Age | Commit message (Collapse) | Author | Files | Lines |
|
Merge more updates from Andrew Morton:
"The post-linux-next material.
7 patches.
Subsystems affected by this patch series (all mm): debug,
slab-generic, migration, memcg, and kasan"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
kasan: add kasan mode messages when kasan init
mm: unexport {,un}lock_page_memcg
mm: unexport folio_memcg_{,un}lock
mm/migrate.c: remove MIGRATE_PFN_LOCKED
mm: migrate: simplify the file-backed pages validation when migrating its mapping
mm: allow only SLUB on PREEMPT_RT
mm/page_owner.c: modify the type of argument "order" in some functions
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Including fixes from bpf, can and netfilter.
Current release - regressions:
- bpf: do not reject when the stack read size is different from the
tracked scalar size
- net: fix premature exit from NAPI state polling in napi_disable()
- riscv, bpf: fix RV32 broken build, and silence RV64 warning
Current release - new code bugs:
- net: fix possible NULL deref in sock_reserve_memory
- amt: fix error return code in amt_init(); fix stopping the
workqueue
- ax88796c: use the correct ioctl callback
Previous releases - always broken:
- bpf: stop caching subprog index in the bpf_pseudo_func insn
- security: fixups for the security hooks in sctp
- nfc: add necessary privilege flags in netlink layer, limit
operations to admin only
- vsock: prevent unnecessary refcnt inc for non-blocking connect
- net/smc: fix sk_refcnt underflow on link down and fallback
- nfnetlink_queue: fix OOB when mac header was cleared
- can: j1939: ignore invalid messages per standard
- bpf, sockmap:
- fix race in ingress receive verdict with redirect to self
- fix incorrect sk_skb data_end access when src_reg = dst_reg
- strparser, and tls are reusing qdisc_skb_cb and colliding
- ethtool: fix ethtool msg len calculation for pause stats
- vlan: fix a UAF in vlan_dev_real_dev() when ref-holder tries to
access an unregistering real_dev
- udp6: make encap_rcv() bump the v6 not v4 stats
- drv: prestera: add explicit padding to fix m68k build
- drv: felix: fix broken VLAN-tagged PTP under VLAN-aware bridge
- drv: mvpp2: fix wrong SerDes reconfiguration order
Misc & small latecomers:
- ipvs: auto-load ipvs on genl access
- mctp: sanity check the struct sockaddr_mctp padding fields
- libfs: support RENAME_EXCHANGE in simple_rename()
- avoid double accounting for pure zerocopy skbs"
* tag 'net-5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (123 commits)
selftests/net: udpgso_bench_rx: fix port argument
net: wwan: iosm: fix compilation warning
cxgb4: fix eeprom len when diagnostics not implemented
net: fix premature exit from NAPI state polling in napi_disable()
net/smc: fix sk_refcnt underflow on linkdown and fallback
net/mlx5: Lag, fix a potential Oops with mlx5_lag_create_definer()
gve: fix unmatched u64_stats_update_end()
net: ethernet: lantiq_etop: Fix compilation error
selftests: forwarding: Fix packet matching in mirroring selftests
vsock: prevent unnecessary refcnt inc for nonblocking connect
net: marvell: mvpp2: Fix wrong SerDes reconfiguration order
net: ethernet: ti: cpsw_ale: Fix access to un-initialized memory
net: stmmac: allow a tc-taprio base-time of zero
selftests: net: test_vxlan_under_vrf: fix HV connectivity test
net: hns3: allow configure ETS bandwidth of all TCs
net: hns3: remove check VF uc mac exist when set by PF
net: hns3: fix some mac statistics is always 0 in device version V2
net: hns3: fix kernel crash when unload VF while it is being reset
net: hns3: sync rx ring head in echo common pull
net: hns3: fix pfc packet number incorrect after querying pfc parameters
...
|
|
There are multiple kasan modes. It makes sense that we add some
messages to know which kasan mode is active when booting up [1].
Link: https://bugzilla.kernel.org/show_bug.cgi?id=212195 [1]
Link: https://lkml.kernel.org/r/20211020094850.4113-1-Kuan-Ying.Lee@mediatek.com
Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Yee Lee <yee.lee@mediatek.com>
Cc: Nicholas Tang <nicholas.tang@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
These are only used in built-in core mm code.
Link: https://lkml.kernel.org/r/20210820095815.445392-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "unexport memcg locking helpers".
Neither the old page-based nor the new folio-based memcg locking helpers
are used in modular code at all, so drop the exports.
This patch (of 2):
folio_memcg_{,un}lock are only used in built-in core mm code.
Link: https://lkml.kernel.org/r/20210820095815.445392-1-hch@lst.de
Link: https://lkml.kernel.org/r/20210820095815.445392-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
MIGRATE_PFN_LOCKED is used to indicate to migrate_vma_prepare() that a
source page was already locked during migrate_vma_collect(). If it
wasn't then the a second attempt is made to lock the page. However if
the first attempt failed it's unlikely a second attempt will succeed,
and the retry adds complexity. So clean this up by removing the retry
and MIGRATE_PFN_LOCKED flag.
Destination pages are also meant to have the MIGRATE_PFN_LOCKED flag
set, but nothing actually checks that.
Link: https://lkml.kernel.org/r/20211025041608.289017-1-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mapping
There is no need to validate the file-backed page's refcount before
trying to freeze the page's expected refcount, instead we can rely on
the folio_ref_freeze() to validate if the page has the expected refcount
before migrating its mapping.
Moreover we are always under the page lock when migrating the page
mapping, which means nowhere else can remove it from the page cache, so
we can remove the xas_load() validation under the i_pages lock.
Link: https://lkml.kernel.org/r/cover.1629447552.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/df4c129fd8e86a95dbc55f4663d77441cc0d3bd1.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The type of "order" in struct page_owner is unsigned short.
However, it is unsigned int in the following 3 functions:
__reset_page_owner
__set_page_owner_handle
__set_page_owner_handle
The type of "order" in argument list is unsigned int, which is
inconsistent.
[akpm@linux-foundation.org: update include/linux/page_owner.h]
Link: https://lkml.kernel.org/r/20211020125945.47792-1-caoyixuan2019@email.szu.edu.cn
Signed-off-by: Yixuan Cao <caoyixuan2019@email.szu.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull pidfd updates from Christian Brauner:
"Various places in the kernel have picked up pidfds.
The two most recent additions have probably been the ability to use
pidfds in bpf maps and the usage of pidfds in mm-based syscalls such
as process_mrelease() and process_madvise().
The same pattern to turn a pidfd into a struct task exists in two
places. One of those places used PIDTYPE_TGID while the other one used
PIDTYPE_PID even though it is clearly documented in all pidfd-helpers
that pidfds __currently__ only refer to thread-group leaders (subject
to change in the future if need be).
This isn't a bug per se but has the potential to be one if we allow
pidfds to refer to individual threads. If that happens we want to
audit all codepaths that make use of them to ensure they can deal with
pidfds refering to individual threads.
This adds a simple helper to turn a pidfd into a struct task making it
easy to grep for such places. Plus, it gets rid of code-duplication"
* tag 'pidfd.v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
mm: use pidfd_get_task()
pid: add pidfd_get_task() helper
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
- Fix double-evaluation of 'pte' macro argument when using 52-bit PAs
- Fix signedness of some MTE prctl PR_* constants
- Fix kmemleak memory usage by skipping early pgtable allocations
- Fix printing of CPU feature register strings
- Remove redundant -nostdlib linker flag for vDSO binaries
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: pgtable: make __pte_to_phys/__phys_to_pte_val inline functions
arm64: Track no early_pgtable_alloc() for kmemleak
arm64: mte: change PR_MTE_TCF_NONE back into an unsigned long
arm64: vdso: remove -nostdlib compiler flag
arm64: arm64_ftr_reg->name may not be a human-readable string
|
|
Merge more updates from Andrew Morton:
"87 patches.
Subsystems affected by this patch series: mm (pagecache and hugetlb),
procfs, misc, MAINTAINERS, lib, checkpatch, binfmt, kallsyms, ramfs,
init, codafs, nilfs2, hfs, crash_dump, signals, seq_file, fork,
sysvfs, kcov, gdb, resource, selftests, and ipc"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (87 commits)
ipc/ipc_sysctl.c: remove fallback for !CONFIG_PROC_SYSCTL
ipc: check checkpoint_restore_ns_capable() to modify C/R proc files
selftests/kselftest/runner/run_one(): allow running non-executable files
virtio-mem: disallow mapping virtio-mem memory via /dev/mem
kernel/resource: disallow access to exclusive system RAM regions
kernel/resource: clean up and optimize iomem_is_exclusive()
scripts/gdb: handle split debug for vmlinux
kcov: replace local_irq_save() with a local_lock_t
kcov: avoid enable+disable interrupts if !in_task()
kcov: allocate per-CPU memory on the relevant node
Documentation/kcov: define `ip' in the example
Documentation/kcov: include types.h in the example
sysv: use BUILD_BUG_ON instead of runtime check
kernel/fork.c: unshare(): use swap() to make code cleaner
seq_file: fix passing wrong private data
seq_file: move seq_escape() to a header
signal: remove duplicate include in signal.h
crash_dump: remove duplicate include in crash_dump.h
crash_dump: fix boolreturn.cocci warning
hfs/hfsplus: use WARN_ON for sanity check
...
|
|
virtio-mem dynamically exposes memory inside a device memory region as
system RAM to Linux, coordinating with the hypervisor which parts are
actually "plugged" and consequently usable/accessible.
On the one hand, the virtio-mem driver adds/removes whole memory blocks,
creating/removing busy IORESOURCE_SYSTEM_RAM resources, on the other
hand, it logically (un)plugs memory inside added memory blocks,
dynamically either exposing them to the buddy or hiding them from the
buddy and marking them PG_offline.
In contrast to physical devices, like a DIMM, the virtio-mem driver is
required to actually make use of any of the device-provided memory,
because it performs the handshake with the hypervisor. virtio-mem
memory cannot simply be access via /dev/mem without a driver.
There is no safe way to:
a) Access plugged memory blocks via /dev/mem, as they might contain
unplugged holes or might get silently unplugged by the virtio-mem
driver and consequently turned inaccessible.
b) Access unplugged memory blocks via /dev/mem because the virtio-mem
driver is required to make them actually accessible first.
The virtio-spec states that unplugged memory blocks MUST NOT be written,
and only selected unplugged memory blocks MAY be read. We want to make
sure, this is the case in sane environments -- where the virtio-mem driver
was loaded.
We want to make sure that in a sane environment, nobody "accidentially"
accesses unplugged memory inside the device managed region. For example,
a user might spot a memory region in /proc/iomem and try accessing it via
/dev/mem via gdb or dumping it via something else. By the time the mmap()
happens, the memory might already have been removed by the virtio-mem
driver silently: the mmap() would succeeed and user space might
accidentially access unplugged memory.
So once the driver was loaded and detected the device along the
device-managed region, we just want to disallow any access via /dev/mem to
it.
In an ideal world, we would mark the whole region as busy ("owned by a
driver") and exclude it; however, that would be wrong, as we don't really
have actual system RAM at these ranges added to Linux ("busy system RAM").
Instead, we want to mark such ranges as "not actual busy system RAM but
still soft-reserved and prepared by a driver for future use."
Let's teach iomem_is_exclusive() to reject access to any range with
"IORESOURCE_SYSTEM_RAM | IORESOURCE_EXCLUSIVE", even if not busy and even
if "iomem=relaxed" is set. Introduce EXCLUSIVE_SYSTEM_RAM to make it
easier for applicable drivers to depend on this setting in their Kconfig.
For now, there are no applicable ranges and we'll modify virtio-mem next
to properly set IORESOURCE_EXCLUSIVE on the parent resource container it
creates to contain all actual busy system RAM added via
add_memory_driver_managed().
Link: https://lkml.kernel.org/r/20210920142856.17758-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Directly use is_kernel() helper in kernel_or_module_addr().
Link: https://lkml.kernel.org/r/20210930071143.63410-8-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To print stack entries into a buffer, users of stackdepot, first get a
list of stack entries using stack_depot_fetch and then print this list
into a buffer using stack_trace_snprint. Provide a helper in stackdepot
for this purpose. Also change above mentioned users to use this helper.
[imran.f.khan@oracle.com: fix build error]
Link: https://lkml.kernel.org/r/20210915175321.3472770-4-imran.f.khan@oracle.com
[imran.f.khan@oracle.com: export stack_depot_snprint() to modules]
Link: https://lkml.kernel.org/r/20210916133535.3592491-4-imran.f.khan@oracle.com
Link: https://lkml.kernel.org/r/20210915014806.3206938-4-imran.f.khan@oracle.com
Signed-off-by: Imran Khan <imran.f.khan@oracle.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jani Nikula <jani.nikula@intel.com> [i915]
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To print a stack entries, users of stackdepot, first use stack_depot_fetch
to get a list of stack entries and then use stack_trace_print to print
this list. Provide a helper in stackdepot to print stack entries based on
stackdepot handle. Also change above mentioned users to use this helper.
Link: https://lkml.kernel.org/r/20210915014806.3206938-3-imran.f.khan@oracle.com
Signed-off-by: Imran Khan <imran.f.khan@oracle.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 21a3c273f88c ("mm, hugetlb: add thread name and pid to
SHM_HUGETLB mlock rlimit warning") marked this as deprecated in 2012,
but it is not deleted yet.
Mike says he still sees that message in log files on occasion, so maybe we
should preserve this warning.
Also remove hugetlbfs related user_shm_unlock in ipc/shm.c and remove the
user_shm_unlock after out.
Link: https://lkml.kernel.org/r/20211103105857.25041-1-zhangyiru3@huawei.com
Signed-off-by: zhangyiru <zhangyiru3@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Liu Zixian <liuzixian4@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: wuxu.wu <wuxu.wu@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Historically (pre-2.5), the inode shrinker used to reclaim only empty
inodes and skip over those that still contained page cache. This caused
problems on highmem hosts: struct inode could put fill lowmem zones
before the cache was getting reclaimed in the highmem zones.
To address this, the inode shrinker started to strip page cache to
facilitate reclaiming lowmem. However, this comes with its own set of
problems: the shrinkers may drop actively used page cache just because
the inodes are not currently open or dirty - think working with a large
git tree. It further doesn't respect cgroup memory protection settings
and can cause priority inversions between containers.
Nowadays, the page cache also holds non-resident info for evicted cache
pages in order to detect refaults. We've come to rely heavily on this
data inside reclaim for protecting the cache workingset and driving swap
behavior. We also use it to quantify and report workload health through
psi. The latter in turn is used for fleet health monitoring, as well as
driving automated memory sizing of workloads and containers, proactive
reclaim and memory offloading schemes.
The consequences of dropping page cache prematurely is that we're seeing
subtle and not-so-subtle failures in all of the above-mentioned
scenarios, with the workload generally entering unexpected thrashing
states while losing the ability to reliably detect it.
To fix this on non-highmem systems at least, going back to rotating
inodes on the LRU isn't feasible. We've tried (commit a76cf1a474d7
("mm: don't reclaim inodes with many attached pages")) and failed
(commit 69056ee6a8a3 ("Revert "mm: don't reclaim inodes with many
attached pages"")).
The issue is mostly that shrinker pools attract pressure based on their
size, and when objects get skipped the shrinkers remember this as
deferred reclaim work. This accumulates excessive pressure on the
remaining inodes, and we can quickly eat into heavily used ones, or
dirty ones that require IO to reclaim, when there potentially is plenty
of cold, clean cache around still.
Instead, this patch keeps populated inodes off the inode LRU in the
first place - just like an open file or dirty state would. An otherwise
clean and unused inode then gets queued when the last cache entry
disappears. This solves the problem without reintroducing the reclaim
issues, and generally is a bit more scalable than having to wade through
potentially hundreds of thousands of busy inodes.
Locking is a bit tricky because the locks protecting the inode state
(i_lock) and the inode LRU (lru_list.lock) don't nest inside the
irq-safe page cache lock (i_pages.xa_lock). Page cache deletions are
serialized through i_lock, taken before the i_pages lock, to make sure
depopulated inodes are queued reliably. Additions may race with
deletions, but we'll check again in the shrinker. If additions race
with the shrinker itself, we're protected by the i_lock: if find_inode()
or iput() win, the shrinker will bail on the elevated i_count or
I_REFERENCED; if the shrinker wins and goes ahead with the inode, it
will set I_FREEING and inhibit further igets(), which will cause the
other side to create a new instance of the inode instead.
Link: https://lkml.kernel.org/r/20210614211904.14420-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After switched page size from 64KB to 4KB on several arm64 servers here,
kmemleak starts to run out of early memory pool due to a huge number of
those early_pgtable_alloc() calls:
kmemleak_alloc_phys()
memblock_alloc_range_nid()
memblock_phys_alloc_range()
early_pgtable_alloc()
init_pmd()
alloc_init_pud()
__create_pgd_mapping()
__map_memblock()
paging_init()
setup_arch()
start_kernel()
Increased the default value of DEBUG_KMEMLEAK_MEM_POOL_SIZE by 4 times
won't be enough for a server with 200GB+ memory. There isn't much
interesting to check memory leaks for those early page tables and those
early memory mappings should not reference to other memory. Hence, no
kmemleak false positives, and we can safely skip tracking those early
allocations from kmemleak like we did in the commit fed84c785270
("mm/memblock.c: skip kmemleak for kasan_init()") without needing to
introduce complications to automatically scale the value depends on the
runtime memory size etc. After the patch, the default value of
DEBUG_KMEMLEAK_MEM_POOL_SIZE becomes sufficient again.
Signed-off-by: Qian Cai <quic_qiancai@quicinc.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lore.kernel.org/r/20211105150509.7826-1-quic_qiancai@quicinc.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Merge misc updates from Andrew Morton:
"257 patches.
Subsystems affected by this patch series: scripts, ocfs2, vfs, and
mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache,
gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc,
pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools,
memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm,
vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram,
cleanups, kfence, and damon)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits)
mm/damon: remove return value from before_terminate callback
mm/damon: fix a few spelling mistakes in comments and a pr_debug message
mm/damon: simplify stop mechanism
Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions
Docs/admin-guide/mm/damon/start: simplify the content
Docs/admin-guide/mm/damon/start: fix a wrong link
Docs/admin-guide/mm/damon/start: fix wrong example commands
mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on
mm/damon: remove unnecessary variable initialization
Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM
mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM)
selftests/damon: support watermarks
mm/damon/dbgfs: support watermarks
mm/damon/schemes: activate schemes based on a watermarks mechanism
tools/selftests/damon: update for regions prioritization of schemes
mm/damon/dbgfs: support prioritization weights
mm/damon/vaddr,paddr: support pageout prioritization
mm/damon/schemes: prioritize regions within the quotas
mm/damon/selftests: support schemes quotas
mm/damon/dbgfs: support quotas of schemes
...
|
|
Since the return value of 'before_terminate' callback is never used, we
make it have no return value.
Link: https://lkml.kernel.org/r/20211029005023.8895-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are a few spelling mistakes in the code. Fix these.
Link: https://lkml.kernel.org/r/20211028184157.614544-1-colin.i.king@gmail.com
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A kernel thread can exit gracefully with kthread_stop(). So we don't
need a new flag 'kdamond_stop'. And to make sure the task struct is not
freed when accessing it, get reference to it before termination.
Link: https://lkml.kernel.org/r/20211027130517.4404-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When the ctx->adaptive_targets list is empty, I did some test on
monitor_on interface like this.
# cat /sys/kernel/debug/damon/target_ids
#
# echo on > /sys/kernel/debug/damon/monitor_on
# damon: kdamond (5390) starts
Though the ctx->adaptive_targets list is empty, but the kthread_run
still be called, and the kdamond.x thread still be created, this is
meaningless.
So there adds a judgment in 'dbgfs_monitor_on_write', if the
ctx->adaptive_targets list is empty, return -EINVAL.
Link: https://lkml.kernel.org/r/0a60a6e8ec9d71989e0848a4dc3311996ca3b5d4.1634720326.git.xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm/damon: Fix some small bugs", v4.
This patch (of 2):
In 'damon_va_apply_three_regions' there is no need to set variable 'i'
to zero.
Link: https://lkml.kernel.org/r/b7df8d3dad0943a37e01f60c441b1968b2b20354.1634720326.git.xhao@linux.alibaba.com
Link: https://lkml.kernel.org/r/cover.1634720326.git.xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This implements a new kernel subsystem that finds cold memory regions
using DAMON and reclaims those immediately. It is intended to be used
as proactive lightweigh reclamation logic for light memory pressure.
For heavy memory pressure, it could be inactivated and fall back to the
traditional page-scanning based reclamation.
It's implemented on top of DAMON framework to use the DAMON-based
Operation Schemes (DAMOS) feature. It utilizes all the DAMOS features
including speed limit, prioritization, and watermarks.
It could be enabled and tuned in boot time via the kernel boot
parameter, and in run time via its module parameters
('/sys/module/damon_reclaim/parameters/') interface.
[yangyingliang@huawei.com: fix error return code in damon_reclaim_turn()]
Link: https://lkml.kernel.org/r/20211025124500.2758060-1-yangyingliang@huawei.com
Link: https://lkml.kernel.org/r/20211019150731.16699-15-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This updates DAMON debugfs interface to support the watermarks based
schemes activation. For this, now 'schemes' file receives five more
values.
Link: https://lkml.kernel.org/r/20211019150731.16699-13-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
DAMON-based operation schemes need to be manually turned on and off. In
some use cases, however, the condition for turning a scheme on and off
would depend on the system's situation. For example, schemes for
proactive pages reclamation would need to be turned on when some memory
pressure is detected, and turned off when the system has enough free
memory.
For easier control of schemes activation based on the system situation,
this introduces a watermarks-based mechanism. The client can describe
the watermark metric (e.g., amount of free memory in the system),
watermark check interval, and three watermarks, namely high, mid, and
low. If the scheme is deactivated, it only gets the metric and compare
that to the three watermarks for every check interval. If the metric is
higher than the high watermark, the scheme is deactivated. If the
metric is between the mid watermark and the low watermark, the scheme is
activated. If the metric is lower than the low watermark, the scheme is
deactivated again. This is to allow users fall back to traditional
page-granularity mechanisms.
Link: https://lkml.kernel.org/r/20211019150731.16699-12-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This allows DAMON debugfs interface users set the prioritization weights
by putting three more numbers to the 'schemes' file.
Link: https://lkml.kernel.org/r/20211019150731.16699-10-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This makes the default monitoring primitives for virtual address spaces
and the physical address sapce to support memory regions prioritization
for 'PAGEOUT' DAMOS action. It calculates hotness of each region as
weighted sum of 'nr_accesses' and 'age' of the region and get the
priority score as reverse of the hotness, so that cold regions can be
paged out first.
Link: https://lkml.kernel.org/r/20211019150731.16699-9-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This makes DAMON apply schemes to regions having higher priority first,
if it cannot apply schemes to all regions due to the quotas.
The prioritization function should be implemented in the monitoring
primitives. Those would commonly calculate the priority of the region
using attributes of regions, namely 'size', 'nr_accesses', and 'age'.
For example, some primitive would calculate the priority of each region
using a weighted sum of 'nr_accesses' and 'age' of the region.
The optimal weights would depend on give environments, so this makes
those customizable. Nevertheless, the score calculation functions are
only encouraged to respect the weights, not mandated.
Link: https://lkml.kernel.org/r/20211019150731.16699-8-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This makes the debugfs interface of DAMON support the scheme quotas by
chaning the format of the input for the schemes file.
Link: https://lkml.kernel.org/r/20211019150731.16699-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The size quota feature of DAMOS is useful for IO resource-critical
systems, but not so intuitive for CPU time-critical systems. Systems
using zram or zswap-like swap device would be examples.
To provide another intuitive ways for such systems, this implements
time-based quota for DAMON-based Operation Schemes. If the quota is
set, DAMOS tries to use only up to the user-defined quota of CPU time
within a given time window.
Link: https://lkml.kernel.org/r/20211019150731.16699-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If DAMOS has stopped applying action in the middle of a group of memory
regions due to its size quota, it starts the work again from the
beginning of the address space in the next charge window. If there is a
huge memory region at the beginning of the address space and it fulfills
the scheme's target data access pattern always, the action will applied
to only the region.
This mitigates the case by skipping memory regions that charged in
current charge window at the beginning of next charge window.
Link: https://lkml.kernel.org/r/20211019150731.16699-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There could be arbitrarily large memory regions fulfilling the target
data access pattern of a DAMON-based operation scheme. In the case,
applying the action of the scheme could incur too high overhead. To
provide an intuitive way for avoiding it, this implements a feature
called size quota. If the quota is set, DAMON tries to apply the action
only up to the given amount of memory regions within a given time
window.
Link: https://lkml.kernel.org/r/20211019150731.16699-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Introduction
============
This patchset 1) makes the engine for general data access
pattern-oriented memory management (DAMOS) be more useful for production
environments, and 2) implements a static kernel module for lightweight
proactive reclamation using the engine.
Proactive Reclamation
---------------------
On general memory over-committed systems, proactively reclaiming cold
pages helps saving memory and reducing latency spikes that incurred by
the direct reclaim or the CPU consumption of kswapd, while incurring
only minimal performance degradation[2].
A Free Pages Reporting[8] based memory over-commit virtualization system
would be one more specific use case. In the system, the guest VMs
reports their free memory to host, and the host reallocates the reported
memory to other guests. As a result, the system's memory utilization
can be maximized. However, the guests could be not so memory-frugal,
because some kernel subsystems and user-space applications are designed
to use as much memory as available. Then, guests would report only
small amount of free memory to host, results in poor memory utilization.
Running the proactive reclamation in such guests could help mitigating
this problem.
Google has also implemented this idea and using it in their data center.
They further proposed upstreaming it in LSFMM'19, and "the general
consensus was that, while this sort of proactive reclaim would be useful
for a number of users, the cost of this particular solution was too high
to consider merging it upstream"[3]. The cost mainly comes from the
coldness tracking. Roughly speaking, the implementation periodically
scans the 'Accessed' bit of each page. For the reason, the overhead
linearly increases as the size of the memory and the scanning frequency
grows. As a result, Google is known to dedicating one CPU for the work.
That's a reasonable option to someone like Google, but it wouldn't be so
to some others.
DAMON and DAMOS: An engine for data access pattern-oriented memory management
-----------------------------------------------------------------------------
DAMON[4] is a framework for general data access monitoring. Its
adaptive monitoring overhead control feature minimizes its monitoring
overhead. It also let the upper-bound of the overhead be configurable
by clients, regardless of the size of the monitoring target memory.
While monitoring 70 GiB memory of a production system every 5
milliseconds, it consumes less than 1% single CPU time. For this, it
could sacrify some of the quality of the monitoring results.
Nevertheless, the lower-bound of the quality is configurable, and it
uses a best-effort algorithm for better quality. Our test results[5]
show the quality is practical enough. From the production system
monitoring, we were able to find a 4 KiB region in the 70 GiB memory
that shows highest access frequency.
We normally don't monitor the data access pattern just for fun but to
improve something like memory management. Proactive reclamation is one
such usage. For such general cases, DAMON provides a feature called
DAMon-based Operation Schemes (DAMOS)[6]. It makes DAMON an engine for
general data access pattern oriented memory management. Using this,
clients can ask DAMON to find memory regions of specific data access
pattern and apply some memory management action (e.g., page out, move to
head of the LRU list, use huge page, ...). We call the request
'scheme'.
Proactive Reclamation on top of DAMON/DAMOS
-------------------------------------------
Therefore, by using DAMON for the cold pages detection, the proactive
reclamation's monitoring overhead issue can be solved. Actually, we
previously implemented a version of proactive reclamation using DAMOS
and achieved noticeable improvements with our evaluation setup[5].
Nevertheless, it more for a proof-of-concept, rather than production
uses. It supports only virtual address spaces of processes, and require
additional tuning efforts for given workloads and the hardware. For the
tuning, we introduced a simple auto-tuning user space tool[8]. Google
is also known to using a ML-based similar approach for their fleets[2].
But, making it just works with intuitive knobs in the kernel would be
helpful for general users.
To this end, this patchset improves DAMOS to be ready for such
production usages, and implements another version of the proactive
reclamation, namely DAMON_RECLAIM, on top of it.
DAMOS Improvements: Aggressiveness Control, Prioritization, and Watermarks
--------------------------------------------------------------------------
First of all, the current version of DAMOS supports only virtual address
spaces. This patchset makes it supports the physical address space for
the page out action.
Next major problem of the current version of DAMOS is the lack of the
aggressiveness control, which can results in arbitrary overhead. For
example, if huge memory regions having the data access pattern of
interest are found, applying the requested action to all of the regions
could incur significant overhead. It can be controlled by tuning the
target data access pattern with manual or automated approaches[2,7].
But, some people would prefer the kernel to just work with only
intuitive tuning or default values.
For such cases, this patchset implements a safeguard, namely time/size
quota. Using this, the clients can specify up to how much time can be
used for applying the action, and/or up to how much memory regions the
action can be applied within a user-specified time duration. A followup
question is, to which memory regions should the action applied within
the limits? We implement a simple regions prioritization mechanism for
each action and make DAMOS to apply the action to high priority regions
first. It also allows clients tune the prioritization mechanism to use
different weights for size, access frequency, and age of memory regions.
This means we could use not only LRU but also LFU or some fancy
algorithms like CAR[9] with lightweight overhead.
Though DAMON is lightweight, someone would want to remove even the cold
pages monitoring overhead when it is unnecessary. Currently, it should
manually turned on and off by clients, but some clients would simply
want to turn it on and off based on some metrics like free memory ratio
or memory fragmentation. For such cases, this patchset implements a
watermarks-based automatic activation feature. It allows the clients
configure the metric of their interest, and three watermarks of the
metric. If the metric is higher than the high watermark or lower than
the low watermark, the scheme is deactivated. If the metric is lower
than the mid watermark but higher than the low watermark, the scheme is
activated.
DAMON-based Reclaim
-------------------
Using the improved version of DAMOS, this patchset implements a static
kernel module called 'damon_reclaim'. It finds memory regions that
didn't accessed for specific time duration and page out. Consuming too
much CPU for the paging out operations, or doing pageout too frequently
can be critical for systems configuring their swap devices with
software-defined in-memory block devices like zram/zswap or total number
of writes limited devices like SSDs, respectively. To avoid the
problems, the time/size quotas can be configured. Under the quotas, it
pages out memory regions that didn't accessed longer first. Also, to
remove the monitoring overhead under peaceful situation, and to fall
back to the LRU-list based page granularity reclamation when it doesn't
make progress, the three watermarks based activation mechanism is used,
with the free memory ratio as the watermark metric.
For convenient configurations, it provides several module parameters.
Using these, sysadmins can enable/disable it, and tune its parameters
including the coldness identification time threshold, the time/size
quotas and the three watermarks.
Evaluation
==========
In short, DAMON_RECLAIM with 50ms/s time quota and regions
prioritization on v5.15-rc5 Linux kernel with ZRAM swap device achieves
38.58% memory saving with only 1.94% runtime overhead. For this,
DAMON_RECLAIM consumes only 4.97% of single CPU time.
Setup
-----
We evaluate DAMON_RECLAIM to show how each of the DAMOS improvements
make effect. For this, we measure DAMON_RECLAIM's CPU consumption,
entire system memory footprint, total number of major page faults, and
runtime of 24 realistic workloads in PARSEC3 and SPLASH-2X benchmark
suites on my QEMU/KVM based virtual machine. The virtual machine runs
on an i3.metal AWS instance, has 130GiB memory, and runs a linux kernel
built on latest -mm tree[1] plus this patchset. It also utilizes a 4
GiB ZRAM swap device. We repeats the measurement 5 times and use
averages.
[1] https://github.com/hnaz/linux-mm/tree/v5.15-rc5-mmots-2021-10-13-19-55
Detailed Results
----------------
The results are summarized in the below table.
With coldness identification threshold of 5 seconds, DAMON_RECLAIM
without the time quota-based speed limit achieves 47.21% memory saving,
but incur 4.59% runtime slowdown to the workloads on average. For this,
DAMON_RECLAIM consumes about 11.28% single CPU time.
Applying time quotas of 200ms/s, 50ms/s, and 10ms/s without the regions
prioritization reduces the slowdown to 4.89%, 2.65%, and 1.5%,
respectively. Time quota of 200ms/s (20%) makes no real change compared
to the quota unapplied version, because the quota unapplied version
consumes only 11.28% CPU time. DAMON_RECLAIM's CPU utilization also
similarly reduced: 11.24%, 5.51%, and 2.01% of single CPU time. That
is, the overhead is proportional to the speed limit. Nevertheless, it
also reduces the memory saving because it becomes less aggressive. In
detail, the three variants show 48.76%, 37.83%, and 7.85% memory saving,
respectively.
Applying the regions prioritization (page out regions that not accessed
longer first within the time quota) further reduces the performance
degradation. Runtime slowdowns and total number of major page faults
increase has been 4.89%/218,690% -> 4.39%/166,136% (200ms/s),
2.65%/111,886% -> 1.94%/59,053% (50ms/s), and 1.5%/34,973.40% ->
2.08%/8,781.75% (10ms/s). The runtime under 10ms/s time quota has
increased with prioritization, but apparently that's under the margin of
error.
time quota prioritization memory_saving cpu_util slowdown pgmajfaults overhead
N N 47.21% 11.28% 4.59% 194,802%
200ms/s N 48.76% 11.24% 4.89% 218,690%
50ms/s N 37.83% 5.51% 2.65% 111,886%
10ms/s N 7.85% 2.01% 1.5% 34,793.40%
200ms/s Y 50.08% 10.38% 4.39% 166,136%
50ms/s Y 38.58% 4.97% 1.94% 59,053%
10ms/s Y 3.63% 1.73% 2.08% 8,781.75%
Baseline and Complete Git Trees
===============================
The patches are based on the latest -mm tree
(v5.15-rc5-mmots-2021-10-13-19-55). You can also clone the complete git tree
from:
$ git clone git://github.com/sjp38/linux -b damon_reclaim/patches/v1
The web is also available:
https://git.kernel.org/pub/scm/linux/kernel/git/sj/linux.git/tag/?h=damon_reclaim/patches/v1
Sequence Of Patches
===================
The first patch makes DAMOS support the physical address space for the
page out action. Following five patches (patches 2-6) implement the
time/size quotas. Next four patches (patches 7-10) implement the memory
regions prioritization within the limit. Then, three following patches
(patches 11-13) implement the watermarks-based schemes activation.
Finally, the last two patches (patches 14-15) implement and document the
DAMON-based reclamation using the advanced DAMOS.
[1] https://www.kernel.org/doc/html/v5.15-rc1/vm/damon/index.html
[2] https://research.google/pubs/pub48551/
[3] https://lwn.net/Articles/787611/
[4] https://damonitor.github.io
[5] https://damonitor.github.io/doc/html/latest/vm/damon/eval.html
[6] https://lore.kernel.org/linux-mm/20211001125604.29660-1-sj@kernel.org/
[7] https://github.com/awslabs/damoos
[8] https://www.kernel.org/doc/html/latest/vm/free_page_reporting.html
[9] https://www.usenix.org/conference/fast-04/car-clock-adaptive-replacement
This patch (of 15):
This makes the DAMON primitives for physical address space support the
pageout action for DAMON-based Operation Schemes. With this commit,
hence, users can easily implement system-level data access-aware
reclamations using DAMOS.
[sj@kernel.org: fix missing-prototype build warning]
Link: https://lkml.kernel.org/r/20211025064220.13904-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211019150731.16699-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211019150731.16699-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In some functions, it's unnecessary to declare 'err' and 'ret' variables
at the same time. This patch mainly to simplify the issue of such
declarations by reusing one variable.
Link: https://lkml.kernel.org/r/20211014073014.35754-1-sj@kernel.org
Signed-off-by: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The only usage of these structs is to pass their addresses to
walk_page_range(), which takes a pointer to const mm_walk_ops as
argument. Make them const to allow the compiler to put them in
read-only memory.
Link: https://lkml.kernel.org/r/20211014075042.17174-2-rikard.falkeborn@gmail.com
Signed-off-by: Rikard Falkeborn <rikard.falkeborn@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This makes the 'damon-dbgfs' to support the physical memory monitoring,
in addition to the virtual memory monitoring.
Users can do the physical memory monitoring by writing a special
keyword, 'paddr' to the 'target_ids' debugfs file. Then, DAMON will
check the special keyword and configure the monitoring context to run
with the primitives for the physical address space.
Unlike the virtual memory monitoring, the monitoring target region will
not be automatically set. Therefore, users should also set the
monitoring target address region using the 'init_regions' debugfs file.
Also, note that the physical memory monitoring will not automatically
terminated. The user should explicitly turn off the monitoring by
writing 'off' to the 'monitor_on' debugfs file.
Link: https://lkml.kernel.org/r/20211012205711.29216-7-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This implements the monitoring primitives for the physical memory
address space. Internally, it uses the PTE Accessed bit, similar to
that of the virtual address spaces monitoring primitives. It supports
only user memory pages, as idle pages tracking does. If the monitoring
target physical memory address range contains non-user memory pages,
access check of the pages will do nothing but simply treat the pages as
not accessed.
Link: https://lkml.kernel.org/r/20211012205711.29216-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This moves functions in the default virtual address spaces monitoring
primitives that commonly usable from other address spaces like physical
address space into a header file. Those will be reused by the physical
address space monitoring primitives which will be implemented by the
following commit.
[sj@kernel.org: include 'highmem.h' to fix a build failure]
Link: https://lkml.kernel.org/r/20211014110848.5204-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211012205711.29216-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This adds another test case for the new feature, 'init_regions'.
Link: https://lkml.kernel.org/r/20211012205711.29216-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "DAMON: Support Physical Memory Address Space Monitoring:.
DAMON currently supports only virtual address spaces monitoring. It can
be easily extended for various use cases and address spaces by
configuring its monitoring primitives layer to use appropriate
primitives implementations, though. This patchset implements monitoring
primitives for the physical address space monitoring using the
structure.
The first 3 patches allow the user space users manually set the
monitoring regions. The 1st patch implements the feature in the
'damon-dbgfs'. Then, patches for adding a unit tests (the 2nd patch)
and updating the documentation (the 3rd patch) follow.
Following 4 patches implement the physical address space monitoring
primitives. The 4th patch makes some primitive functions for the
virtual address spaces primitives reusable. The 5th patch implements
the physical address space monitoring primitives. The 6th patch links
the primitives to the 'damon-dbgfs'. Finally, 7th patch documents this
new features.
This patch (of 7):
Some 'damon-dbgfs' users would want to monitor only a part of the entire
virtual memory address space. The program interface users in the kernel
space could use '->before_start()' callback or set the regions inside
the context struct as they want, but 'damon-dbgfs' users cannot.
For that reason, this introduces a new debugfs file called
'init_region'. 'damon-dbgfs' users can specify which initial monitoring
target address regions they want by writing special input to the file.
The input should describe each region in each line in the below form:
<pid> <start address> <end address>
Note that the regions will be updated to cover entire memory mapped
regions after a 'regions update interval' is passed. If you want the
regions to not be updated after the initial setting, you could set the
interval as a very long time, say, a few decades.
Link: https://lkml.kernel.org/r/20211012205711.29216-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211012205711.29216-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: David Rienjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To tune the DAMON-based operation schemes, knowing how many and how
large regions are affected by each of the schemes will be helful. Those
stats could be used for not only the tuning, but also monitoring of the
working set size and the number of regions, if the scheme does not
change the program behavior too much.
For the reason, this implements the statistics for the schemes. The
total number and size of the regions that each scheme is applied are
exported to users via '->stat_count' and '->stat_sz' of 'struct damos'.
Admins can also check the number by reading 'schemes' debugfs file. The
last two integers now represents the stats. To allow collecting the
stats without changing the program behavior, this also adds new scheme
action, 'DAMOS_STAT'. Note that 'DAMOS_STAT' is not only making no
memory operation actions, but also does not reset the age of regions.
Link: https://lkml.kernel.org/r/20211001125604.29660-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This makes 'damon-dbgfs' to support the data access monitoring oriented
memory management schemes. Users can read and update the schemes using
``<debugfs>/damon/schemes`` file. The format is::
<min/max size> <min/max access frequency> <min/max age> <action>
Link: https://lkml.kernel.org/r/20211001125604.29660-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This makes DAMON's default primitives for virtual address spaces to
support DAMON-based Operation Schemes (DAMOS) by implementing actions
application functions and registering it to the monitoring context. The
implementation simply links 'madvise()' for related DAMOS actions. That
is, 'madvise(MADV_WILLNEED)' is called for 'WILLNEED' DAMOS action and
similar for other actions ('COLD', 'PAGEOUT', 'HUGEPAGE', 'NOHUGEPAGE').
So, the kernel space DAMON users can now use the DAMON-based
optimizations with only small amount of code.
Link: https://lkml.kernel.org/r/20211001125604.29660-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In many cases, users might use DAMON for simple data access aware memory
management optimizations such as applying an operation scheme to a
memory region of a specific size having a specific access frequency for
a specific time. For example, "page out a memory region larger than 100
MiB but having a low access frequency more than 10 minutes", or "Use THP
for a memory region larger than 2 MiB having a high access frequency for
more than 2 seconds".
Most simple form of the solution would be doing offline data access
pattern profiling using DAMON and modifying the application source code
or system configuration based on the profiling results. Or, developing
a daemon constructed with two modules (one for access monitoring and the
other for applying memory management actions via mlock(), madvise(),
sysctl, etc) is imaginable.
To avoid users spending their time for implementation of such simple
data access monitoring-based operation schemes, this makes DAMON to
handle such schemes directly. With this change, users can simply
specify their desired schemes to DAMON. Then, DAMON will automatically
apply the schemes to the user-specified target processes.
Each of the schemes is composed with conditions for filtering of the
target memory regions and desired memory management action for the
target. Specifically, the format is::
<min/max size> <min/max access frequency> <min/max age> <action>
The filtering conditions are size of memory region, number of accesses
to the region monitored by DAMON, and the age of the region. The age of
region is incremented periodically but reset when its addresses or
access frequency has significantly changed or the action of a scheme was
applied. For the action, current implementation supports a few of
madvise()-like hints, ``WILLNEED``, ``COLD``, ``PAGEOUT``, ``HUGEPAGE``,
and ``NOHUGEPAGE``.
Because DAMON supports various address spaces and application of the
actions to a monitoring target region is dependent to the type of the
target address space, the application code should be implemented by each
primitives and registered to the framework. Note that this only
implements the framework part. Following commit will implement the
action applications for virtual address spaces primitives.
Link: https://lkml.kernel.org/r/20211001125604.29660-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Implement Data Access Monitoring-based Memory Operation Schemes".
Introduction
============
DAMON[1] can be used as a primitive for data access aware memory
management optimizations. For that, users who want such optimizations
should run DAMON, read the monitoring results, analyze it, plan a new
memory management scheme, and apply the new scheme by themselves. Such
efforts will be inevitable for some complicated optimizations.
However, in many other cases, the users would simply want the system to
apply a memory management action to a memory region of a specific size
having a specific access frequency for a specific time. For example,
"page out a memory region larger than 100 MiB keeping only rare accesses
more than 2 minutes", or "Do not use THP for a memory region larger than
2 MiB rarely accessed for more than 1 seconds".
To make the works easier and non-redundant, this patchset implements a
new feature of DAMON, which is called Data Access Monitoring-based
Operation Schemes (DAMOS). Using the feature, users can describe the
normal schemes in a simple way and ask DAMON to execute those on its
own.
[1] https://damonitor.github.io
Evaluations
===========
DAMOS is accurate and useful for memory management optimizations. An
experimental DAMON-based operation scheme for THP, 'ethp', removes
76.15% of THP memory overheads while preserving 51.25% of THP speedup.
Another experimental DAMON-based 'proactive reclamation' implementation,
'prcl', reduces 93.38% of residential sets and 23.63% of system memory
footprint while incurring only 1.22% runtime overhead in the best case
(parsec3/freqmine).
NOTE that the experimental THP optimization and proactive reclamation
are not for production but only for proof of concepts.
Please refer to the showcase web site's evaluation document[1] for
detailed evaluation setup and results.
[1] https://damonitor.github.io/doc/html/v34/vm/damon/eval.html
Long-term Support Trees
-----------------------
For people who want to test DAMON but using LTS kernels, there are
another couple of trees based on two latest LTS kernels respectively and
containing the 'damon/master' backports.
- For v5.4.y: https://git.kernel.org/sj/h/damon/for-v5.4.y
- For v5.10.y: https://git.kernel.org/sj/h/damon/for-v5.10.y
Sequence Of Patches
===================
The 1st patch accounts age of each region. The 2nd patch implements the
core of the DAMON-based operation schemes feature. The 3rd patch makes
the default monitoring primitives for virtual address spaces to support
the schemes. From this point, the kernel space users can use DAMOS.
The 4th patch exports the feature to the user space via the debugfs
interface. The 5th patch implements schemes statistics feature for
easier tuning of the schemes and runtime access pattern analysis, and
the 6th patch adds selftests for these changes. Finally, the 7th patch
documents this new feature.
This patch (of 7):
DAMON can be used for data access pattern aware memory management
optimizations. For that, users should run DAMON, read the monitoring
results, analyze it, plan a new memory management scheme, and apply the
new scheme by themselves. It would not be too hard, but still require
some level of effort. For complicated cases, this effort is inevitable.
That said, in many cases, users would simply want to apply an actions to
a memory region of a specific size having a specific access frequency
for a specific time. For example, "page out a memory region larger than
100 MiB but having a low access frequency more than 10 minutes", or "Use
THP for a memory region larger than 2 MiB having a high access frequency
for more than 2 seconds".
For such optimizations, users will need to first account the age of each
region themselves. To reduce such efforts, this implements a simple age
account of each region in DAMON. For each aggregation step, DAMON
compares the access frequency with that from last aggregation and reset
the age of the region if the change is significant. Else, the age is
incremented. Also, in case of the merge of regions, the region
size-weighted average of the ages is set as the age of merged new
region.
Link: https://lkml.kernel.org/r/20211001125604.29660-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211001125604.29660-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: David Rienjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently a plain integer is being used to nullify the pointer
ctx->kdamond. Use NULL instead. Cleans up sparse warning:
mm/damon/core.c:317:40: warning: Using plain integer as NULL pointer
Link: https://lkml.kernel.org/r/20210925215908.181226-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Just get the pid by 'current->pid'. Meanwhile, to be symmetrical make
the 'starts' and 'finishes' logs both use debug level.
Link: https://lkml.kernel.org/r/20210927232432.17750-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Just return from the kthread function.
Link: https://lkml.kernel.org/r/20210927232421.17694-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Cc: SeongJae Park <sjpark@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|