Age | Commit message (Collapse) | Author | Files | Lines |
|
All other skbs allocated for TCP tx are using MAX_TCP_HEADER already.
MAX_HEADER can be too small for some cases (like eBPF based encapsulation),
so this can avoid extra pskb_expand_head() in lower stacks.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Link: https://lore.kernel.org/r/20220222031115.4005060-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Replace kfree_skb() used in tcp_v4_do_rcv() and tcp_v6_do_rcv() with
kfree_skb_reason().
Reviewed-by: Mengen Sun <mengensun@tencent.com>
Reviewed-by: Hao Peng <flyingpeng@tencent.com>
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Pass the address of drop_reason to tcp_add_backlog() to store the
reasons for skb drops when fails. Following drop reasons are
introduced:
SKB_DROP_REASON_SOCKET_BACKLOG
Reviewed-by: Mengen Sun <mengensun@tencent.com>
Reviewed-by: Hao Peng <flyingpeng@tencent.com>
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Pass the address of drop reason to tcp_v4_inbound_md5_hash() and
tcp_v6_inbound_md5_hash() to store the reasons for skb drops when this
function fails. Therefore, the drop reason can be passed to
kfree_skb_reason() when the skb needs to be freed.
Following drop reasons are added:
SKB_DROP_REASON_TCP_MD5NOTFOUND
SKB_DROP_REASON_TCP_MD5UNEXPECTED
SKB_DROP_REASON_TCP_MD5FAILURE
SKB_DROP_REASON_TCP_MD5* above correspond to LINUX_MIB_TCPMD5*
Reviewed-by: Mengen Sun <mengensun@tencent.com>
Reviewed-by: Hao Peng <flyingpeng@tencent.com>
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Replace kfree_skb() used in tcp_v6_rcv() with kfree_skb_reason().
Reviewed-by: Mengen Sun <mengensun@tencent.com>
Reviewed-by: Hao Peng <flyingpeng@tencent.com>
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
I forgot tcp had per netns tracking of timewait sockets,
and their sysctl to change the limit.
After 0dad4087a86a ("tcp/dccp: get rid of inet_twsk_purge()"),
whole struct net can be freed before last tw socket is freed.
We need to allocate a separate struct inet_timewait_death_row
object per netns.
tw_count becomes a refcount and gains associated debugging infrastructure.
BUG: KASAN: use-after-free in inet_twsk_kill+0x358/0x3c0 net/ipv4/inet_timewait_sock.c:46
Read of size 8 at addr ffff88807d5f9f40 by task kworker/1:7/3690
CPU: 1 PID: 3690 Comm: kworker/1:7 Not tainted 5.16.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: events pwq_unbound_release_workfn
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description.constprop.0.cold+0x8d/0x336 mm/kasan/report.c:255
__kasan_report mm/kasan/report.c:442 [inline]
kasan_report.cold+0x83/0xdf mm/kasan/report.c:459
inet_twsk_kill+0x358/0x3c0 net/ipv4/inet_timewait_sock.c:46
call_timer_fn+0x1a5/0x6b0 kernel/time/timer.c:1421
expire_timers kernel/time/timer.c:1466 [inline]
__run_timers.part.0+0x67c/0xa30 kernel/time/timer.c:1734
__run_timers kernel/time/timer.c:1715 [inline]
run_timer_softirq+0xb3/0x1d0 kernel/time/timer.c:1747
__do_softirq+0x29b/0x9c2 kernel/softirq.c:558
invoke_softirq kernel/softirq.c:432 [inline]
__irq_exit_rcu+0x123/0x180 kernel/softirq.c:637
irq_exit_rcu+0x5/0x20 kernel/softirq.c:649
sysvec_apic_timer_interrupt+0x93/0xc0 arch/x86/kernel/apic/apic.c:1097
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:638
RIP: 0010:lockdep_unregister_key+0x1c9/0x250 kernel/locking/lockdep.c:6328
Code: 00 00 00 48 89 ee e8 46 fd ff ff 4c 89 f7 e8 5e c9 ff ff e8 09 cc ff ff 9c 58 f6 c4 02 75 26 41 f7 c4 00 02 00 00 74 01 fb 5b <5d> 41 5c 41 5d 41 5e 41 5f e9 19 4a 08 00 0f 0b 5b 5d 41 5c 41 5d
RSP: 0018:ffffc90004077cb8 EFLAGS: 00000206
RAX: 0000000000000046 RBX: ffff88807b61b498 RCX: 0000000000000001
RDX: dffffc0000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff888077027128 R08: 0000000000000001 R09: ffffffff8f1ea4fc
R10: fffffbfff1ff93ee R11: 000000000000af1e R12: 0000000000000246
R13: 0000000000000000 R14: ffffffff8ffc89b8 R15: ffffffff90157fb0
wq_unregister_lockdep kernel/workqueue.c:3508 [inline]
pwq_unbound_release_workfn+0x254/0x340 kernel/workqueue.c:3746
process_one_work+0x9ac/0x1650 kernel/workqueue.c:2307
worker_thread+0x657/0x1110 kernel/workqueue.c:2454
kthread+0x2e9/0x3a0 kernel/kthread.c:377
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
</TASK>
Allocated by task 3635:
kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:46 [inline]
set_alloc_info mm/kasan/common.c:437 [inline]
__kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:470
kasan_slab_alloc include/linux/kasan.h:260 [inline]
slab_post_alloc_hook mm/slab.h:732 [inline]
slab_alloc_node mm/slub.c:3230 [inline]
slab_alloc mm/slub.c:3238 [inline]
kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3243
kmem_cache_zalloc include/linux/slab.h:705 [inline]
net_alloc net/core/net_namespace.c:407 [inline]
copy_net_ns+0x125/0x760 net/core/net_namespace.c:462
create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xc1/0x1f0 kernel/nsproxy.c:226
ksys_unshare+0x445/0x920 kernel/fork.c:3048
__do_sys_unshare kernel/fork.c:3119 [inline]
__se_sys_unshare kernel/fork.c:3117 [inline]
__x64_sys_unshare+0x2d/0x40 kernel/fork.c:3117
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The buggy address belongs to the object at ffff88807d5f9a80
which belongs to the cache net_namespace of size 6528
The buggy address is located 1216 bytes inside of
6528-byte region [ffff88807d5f9a80, ffff88807d5fb400)
The buggy address belongs to the page:
page:ffffea0001f57e00 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88807d5f9a80 pfn:0x7d5f8
head:ffffea0001f57e00 order:3 compound_mapcount:0 compound_pincount:0
memcg:ffff888070023001
flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000010200 ffff888010dd4f48 ffffea0001404e08 ffff8880118fd000
raw: ffff88807d5f9a80 0000000000040002 00000001ffffffff ffff888070023001
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 3634, ts 119694798460, free_ts 119693556950
prep_new_page mm/page_alloc.c:2434 [inline]
get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4165
__alloc_pages+0x1b2/0x500 mm/page_alloc.c:5389
alloc_pages+0x1aa/0x310 mm/mempolicy.c:2271
alloc_slab_page mm/slub.c:1799 [inline]
allocate_slab mm/slub.c:1944 [inline]
new_slab+0x28a/0x3b0 mm/slub.c:2004
___slab_alloc+0x87c/0xe90 mm/slub.c:3018
__slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3105
slab_alloc_node mm/slub.c:3196 [inline]
slab_alloc mm/slub.c:3238 [inline]
kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3243
kmem_cache_zalloc include/linux/slab.h:705 [inline]
net_alloc net/core/net_namespace.c:407 [inline]
copy_net_ns+0x125/0x760 net/core/net_namespace.c:462
create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xc1/0x1f0 kernel/nsproxy.c:226
ksys_unshare+0x445/0x920 kernel/fork.c:3048
__do_sys_unshare kernel/fork.c:3119 [inline]
__se_sys_unshare kernel/fork.c:3117 [inline]
__x64_sys_unshare+0x2d/0x40 kernel/fork.c:3117
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
page last free stack trace:
reset_page_owner include/linux/page_owner.h:24 [inline]
free_pages_prepare mm/page_alloc.c:1352 [inline]
free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1404
free_unref_page_prepare mm/page_alloc.c:3325 [inline]
free_unref_page+0x19/0x690 mm/page_alloc.c:3404
skb_free_head net/core/skbuff.c:655 [inline]
skb_release_data+0x65d/0x790 net/core/skbuff.c:677
skb_release_all net/core/skbuff.c:742 [inline]
__kfree_skb net/core/skbuff.c:756 [inline]
consume_skb net/core/skbuff.c:914 [inline]
consume_skb+0xc2/0x160 net/core/skbuff.c:908
skb_free_datagram+0x1b/0x1f0 net/core/datagram.c:325
netlink_recvmsg+0x636/0xea0 net/netlink/af_netlink.c:1998
sock_recvmsg_nosec net/socket.c:948 [inline]
sock_recvmsg net/socket.c:966 [inline]
sock_recvmsg net/socket.c:962 [inline]
____sys_recvmsg+0x2c4/0x600 net/socket.c:2632
___sys_recvmsg+0x127/0x200 net/socket.c:2674
__sys_recvmsg+0xe2/0x1a0 net/socket.c:2704
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Memory state around the buggy address:
ffff88807d5f9e00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88807d5f9e80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff88807d5f9f00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff88807d5f9f80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88807d5fa000: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
Fixes: 0dad4087a86a ("tcp/dccp: get rid of inet_twsk_purge()")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Reported-by: Paolo Abeni <pabeni@redhat.com>
Tested-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20220126180714.845362-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Prior patches in the series made sure tw_timer_handler()
can be fired after netns has been dismantled/freed.
We no longer have to scan a potentially big TCP ehash
table at netns dismantle.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The return value of BPF_CGROUP_RUN_PROG_INET{4,6}_POST_BIND() in
__inet_bind() is not handled properly. While the return value
is non-zero, it will set inet_saddr and inet_rcv_saddr to 0 and
exit:
err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk);
if (err) {
inet->inet_saddr = inet->inet_rcv_saddr = 0;
goto out_release_sock;
}
Let's take UDP for example and see what will happen. For UDP
socket, it will be added to 'udp_prot.h.udp_table->hash' and
'udp_prot.h.udp_table->hash2' after the sk->sk_prot->get_port()
called success. If 'inet->inet_rcv_saddr' is specified here,
then 'sk' will be in the 'hslot2' of 'hash2' that it don't belong
to (because inet_saddr is changed to 0), and UDP packet received
will not be passed to this sock. If 'inet->inet_rcv_saddr' is not
specified here, the sock will work fine, as it can receive packet
properly, which is wired, as the 'bind()' is already failed.
To undo the get_port() operation, introduce the 'put_port' field
for 'struct proto'. For TCP proto, it is inet_put_port(); For UDP
proto, it is udp_lib_unhash(); For icmp proto, it is
ping_unhash().
Therefore, after sys_bind() fail caused by
BPF_CGROUP_RUN_PROG_INET4_POST_BIND(), it will be unbinded, which
means that it can try to be binded to another port.
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220106132022.3470772-2-imagedong@tencent.com
|
|
include/net/sock.h
commit 8f905c0e7354 ("inet: fully convert sk->sk_rx_dst to RCU rules")
commit 43f51df41729 ("net: move early demux fields close to sk_refcnt")
https://lore.kernel.org/all/20211222141641.0caa0ab3@canb.auug.org.au/
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
syzbot reported various issues around early demux,
one being included in this changelog [1]
sk->sk_rx_dst is using RCU protection without clearly
documenting it.
And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv()
are not following standard RCU rules.
[a] dst_release(dst);
[b] sk->sk_rx_dst = NULL;
They look wrong because a delete operation of RCU protected
pointer is supposed to clear the pointer before
the call_rcu()/synchronize_rcu() guarding actual memory freeing.
In some cases indeed, dst could be freed before [b] is done.
We could cheat by clearing sk_rx_dst before calling
dst_release(), but this seems the right time to stick
to standard RCU annotations and debugging facilities.
[1]
BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline]
BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792
Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204
CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247
__kasan_report mm/kasan/report.c:433 [inline]
kasan_report.cold+0x83/0xdf mm/kasan/report.c:450
dst_check include/net/dst.h:470 [inline]
tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792
ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340
ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583
ip_sublist_rcv net/ipv4/ip_input.c:609 [inline]
ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644
__netif_receive_skb_list_ptype net/core/dev.c:5508 [inline]
__netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556
__netif_receive_skb_list net/core/dev.c:5608 [inline]
netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699
gro_normal_list net/core/dev.c:5853 [inline]
gro_normal_list net/core/dev.c:5849 [inline]
napi_complete_done+0x1f1/0x880 net/core/dev.c:6590
virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline]
virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557
__napi_poll+0xaf/0x440 net/core/dev.c:7023
napi_poll net/core/dev.c:7090 [inline]
net_rx_action+0x801/0xb40 net/core/dev.c:7177
__do_softirq+0x29b/0x9c2 kernel/softirq.c:558
invoke_softirq kernel/softirq.c:432 [inline]
__irq_exit_rcu+0x123/0x180 kernel/softirq.c:637
irq_exit_rcu+0x5/0x20 kernel/softirq.c:649
common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240
asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629
RIP: 0033:0x7f5e972bfd57
Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73
RSP: 002b:00007fff8a413210 EFLAGS: 00000283
RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45
RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45
RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9
R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0
R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019
</TASK>
Allocated by task 13:
kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:46 [inline]
set_alloc_info mm/kasan/common.c:434 [inline]
__kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467
kasan_slab_alloc include/linux/kasan.h:259 [inline]
slab_post_alloc_hook mm/slab.h:519 [inline]
slab_alloc_node mm/slub.c:3234 [inline]
slab_alloc mm/slub.c:3242 [inline]
kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247
dst_alloc+0x146/0x1f0 net/core/dst.c:92
rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613
ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:2340
ip_route_input_rcu net/ipv4/route.c:2470 [inline]
ip_route_input_noref+0x116/0x2a0 net/ipv4/route.c:2415
ip_rcv_finish_core.constprop.0+0x288/0x1e80 net/ipv4/ip_input.c:354
ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583
ip_sublist_rcv net/ipv4/ip_input.c:609 [inline]
ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644
__netif_receive_skb_list_ptype net/core/dev.c:5508 [inline]
__netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556
__netif_receive_skb_list net/core/dev.c:5608 [inline]
netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699
gro_normal_list net/core/dev.c:5853 [inline]
gro_normal_list net/core/dev.c:5849 [inline]
napi_complete_done+0x1f1/0x880 net/core/dev.c:6590
virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline]
virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557
__napi_poll+0xaf/0x440 net/core/dev.c:7023
napi_poll net/core/dev.c:7090 [inline]
net_rx_action+0x801/0xb40 net/core/dev.c:7177
__do_softirq+0x29b/0x9c2 kernel/softirq.c:558
Freed by task 13:
kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38
kasan_set_track+0x21/0x30 mm/kasan/common.c:46
kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370
____kasan_slab_free mm/kasan/common.c:366 [inline]
____kasan_slab_free mm/kasan/common.c:328 [inline]
__kasan_slab_free+0xff/0x130 mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:235 [inline]
slab_free_hook mm/slub.c:1723 [inline]
slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1749
slab_free mm/slub.c:3513 [inline]
kmem_cache_free+0xbd/0x5d0 mm/slub.c:3530
dst_destroy+0x2d6/0x3f0 net/core/dst.c:127
rcu_do_batch kernel/rcu/tree.c:2506 [inline]
rcu_core+0x7ab/0x1470 kernel/rcu/tree.c:2741
__do_softirq+0x29b/0x9c2 kernel/softirq.c:558
Last potentially related work creation:
kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38
__kasan_record_aux_stack+0xf5/0x120 mm/kasan/generic.c:348
__call_rcu kernel/rcu/tree.c:2985 [inline]
call_rcu+0xb1/0x740 kernel/rcu/tree.c:3065
dst_release net/core/dst.c:177 [inline]
dst_release+0x79/0xe0 net/core/dst.c:167
tcp_v4_do_rcv+0x612/0x8d0 net/ipv4/tcp_ipv4.c:1712
sk_backlog_rcv include/net/sock.h:1030 [inline]
__release_sock+0x134/0x3b0 net/core/sock.c:2768
release_sock+0x54/0x1b0 net/core/sock.c:3300
tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1441
inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819
sock_sendmsg_nosec net/socket.c:704 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:724
sock_write_iter+0x289/0x3c0 net/socket.c:1057
call_write_iter include/linux/fs.h:2162 [inline]
new_sync_write+0x429/0x660 fs/read_write.c:503
vfs_write+0x7cd/0xae0 fs/read_write.c:590
ksys_write+0x1ee/0x250 fs/read_write.c:643
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The buggy address belongs to the object at ffff88807f1cb700
which belongs to the cache ip_dst_cache of size 176
The buggy address is located 58 bytes inside of
176-byte region [ffff88807f1cb700, ffff88807f1cb7b0)
The buggy address belongs to the page:
page:ffffea0001fc72c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7f1cb
flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000000200 dead000000000100 dead000000000122 ffff8881413bb780
raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112a20(GFP_ATOMIC|__GFP_NOWARN|__GFP_NORETRY|__GFP_HARDWALL), pid 5, ts 108466983062, free_ts 108048976062
prep_new_page mm/page_alloc.c:2418 [inline]
get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4149
__alloc_pages+0x1b2/0x500 mm/page_alloc.c:5369
alloc_pages+0x1a7/0x300 mm/mempolicy.c:2191
alloc_slab_page mm/slub.c:1793 [inline]
allocate_slab mm/slub.c:1930 [inline]
new_slab+0x32d/0x4a0 mm/slub.c:1993
___slab_alloc+0x918/0xfe0 mm/slub.c:3022
__slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3109
slab_alloc_node mm/slub.c:3200 [inline]
slab_alloc mm/slub.c:3242 [inline]
kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3247
dst_alloc+0x146/0x1f0 net/core/dst.c:92
rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613
__mkroute_output net/ipv4/route.c:2564 [inline]
ip_route_output_key_hash_rcu+0x921/0x2d00 net/ipv4/route.c:2791
ip_route_output_key_hash+0x18b/0x300 net/ipv4/route.c:2619
__ip_route_output_key include/net/route.h:126 [inline]
ip_route_output_flow+0x23/0x150 net/ipv4/route.c:2850
ip_route_output_key include/net/route.h:142 [inline]
geneve_get_v4_rt+0x3a6/0x830 drivers/net/geneve.c:809
geneve_xmit_skb drivers/net/geneve.c:899 [inline]
geneve_xmit+0xc4a/0x3540 drivers/net/geneve.c:1082
__netdev_start_xmit include/linux/netdevice.h:4994 [inline]
netdev_start_xmit include/linux/netdevice.h:5008 [inline]
xmit_one net/core/dev.c:3590 [inline]
dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3606
__dev_queue_xmit+0x299a/0x3650 net/core/dev.c:4229
page last free stack trace:
reset_page_owner include/linux/page_owner.h:24 [inline]
free_pages_prepare mm/page_alloc.c:1338 [inline]
free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1389
free_unref_page_prepare mm/page_alloc.c:3309 [inline]
free_unref_page+0x19/0x690 mm/page_alloc.c:3388
qlink_free mm/kasan/quarantine.c:146 [inline]
qlist_free_all+0x5a/0xc0 mm/kasan/quarantine.c:165
kasan_quarantine_reduce+0x180/0x200 mm/kasan/quarantine.c:272
__kasan_slab_alloc+0xa2/0xc0 mm/kasan/common.c:444
kasan_slab_alloc include/linux/kasan.h:259 [inline]
slab_post_alloc_hook mm/slab.h:519 [inline]
slab_alloc_node mm/slub.c:3234 [inline]
kmem_cache_alloc_node+0x255/0x3f0 mm/slub.c:3270
__alloc_skb+0x215/0x340 net/core/skbuff.c:414
alloc_skb include/linux/skbuff.h:1126 [inline]
alloc_skb_with_frags+0x93/0x620 net/core/skbuff.c:6078
sock_alloc_send_pskb+0x783/0x910 net/core/sock.c:2575
mld_newpack+0x1df/0x770 net/ipv6/mcast.c:1754
add_grhead+0x265/0x330 net/ipv6/mcast.c:1857
add_grec+0x1053/0x14e0 net/ipv6/mcast.c:1995
mld_send_initial_cr.part.0+0xf6/0x230 net/ipv6/mcast.c:2242
mld_send_initial_cr net/ipv6/mcast.c:1232 [inline]
mld_dad_work+0x1d3/0x690 net/ipv6/mcast.c:2268
process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298
worker_thread+0x658/0x11f0 kernel/workqueue.c:2445
Memory state around the buggy address:
ffff88807f1cb600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88807f1cb680: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc
>ffff88807f1cb700: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff88807f1cb780: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc
ffff88807f1cb800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
Fixes: 41063e9dd119 ("ipv4: Early TCP socket demux.")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20211220143330.680945-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
tcp recvmsg() (or rx zerocopy) spends a fair amount of time
freeing skbs after their payload has been consumed.
A typical ~64KB GRO packet has to release ~45 page
references, eventually going to page allocator
for each of them.
Currently, this freeing is performed while socket lock
is held, meaning that there is a high chance that
BH handler has to queue incoming packets to tcp socket backlog.
This can cause additional latencies, because the user
thread has to process the backlog at release_sock() time,
and while doing so, additional frames can be added
by BH handler.
This patch adds logic to defer these frees after socket
lock is released, or directly from BH handler if possible.
Being able to free these skbs from BH handler helps a lot,
because this avoids the usual alloc/free assymetry,
when BH handler and user thread do not run on same cpu or
NUMA node.
One cpu can now be fully utilized for the kernel->user copy,
and another cpu is handling BH processing and skb/page
allocs/frees (assuming RFS is not forcing use of a single CPU)
Tested:
100Gbit NIC
Max throughput for one TCP_STREAM flow, over 10 runs
MTU : 1500
Before: 55 Gbit
After: 66 Gbit
MTU : 4096+(headers)
Before: 82 Gbit
After: 95 Gbit
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Use INDIRECT_CALL_INET() to avoid an indirect call
when/if CONFIG_RETPOLINE=y
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
For TCP flows, inet6_sk(sk)->saddr has the same value
than sk->sk_v6_rcv_saddr.
Using sk->sk_v6_rcv_saddr increases data locality.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The newinet value is initialized with inet_sk() in a block code to
handle sockets for the ETH_P_IP protocol. Along this code path,
newinet is never read. Thus, assignment to newinet is needless and
can be removed.
Signed-off-by: Nghia Le <nghialm78@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20211104143740.32446-1-nghialm78@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Freshly allocated skbs have their csum field cleared already.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Two kfree_skb() calls must be replaced by consume_skb()
for skbs that are not technically dropped.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
RFC 5082 IPV6_MINHOPCOUNT is rarely used on hosts.
Add a static key to remove from TCP fast path useless code,
and potential cache line miss to fetch tcp_inet6_sk(sk)->min_hopcount
Note that once ip6_min_hopcount static key has been enabled,
it stays enabled until next boot.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
No report yet from KCSAN, yet worth documenting the races.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Increase cache locality by moving rx_dst_coookie next to sk->sk_rx_dst
This removes one or two cache line misses in IPv6 early demux (TCP/UDP)
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Increase cache locality by moving rx_dst_ifindex next to sk->sk_rx_dst
This is part of an effort to reduce cache line misses in TCP fast path.
This removes one cache line miss in early demux.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Lots of simnple overlapping additions.
With a build fix from Stephen Rothwell.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Multiple VRFs are generally meant to be "separate" but right now md5
keys for the default VRF also affect connections inside VRFs if the IP
addresses happen to overlap.
So far the combination of TCP_MD5SIG_FLAG_IFINDEX with tcpm_ifindex == 0
was an error, accept this to mean "key only applies to default VRF".
This is what applications using VRFs for traffic separation want.
Signed-off-by: Leonard Crestez <cdleonard@gmail.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This reverts the following patches :
- commit 2e05fcae83c4 ("tcp: fix compile error if !CONFIG_SYSCTL")
- commit 4f661542a402 ("tcp: fix zerocopy and notsent_lowat issues")
- commit 472c2e07eef0 ("tcp: add one skb cache for tx")
- commit 8b27dae5a2e8 ("tcp: add one skb cache for rx")
Having a cache of one skb (in each direction) per TCP socket is fragile,
since it can cause a significant increase of memory needs,
and not good enough for high speed flows anyway where more than one skb
is needed.
We want instead to add a generic infrastructure, with more flexible
per-cpu caches, for alien NUMA nodes.
Acked-by: Paolo Abeni <pabeni@redhat.com>
Acked-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
commit e05a90ec9e16 ("net: reflect mark on tcp syn ack packets")
fixed IPv4 only.
This part is for the IPv6 side.
Fixes: e05a90ec9e16 ("net: reflect mark on tcp syn ack packets")
Signed-off-by: Alexander Ovechkin <ovov@yandex-team.ru>
Acked-by: Dmitry Yakunin <zeil@yandex-team.ru>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
While TCP stack scales reasonably well, there is still one part that
can be used to DDOS it.
IPv6 Packet too big messages have to lookup/insert a new route,
and if abused by attackers, can easily put hosts under high stress,
with many cpus contending on a spinlock while one is stuck in fib6_run_gc()
ip6_protocol_deliver_rcu()
icmpv6_rcv()
icmpv6_notify()
tcp_v6_err()
tcp_v6_mtu_reduced()
inet6_csk_update_pmtu()
ip6_rt_update_pmtu()
__ip6_rt_update_pmtu()
ip6_rt_cache_alloc()
ip6_dst_alloc()
dst_alloc()
ip6_dst_gc()
fib6_run_gc()
spin_lock_bh() ...
Some of our servers have been hit by malicious ICMPv6 packets
trying to _increase_ the MTU/MSS of TCP flows.
We believe these ICMPv6 packets are a result of a bug in one ISP stack,
since they were blindly sent back for _every_ (small) packet sent to them.
These packets are for one TCP flow:
09:24:36.266491 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240
09:24:36.266509 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240
09:24:36.316688 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240
09:24:36.316704 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240
09:24:36.608151 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240
TCP stack can filter some silly requests :
1) MTU below IPV6_MIN_MTU can be filtered early in tcp_v6_err()
2) tcp_v6_mtu_reduced() can drop requests trying to increase current MSS.
This tests happen before the IPv6 routing stack is entered, thus
removing the potential contention and route exhaustion.
Note that IPv6 stack was performing these checks, but too late
(ie : after the route has been added, and after the potential
garbage collect war)
v2: fix typo caught by Martin, thanks !
v3: exports tcp_mtu_to_mss(), caught by David, thanks !
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Maciej Żenczykowski <maze@google.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
While tp->mtu_info is read while socket is owned, the write
sides happen from err handlers (tcp_v[46]_mtu_reduced)
which only own the socket spinlock.
Fixes: 563d34d05786 ("tcp: dont drop MTU reduction indications")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch introduces a function wrapper to call the sk_error_report
callback. That will prepare to add additional handling whenever
sk_error_report is called, for example to trace socket errors.
Signed-off-by: Alexander Aring <aahringo@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch also changes the code to call reuseport_migrate_sock() and
inet_reqsk_clone(), but unlike the other cases, we do not call
inet_reqsk_clone() right after reuseport_migrate_sock().
Currently, in the receive path for TCP_NEW_SYN_RECV sockets, its listener
has three kinds of refcnt:
(A) for listener itself
(B) carried by reuqest_sock
(C) sock_hold() in tcp_v[46]_rcv()
While processing the req, (A) may disappear by close(listener). Also, (B)
can disappear by accept(listener) once we put the req into the accept
queue. So, we have to hold another refcnt (C) for the listener to prevent
use-after-free.
For socket migration, we call reuseport_migrate_sock() to select a listener
with (A) and to increment the new listener's refcnt in tcp_v[46]_rcv().
This refcnt corresponds to (C) and is cleaned up later in tcp_v[46]_rcv().
Thus we have to take another refcnt (B) for the newly cloned request_sock.
In inet_csk_complete_hashdance(), we hold the count (B), clone the req, and
try to put the new req into the accept queue. By migrating req after
winning the "own_req" race, we can avoid such a worst situation:
CPU 1 looks up req1
CPU 2 looks up req1, unhashes it, then CPU 1 loses the race
CPU 3 looks up req2, unhashes it, then CPU 2 loses the race
...
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210612123224.12525-8-kuniyu@amazon.co.jp
|
|
Add a tracepoint for capturing TCP segments with
a bad checksum. This makes it easy to identify
sources of bad frames in the fleet (e.g. machines
with faulty NICs).
It should also help tools like IOvisor's tcpdrop.py
which are used today to get detailed information
about such packets.
We don't have a socket in many cases so we must
open code the address extraction based just on
the skb.
v2: add missing export for ipv6=m
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The MPTCP reset option allows to carry a mptcp-specific error code that
provides more information on the nature of a connection reset.
Reset option data received gets stored in the subflow context so it can
be sent to userspace via the 'subflow closed' netlink event.
When a subflow is closed, the desired error code that should be sent to
the peer is also placed in the subflow context structure.
If a reset is sent before subflow establishment could complete, e.g. on
HMAC failure during an MP_JOIN operation, the mptcp skb extension is
used to store the reset information.
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Currently sockmap calls into each protocol to update the struct
proto and replace it. This certainly won't work when the protocol
is implemented as a module, for example, AF_UNIX.
Introduce a new ops sk->sk_prot->psock_update_sk_prot(), so each
protocol can implement its own way to replace the struct proto.
This also helps get rid of symbol dependencies on CONFIG_INET.
Signed-off-by: Cong Wang <cong.wang@bytedance.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210331023237.41094-11-xiyou.wangcong@gmail.com
|
|
This reverts commit 6af1799aaf3f1bc8defedddfa00df3192445bbf3.
Commit 6af1799aaf3f ("ipv6: drop incoming packets having a v4mapped
source address") introduced an input check against v4mapped addresses.
Use of such addresses on the wire is indeed questionable and not
allowed on public Internet. As the commit pointed out
https://tools.ietf.org/html/draft-itojun-v6ops-v4mapped-harmful-02
lists potential issues.
Unfortunately there are applications which use v4mapped addresses,
and breaking them is a clear regression. For example v4mapped
addresses (or any semi-valid addresses, really) may be used
for uni-direction event streams or packet export.
Since the issue which sparked the addition of the check was with
TCP and request_socks in particular push the check down to TCPv6
and DCCP. This restores the ability to receive UDPv6 packets with
v4mapped address as the source.
Keep using the IPSTATS_MIB_INHDRERRORS statistic to minimize the
user-visible changes.
Fixes: 6af1799aaf3f ("ipv6: drop incoming packets having a v4mapped source address")
Reported-by: Sunyi Shao <sunyishao@fb.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Daniel Borkmann says:
====================
pull-request: bpf-next 2021-02-16
The following pull-request contains BPF updates for your *net-next* tree.
There's a small merge conflict between 7eeba1706eba ("tcp: Add receive timestamp
support for receive zerocopy.") from net-next tree and 9cacf81f8161 ("bpf: Remove
extra lock_sock for TCP_ZEROCOPY_RECEIVE") from bpf-next tree. Resolve as follows:
[...]
lock_sock(sk);
err = tcp_zerocopy_receive(sk, &zc, &tss);
err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
&zc, &len, err);
release_sock(sk);
[...]
We've added 116 non-merge commits during the last 27 day(s) which contain
a total of 156 files changed, 5662 insertions(+), 1489 deletions(-).
The main changes are:
1) Adds support of pointers to types with known size among global function
args to overcome the limit on max # of allowed args, from Dmitrii Banshchikov.
2) Add bpf_iter for task_vma which can be used to generate information similar
to /proc/pid/maps, from Song Liu.
3) Enable bpf_{g,s}etsockopt() from all sock_addr related program hooks. Allow
rewriting bind user ports from BPF side below the ip_unprivileged_port_start
range, both from Stanislav Fomichev.
4) Prevent recursion on fentry/fexit & sleepable programs and allow map-in-map
as well as per-cpu maps for the latter, from Alexei Starovoitov.
5) Add selftest script to run BPF CI locally. Also enable BPF ringbuffer
for sleepable programs, both from KP Singh.
6) Extend verifier to enable variable offset read/write access to the BPF
program stack, from Andrei Matei.
7) Improve tc & XDP MTU handling and add a new bpf_check_mtu() helper to
query device MTU from programs, from Jesper Dangaard Brouer.
8) Allow bpf_get_socket_cookie() helper also be called from [sleepable] BPF
tracing programs, from Florent Revest.
9) Extend x86 JIT to pad JMPs with NOPs for helping image to converge when
otherwise too many passes are required, from Gary Lin.
10) Verifier fixes on atomics with BPF_FETCH as well as function-by-function
verification both related to zero-extension handling, from Ilya Leoshkevich.
11) Better kernel build integration of resolve_btfids tool, from Jiri Olsa.
12) Batch of AF_XDP selftest cleanups and small performance improvement
for libbpf's xsk map redirect for newer kernels, from Björn Töpel.
13) Follow-up BPF doc and verifier improvements around atomics with
BPF_FETCH, from Brendan Jackman.
14) Permit zero-sized data sections e.g. if ELF .rodata section contains
read-only data from local variables, from Yonghong Song.
15) veth driver skb bulk-allocation for ndo_xdp_xmit, from Lorenzo Bianconi.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch avoids the indirect call for the common case:
ip6_dst_check and ipv4_dst_check
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Add custom implementation of getsockopt hook for TCP_ZEROCOPY_RECEIVE.
We skip generic hooks for TCP_ZEROCOPY_RECEIVE and have a custom
call in do_tcp_getsockopt using the on-stack data. This removes
3% overhead for locking/unlocking the socket.
Without this patch:
3.38% 0.07% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt
|
--3.30%--__cgroup_bpf_run_filter_getsockopt
|
--0.81%--__kmalloc
With the patch applied:
0.52% 0.12% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt_kern
Note, exporting uapi/tcp.h requires removing netinet/tcp.h
from test_progs.h because those headers have confliciting
definitions.
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210115163501.805133-2-sdf@google.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux
Pull selinux updates from Paul Moore:
"While we have a small number of SELinux patches for v5.11, there are a
few changes worth highlighting:
- Change the LSM network hooks to pass flowi_common structs instead
of the parent flowi struct as the LSMs do not currently need the
full flowi struct and they do not have enough information to use it
safely (missing information on the address family).
This patch was discussed both with Herbert Xu (representing team
netdev) and James Morris (representing team
LSMs-other-than-SELinux).
- Fix how we handle errors in inode_doinit_with_dentry() so that we
attempt to properly label the inode on following lookups instead of
continuing to treat it as unlabeled.
- Tweak the kernel logic around allowx, auditallowx, and dontauditx
SELinux policy statements such that the auditx/dontauditx are
effective even without the allowx statement.
Everything passes our test suite"
* tag 'selinux-pr-20201214' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux:
lsm,selinux: pass flowi_common instead of flowi to the LSM hooks
selinux: Fix fall-through warnings for Clang
selinux: drop super_block backpointer from superblock_security_struct
selinux: fix inode_doinit_with_dentry() LABEL_INVALID error handling
selinux: allow dontauditx and auditallowx rules to take effect without allowx
selinux: fix error initialization in inode_doinit_with_dentry()
|
|
xdp_return_frame_bulk() needs to pass a xdp_buff
to __xdp_return().
strlcpy got converted to strscpy but here it makes no
functional difference, so just keep the right code.
Conflicts:
net/netfilter/nf_tables_api.c
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
For DCTCP, we have to retain the ECT bits set by the congestion control
algorithm on the socket when reflecting syn TOS in syn-ack, in order to
make ECN work properly.
Fixes: ac8f1710c12b ("tcp: reflect tos value received in SYN to the socket")
Reported-by: Alexander Duyck <alexanderduyck@fb.com>
Signed-off-by: Wei Wang <weiwan@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The Multipath-TCP standard (RFC 8684) says that an MPTCP host should send
a TCP reset if the token in a MP_JOIN request is unknown.
At this time we don't do this, the 3whs completes and the 'new subflow'
is reset afterwards. There are two ways to allow MPTCP to send the
reset.
1. override 'send_synack' callback and emit the rst from there.
The drawback is that the request socket gets inserted into the
listeners queue just to get removed again right away.
2. Send the reset from the 'route_req' function instead.
This avoids the 'add&remove request socket', but route_req lacks the
skb that is required to send the TCP reset.
Instead of just adding the skb to that function for MPTCP sake alone,
Paolo suggested to merge init_req and route_req functions.
This saves one indirection from syn processing path and provides the skb
to the merged function at the same time.
'send reset on unknown mptcp join token' is added in next patch.
Suggested-by: Paolo Abeni <pabeni@redhat.com>
Cc: Eric Dumazet <edumazet@google.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
When a BPF program is used to select between a type of TCP congestion
control algorithm that uses either ECN or not there is a case where the
synack for the frame was coming up without the ECT0 bit set. A bit of
research found that this was due to the final socket being configured to
dctcp while the listener socket was staying in cubic.
To reproduce it all that is needed is to monitor TCP traffic while running
the sample bpf program "samples/bpf/tcp_cong_kern.c". What is observed,
assuming tcp_dctcp module is loaded or compiled in and the traffic matches
the rules in the sample file, is that for all frames with the exception of
the synack the ECT0 bit is set.
To address that it is necessary to make one additional call to
tcp_bpf_ca_needs_ecn using the request socket and then use the output of
that to set the ECT0 bit for the tos/tclass of the packet.
Fixes: 91b5b21c7c16 ("bpf: Add support for changing congestion control")
Signed-off-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://lore.kernel.org/r/160593039663.2604.1374502006916871573.stgit@localhost.localdomain
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
When the TCP stack is in SYN flood mode, the server child socket is
created from the SYN cookie received in a TCP packet with the ACK flag
set.
The child socket is created when the server receives the first TCP
packet with a valid SYN cookie from the client. Usually, this packet
corresponds to the final step of the TCP 3-way handshake, the ACK
packet. But is also possible to receive a valid SYN cookie from the
first TCP data packet sent by the client, and thus create a child socket
from that SYN cookie.
Since a client socket is ready to send data as soon as it receives the
SYN+ACK packet from the server, the client can send the ACK packet (sent
by the TCP stack code), and the first data packet (sent by the userspace
program) almost at the same time, and thus the server will equally
receive the two TCP packets with valid SYN cookies almost at the same
instant.
When such event happens, the TCP stack code has a race condition that
occurs between the momement a lookup is done to the established
connections hashtable to check for the existence of a connection for the
same client, and the moment that the child socket is added to the
established connections hashtable. As a consequence, this race condition
can lead to a situation where we add two child sockets to the
established connections hashtable and deliver two sockets to the
userspace program to the same client.
This patch fixes the race condition by checking if an existing child
socket exists for the same client when we are adding the second child
socket to the established connections socket. If an existing child
socket exists, we drop the packet and discard the second child socket
to the same client.
Signed-off-by: Ricardo Dias <rdias@singlestore.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20201120111133.GA67501@rdias-suse-pc.lan
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
As pointed out by Herbert in a recent related patch, the LSM hooks do
not have the necessary address family information to use the flowi
struct safely. As none of the LSMs currently use any of the protocol
specific flowi information, replace the flowi pointers with pointers
to the address family independent flowi_common struct.
Reported-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
An issue was recently found where DCTCP SYN/ACK packets did not have the
ECT bit set in the L3 header. A bit of code review found that the recent
change referenced below had gone though and added a mask that prevented the
ECN bits from being populated in the L3 header.
This patch addresses that by rolling back the mask so that it is only
applied to the flags coming from the incoming TCP request instead of
applying it to the socket tos/tclass field. Doing this the ECT bits were
restored in the SYN/ACK packets in my testing.
One thing that is not addressed by this patch set is the fact that
tcp_reflect_tos appears to be incompatible with ECN based congestion
avoidance algorithms. At a minimum the feature should likely be documented
which it currently isn't.
Fixes: ac8f1710c12b ("tcp: reflect tos value received in SYN to the socket")
Signed-off-by: Alexander Duyck <alexanderduyck@fb.com>
Acked-by: Wei Wang <weiwan@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Drop repeated words in net/ipv6/.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This commit adds a new TCP feature to reflect the tos value received in
SYN, and send it out on the SYN-ACK, and eventually set the tos value of
the established socket with this reflected tos value. This provides a
way to set the traffic class/QoS level for all traffic in the same
connection to be the same as the incoming SYN request. It could be
useful in data centers to provide equivalent QoS according to the
incoming request.
This feature is guarded by /proc/sys/net/ipv4/tcp_reflect_tos, and is by
default turned off.
Signed-off-by: Wei Wang <weiwan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Currently, ipv6 stack does not do any TOS reflection. To make the
behavior consistent with v4 stack, this commit adds TOS reflection in
tcp_v6_reqsk_send_ack() and tcp_v6_send_reset(). We clear the lower
2-bit ECN value of the received TOS in compliance with RFC 3168 6.1.5
robustness principles.
Signed-off-by: Wei Wang <weiwan@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The bpf prog needs to parse the SYN header to learn what options have
been sent by the peer's bpf-prog before writing its options into SYNACK.
This patch adds a "syn_skb" arg to tcp_make_synack() and send_synack().
This syn_skb will eventually be made available (as read-only) to the
bpf prog. This will be the only SYN packet available to the bpf
prog during syncookie. For other regular cases, the bpf prog can
also use the saved_syn.
When writing options, the bpf prog will first be called to tell the
kernel its required number of bytes. It is done by the new
bpf_skops_hdr_opt_len(). The bpf prog will only be called when the new
BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG is set in tp->bpf_sock_ops_cb_flags.
When the bpf prog returns, the kernel will know how many bytes are needed
and then update the "*remaining" arg accordingly. 4 byte alignment will
be included in the "*remaining" before this function returns. The 4 byte
aligned number of bytes will also be stored into the opts->bpf_opt_len.
"bpf_opt_len" is a newly added member to the struct tcp_out_options.
Then the new bpf_skops_write_hdr_opt() will call the bpf prog to write the
header options. The bpf prog is only called if it has reserved spaces
before (opts->bpf_opt_len > 0).
The bpf prog is the last one getting a chance to reserve header space
and writing the header option.
These two functions are half implemented to highlight the changes in
TCP stack. The actual codes preparing the bpf running context and
invoking the bpf prog will be added in the later patch with other
necessary bpf pieces.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/bpf/20200820190052.2885316-1-kafai@fb.com
|
|
Pass a sockptr_t to prepare for set_fs-less handling of the kernel
pointer from bpf-cgroup.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Handle the few cases that need special treatment in-line using
in_compat_syscall(). This also removes all the now unused
compat_{get,set}sockopt methods.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Mitigate RETPOLINE costs in __tcp_transmit_skb()
by using INDIRECT_CALL_INET() wrapper.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|