtime
0.379 GB/sec/thread speed
12.128 GB/sec total speed
# Running 8x4-convergence-NOTHP, "perf bench numa mem -p 8 -t 4 -P 512 -s 100 -zZ0qcm --thp 1 --thp -1"
4.418 secs latency to NUMA-converge
4.418 secs slowest (max) thread-runtime
3.000 secs fastest (min) thread-runtime
4.104 secs average thread-runtime
16.045 % difference between max/avg runtime
1.664 GB data processed, per thread
53.254 GB data processed, total
2.655 nsecs/byte/thread runtime
0.377 GB/sec/thread speed
12.055 GB/sec total speed
# Running 3x1-convergence, "perf bench numa mem -p 3 -t 1 -P 512 -s 100 -zZ0qcm --thp 1"
0.973 secs latency to NUMA-converge
0.973 secs slowest (max) thread-runtime
0.000 secs fastest (min) thread-runtime
0.955 secs average thread-runtime
50.000 % difference between max/avg runtime
4.124 GB data processed, per thread
12.372 GB data processed, total
0.236 nsecs/byte/thread runtime
4.238 GB/sec/thread speed
12.715 GB/sec total speed
# Running 4x1-convergence, "perf bench numa mem -p 4 -t 1 -P 512 -s 100 -zZ0qcm --thp 1"
0.820 secs latency to NUMA-converge
0.820 secs slowest (max) thread-runtime
0.000 secs fastest (min) thread-runtime
0.808 secs average thread-runtime
50.000 % difference between max/avg runtime
2.555 GB data processed, per thread
10.220 GB data processed, total
0.321 nsecs/byte/thread runtime
3.117 GB/sec/thread speed
12.468 GB/sec total speed
# Running 8x1-convergence, "perf bench numa mem -p 8 -t 1 -P 512 -s 100 -zZ0qcm --thp 1"
0.667 secs latency to NUMA-converge
0.667 secs slowest (max) thread-runtime
0.000 secs fastest (min) thread-runtime
0.607 secs average thread-runtime
50.000 % difference between max/avg runtime
1.009 GB data processed, per thread
8.069 GB data processed, total
0.661 nsecs/byte/thread runtime
1.512 GB/sec/thread speed
12.095 GB/sec total speed
# Running 16x1-convergence, "perf bench numa mem -p 16 -t 1 -P 256 -s 100 -zZ0qcm --thp 1"
1.546 secs latency to NUMA-converge
1.546 secs slowest (max) thread-runtime
1.000 secs fastest (min) thread-runtime
1.485 secs average thread-runtime
17.664 % difference between max/avg runtime
1.162 GB data processed, per thread
18.594 GB data processed, total
1.331 nsecs/byte/thread runtime
0.752 GB/sec/thread speed
12.025 GB/sec total speed
# Running 32x1-convergence, "perf bench numa mem -p 32 -t 1 -P 128 -s 100 -zZ0qcm --thp 1"
0.812 secs latency to NUMA-converge
0.812 secs slowest (max) thread-runtime
0.000 secs fastest (min) thread-runtime
0.739 secs average thread-runtime
50.000 % difference between max/avg runtime
0.309 GB data processed, per thread
9.874 GB data processed, total
2.630 nsecs/byte/thread runtime
0.380 GB/sec/thread speed
12.166 GB/sec total speed
# Running 2x1-bw-process, "perf bench numa mem -p 2 -t 1 -P 1024 -s 20 -zZ0q --thp 1"
20.044 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.020 secs average thread-runtime
0.109 % difference between max/avg runtime
125.750 GB data processed, per thread
251.501 GB data processed, total
0.159 nsecs/byte/thread runtime
6.274 GB/sec/thread speed
12.548 GB/sec total speed
# Running 3x1-bw-process, "perf bench numa mem -p 3 -t 1 -P 1024 -s 20 -zZ0q --thp 1"
20.148 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.090 secs average thread-runtime
0.367 % difference between max/avg runtime
85.267 GB data processed, per thread
255.800 GB data processed, total
0.236 nsecs/byte/thread runtime
4.232 GB/sec/thread speed
12.696 GB/sec total speed
# Running 4x1-bw-process, "perf bench numa mem -p 4 -t 1 -P 1024 -s 20 -zZ0q --thp 1"
20.169 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.100 secs average thread-runtime
0.419 % difference between max/avg runtime
63.144 GB data processed, per thread
252.576 GB data processed, total
0.319 nsecs/byte/thread runtime
3.131 GB/sec/thread speed
12.523 GB/sec total speed
# Running 8x1-bw-process, "perf bench numa mem -p 8 -t 1 -P 512 -s 20 -zZ0q --thp 1"
20.175 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.107 secs average thread-runtime
0.433 % difference between max/avg runtime
31.267 GB data processed, per thread
250.133 GB data processed, total
0.645 nsecs/byte/thread runtime
1.550 GB/sec/thread speed
12.398 GB/sec total speed
# Running 8x1-bw-process-NOTHP, "perf bench numa mem -p 8 -t 1 -P 512 -s 20 -zZ0q --thp 1 --thp -1"
20.216 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.113 secs average thread-runtime
0.535 % difference between max/avg runtime
30.998 GB data processed, per thread
247.981 GB data processed, total
0.652 nsecs/byte/thread runtime
1.533 GB/sec/thread speed
12.266 GB/sec total speed
# Running 16x1-bw-process, "perf bench numa mem -p 16 -t 1 -P 256 -s 20 -zZ0q --thp 1"
20.234 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.174 secs average thread-runtime
0.577 % difference between max/avg runtime
15.377 GB data processed, per thread
246.039 GB data processed, total
1.316 nsecs/byte/thread runtime
0.760 GB/sec/thread speed
12.160 GB/sec total speed
# Running 1x4-bw-thread, "perf bench numa mem -p 1 -t 4 -T 256 -s 20 -zZ0q --thp 1"
20.040 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.028 secs average thread-runtime
0.099 % difference between max/avg runtime
66.832 GB data processed, per thread
267.328 GB data processed, total
0.300 nsecs/byte/thread runtime
3.335 GB/sec/thread speed
13.340 GB/sec total speed
# Running 1x8-bw-thread, "perf bench numa mem -p 1 -t 8 -T 256 -s 20 -zZ0q --thp 1"
20.064 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.034 secs average thread-runtime
0.160 % difference between max/avg runtime
32.911 GB data processed, per thread
263.286 GB data processed, total
0.610 nsecs/byte/thread runtime
1.640 GB/sec/thread speed
13.122 GB/sec total speed
# Running 1x16-bw-thread, "perf bench numa mem -p 1 -t 16 -T 128 -s 20 -zZ0q --thp 1"
20.092 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.052 secs average thread-runtime
0.230 % difference between max/avg runtime
16.131 GB data processed, per thread
258.088 GB data processed, total
1.246 nsecs/byte/thread runtime
0.803 GB/sec/thread speed
12.845 GB/sec total speed
# Running 1x32-bw-thread, "perf bench numa mem -p 1 -t 32 -T 64 -s 20 -zZ0q --thp 1"
20.099 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.063 secs average thread-runtime
0.247 % difference between max/avg runtime
7.962 GB data processed, per thread
254.773 GB data processed, total
2.525 nsecs/byte/thread runtime
0.396 GB/sec/thread speed
12.676 GB/sec total speed
# Running 2x3-bw-process, "perf bench numa mem -p 2 -t 3 -P 512 -s 20 -zZ0q --thp 1"
20.150 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.120 secs average thread-runtime
0.372 % difference between max/avg runtime
44.827 GB data processed, per thread
268.960 GB data processed, total
0.450 nsecs/byte/thread runtime
2.225 GB/sec/thread speed
13.348 GB/sec total speed
# Running 4x4-bw-process, "perf bench numa mem -p 4 -t 4 -P 512 -s 20 -zZ0q --thp 1"
20.258 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.168 secs average thread-runtime
0.636 % difference between max/avg runtime
17.079 GB data processed, per thread
273.263 GB data processed, total
1.186 nsecs/byte/thread runtime
0.843 GB/sec/thread speed
13.489 GB/sec total speed
# Running 4x6-bw-process, "perf bench numa mem -p 4 -t 6 -P 512 -s 20 -zZ0q --thp 1"
20.559 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.382 secs average thread-runtime
1.359 % difference between max/avg runtime
10.758 GB data processed, per thread
258.201 GB data processed, total
1.911 nsecs/byte/thread runtime
0.523 GB/sec/thread speed
12.559 GB/sec total speed
# Running 4x8-bw-process, "perf bench numa mem -p 4 -t 8 -P 512 -s 20 -zZ0q --thp 1"
20.744 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.516 secs average thread-runtime
1.792 % difference between max/avg runtime
8.069 GB data processed, per thread
258.201 GB data processed, total
2.571 nsecs/byte/thread runtime
0.389 GB/sec/thread speed
12.447 GB/sec total speed
# Running 4x8-bw-process-NOTHP, "perf bench numa mem -p 4 -t 8 -P 512 -s 20 -zZ0q --thp 1 --thp -1"
20.855 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.561 secs average thread-runtime
2.050 % difference between max/avg runtime
8.069 GB data processed, per thread
258.201 GB data processed, total
2.585 nsecs/byte/thread runtime
0.387 GB/sec/thread speed
12.381 GB/sec total speed
# Running 3x3-bw-process, "perf bench numa mem -p 3 -t 3 -P 512 -s 20 -zZ0q --thp 1"
20.134 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.077 secs average thread-runtime
0.333 % difference between max/avg runtime
28.091 GB data processed, per thread
252.822 GB data processed, total
0.717 nsecs/byte/thread runtime
1.395 GB/sec/thread speed
12.557 GB/sec total speed
# Running 5x5-bw-process, "perf bench numa mem -p 5 -t 5 -P 512 -s 20 -zZ0q --thp 1"
20.588 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.375 secs average thread-runtime
1.427 % difference between max/avg runtime
10.177 GB data processed, per thread
254.436 GB data processed, total
2.023 nsecs/byte/thread runtime
0.494 GB/sec/thread speed
12.359 GB/sec total speed
# Running 2x16-bw-process, "perf bench numa mem -p 2 -t 16 -P 512 -s 20 -zZ0q --thp 1"
20.657 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.429 secs average thread-runtime
1.589 % difference between max/avg runtime
8.170 GB data processed, per thread
261.429 GB data processed, total
2.528 nsecs/byte/thread runtime
0.395 GB/sec/thread speed
12.656 GB/sec total speed
# Running 1x32-bw-process, "perf bench numa mem -p 1 -t 32 -P 2048 -s 20 -zZ0q --thp 1"
22.981 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
21.996 secs average thread-runtime
6.486 % difference between max/avg runtime
8.863 GB data processed, per thread
283.606 GB data processed, total
2.593 nsecs/byte/thread runtime
0.386 GB/sec/thread speed
12.341 GB/sec total speed
# Running numa02-bw, "perf bench numa mem -p 1 -t 32 -T 32 -s 20 -zZ0q --thp 1"
20.047 secs slowest (max) thread-runtime
19.000 secs fastest (min) thread-runtime
20.026 secs average thread-runtime
2.611 % difference between max/avg runtime
8.441 GB data processed, per thread
270.111 GB data processed, total
2.375 nsecs/byte/thread runtime
0.421 GB/sec/thread speed
13.474 GB/sec total speed
# Running numa02-bw-NOTHP, "perf bench numa mem -p 1 -t 32 -T 32 -s 20 -zZ0q --thp 1 --thp -1"
20.088 secs slowest (max) thread-runtime
19.000 secs fastest (min) thread-runtime
20.025 secs average thread-runtime
2.709 % difference between max/avg runtime
8.411 GB data processed, per thread
269.142 GB data processed, total
2.388 nsecs/byte/thread runtime
0.419 GB/sec/thread speed
13.398 GB/sec total speed
# Running numa01-bw-thread, "perf bench numa mem -p 2 -t 16 -T 192 -s 20 -zZ0q --thp 1"
20.293 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.175 secs average thread-runtime
0.721 % difference between max/avg runtime
7.918 GB data processed, per thread
253.374 GB data processed, total
2.563 nsecs/byte/thread runtime
0.390 GB/sec/thread speed
12.486 GB/sec total speed
# Running numa01-bw-thread-NOTHP, "perf bench numa mem -p 2 -t 16 -T 192 -s 20 -zZ0q --thp 1 --thp -1"
20.411 secs slowest (max) thread-runtime
20.000 secs fastest (min) thread-runtime
20.226 secs average thread-runtime
1.006 % difference between max/avg runtime
7.931 GB data processed, per thread
253.778 GB data processed, total
2.574 nsecs/byte/thread runtime
0.389 GB/sec/thread speed
12.434 GB/sec total speed
#
Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: https://lore.kernel.org/r/20201012161611.366482-1-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV-ES support from Borislav Petkov:
"SEV-ES enhances the current guest memory encryption support called SEV
by also encrypting the guest register state, making the registers
inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared
between the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest
so in order for that exception mechanism to work, the early x86 init
code needed to be made able to handle exceptions, which, in itself,
brings a bunch of very nice cleanups and improvements to the early
boot code like an early page fault handler, allowing for on-demand
building of the identity mapping. With that, !KASLR configurations do
not use the EFI page table anymore but switch to a kernel-controlled
one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly separate
from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and
behind static keys to minimize the performance impact on !SEV-ES
setups.
Work by Joerg Roedel and Thomas Lendacky and others"
* tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer
x86/sev-es: Check required CPU features for SEV-ES
x86/efi: Add GHCB mappings when SEV-ES is active
x86/sev-es: Handle NMI State
x86/sev-es: Support CPU offline/online
x86/head/64: Don't call verify_cpu() on starting APs
x86/smpboot: Load TSS and getcpu GDT entry before loading IDT
x86/realmode: Setup AP jump table
x86/realmode: Add SEV-ES specific trampoline entry point
x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES
x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES
x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES
x86/sev-es: Handle #DB Events
x86/sev-es: Handle #AC Events
x86/sev-es: Handle VMMCALL Events
x86/sev-es: Handle MWAIT/MWAITX Events
x86/sev-es: Handle MONITOR/MONITORX Events
x86/sev-es: Handle INVD Events
x86/sev-es: Handle RDPMC Events
x86/sev-es: Handle RDTSC(P) Events
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
"Most of the changes are cleanups and reorganization to make the
objtool code more arch-agnostic. This is in preparation for non-x86
support.
Other changes:
- KASAN fixes
- Handle unreachable trap after call to noreturn functions better
- Ignore unreachable fake jumps
- Misc smaller fixes & cleanups"
* tag 'objtool-core-2020-10-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
perf build: Allow nested externs to enable BUILD_BUG() usage
objtool: Allow nested externs to enable BUILD_BUG()
objtool: Permit __kasan_check_{read,write} under UACCESS
objtool: Ignore unreachable trap after call to noreturn functions
objtool: Handle calling non-function symbols in other sections
objtool: Ignore unreachable fake jumps
objtool: Remove useless tests before save_reg()
objtool: Decode unwind hint register depending on architecture
objtool: Make unwind hint definitions available to other architectures
objtool: Only include valid definitions depending on source file type
objtool: Rename frame.h -> objtool.h
objtool: Refactor jump table code to support other architectures
objtool: Make relocation in alternative handling arch dependent
objtool: Abstract alternative special case handling
objtool: Move macros describing structures to arch-dependent code
objtool: Make sync-check consider the target architecture
objtool: Group headers to check in a single list
objtool: Define 'struct orc_entry' only when needed
objtool: Skip ORC entry creation for non-text sections
objtool: Move ORC logic out of check()
...
|
|
Merge misc updates from Andrew Morton:
"181 patches.
Subsystems affected by this patch series: kbuild, scripts, ntfs,
ocfs2, vfs, mm (slab, slub, kmemleak, dax, debug, pagecache, fadvise,
gup, swap, memremap, memcg, selftests, pagemap, mincore, hmm, dma,
memory-failure, vmallo and migration)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (181 commits)
mm/migrate: remove obsolete comment about device public
mm/migrate: remove cpages-- in migrate_vma_finalize()
mm, oom_adj: don't loop through tasks in __set_oom_adj when not necessary
memblock: use separate iterators for memory and reserved regions
memblock: implement for_each_reserved_mem_region() using __next_mem_region()
memblock: remove unused memblock_mem_size()
x86/setup: simplify reserve_crashkernel()
x86/setup: simplify initrd relocation and reservation
arch, drivers: replace for_each_membock() with for_each_mem_range()
arch, mm: replace for_each_memblock() with for_each_mem_pfn_range()
memblock: reduce number of parameters in for_each_mem_range()
memblock: make memblock_debug and related functionality private
memblock: make for_each_memblock_type() iterator private
mircoblaze: drop unneeded NUMA and sparsemem initializations
riscv: drop unneeded node initialization
h8300, nds32, openrisc: simplify detection of memory extents
arm64: numa: simplify dummy_numa_init()
arm, xtensa: simplify initialization of high memory pages
dma-contiguous: simplify cma_early_percent_memory()
KVM: PPC: Book3S HV: simplify kvm_cma_reserve()
...
|
|
The event code for events referencing std arch events is incorrectly
evaluated in json_events().
The issue is that je.event is evaluated properly from try_fixup(), but
later NULLified from the real_event() call, as "event" may be NULL.
Fix by setting "event" same je.event in try_fixup().
Also remove support for overwriting event code for events using std arch
events, as it is not used.
Signed-off-by: John Garry <john.garry@huawei.com>
Reviewed-By: Kajol Jain<kjain@linux.ibm.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Link: https://lore.kernel.org/r/1602170368-11892-1-git-send-email-john.garry@huawei.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
This patch enables perf-diff with "--stream" option.
"--stream": Enable hot streams comparison
Now let's see example.
perf record -b ... Generate perf.data.old with branch data
perf record -b ... Generate perf.data with branch data
perf diff --stream
[ Matched hot streams ]
hot chain pair 1:
cycles: 1, hits: 27.77% cycles: 1, hits: 9.24%
--------------------------- --------------------------
main div.c:39 main div.c:39
main div.c:44 main div.c:44
hot chain pair 2:
cycles: 34, hits: 20.06% cycles: 27, hits: 16.98%
--------------------------- --------------------------
__random_r random_r.c:360 __random_r random_r.c:360
__random_r random_r.c:388 __random_r random_r.c:388
__random_r random_r.c:388 __random_r random_r.c:388
__random_r random_r.c:380 __random_r random_r.c:380
__random_r random_r.c:357 __random_r random_r.c:357
__random random.c:293 __random random.c:293
__random random.c:293 __random random.c:293
__random random.c:291 __random random.c:291
__random random.c:291 __random random.c:291
__random random.c:291 __random random.c:291
__random random.c:288 __random random.c:288
rand rand.c:27 rand rand.c:27
rand rand.c:26 rand rand.c:26
rand@plt rand@plt
rand@plt rand@plt
compute_flag div.c:25 compute_flag div.c:25
compute_flag div.c:22 compute_flag div.c:22
main div.c:40 main div.c:40
main div.c:40 main div.c:40
main div.c:39 main div.c:39
hot chain pair 3:
cycles: 9, hits: 4.48% cycles: 6, hits: 4.51%
--------------------------- --------------------------
__random_r random_r.c:360 __random_r random_r.c:360
__random_r random_r.c:388 __random_r random_r.c:388
__random_r random_r.c:388 __random_r random_r.c:388
__random_r random_r.c:380 __random_r random_r.c:380
[ Hot streams in old perf data only ]
hot chain 1:
cycles: 18, hits: 6.75%
--------------------------
__random_r random_r.c:360
__random_r random_r.c:388
__random_r random_r.c:388
__random_r random_r.c:380
__random_r random_r.c:357
__random random.c:293
__random random.c:293
__random random.c:291
__random random.c:291
__random random.c:291
__random random.c:288
rand rand.c:27
rand rand.c:26
rand@plt
rand@plt
compute_flag div.c:25
compute_flag div.c:22
main div.c:40
hot chain 2:
cycles: 29, hits: 2.78%
--------------------------
compute_flag div.c:22
main div.c:40
main div.c:40
main div.c:39
[ Hot streams in new perf data only ]
hot chain 1:
cycles: 4, hits: 4.54%
--------------------------
main div.c:42
compute_flag div.c:28
hot chain 2:
cycles: 5, hits: 3.51%
--------------------------
main div.c:39
main div.c:44
main div.c:42
compute_flag div.c:28
Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20201009022845.13141-8-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
We show the streams separately. They are divided into different sections.
1. "Matched hot streams"
2. "Hot streams in old perf data only"
3. "Hot streams in new perf data only".
For each stream, we report the cycles and hot percent (hits%).
For example,
cycles: 2, hits: 4.08%
--------------------------
main div.c:42
compute_flag div.c:28
Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20201009022845.13141-7-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
We have used callchain_node->hit to measure the hot level of one stream.
This patch calculates the sum of hits of total streams.
Thus in next patch, we can use following formula to report hot percent
for one stream.
hot percent = callchain_node->hit / sum of total hits
Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20201009022845.13141-6-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|