Age | Commit message (Collapse) | Author | Files | Lines |
|
The "lock_page_killable()" function waits for exclusive access to the
page lock bit using the WQ_FLAG_EXCLUSIVE bit in the waitqueue entry
set.
That means that if it gets woken up, other waiters may have been
skipped.
That, in turn, means that if it sees the page being unlocked, it *must*
take that lock and return success, even if a lethal signal is also
pending.
So instead of checking for lethal signals first, we need to check for
them after we've checked the actual bit that we were waiting for. Even
if that might then delay the killing of the process.
This matches the order of the old "wait_on_bit_lock()" infrastructure
that the page locking used to use (and is still used in a few other
areas).
Note that if we still return an error after having unsuccessfully tried
to acquire the page lock, that is ok: that means that some other thread
was able to get ahead of us and lock the page, and when that other
thread then unlocks the page, the wakeup event will be repeated. So any
other pending waiters will now get properly woken up.
Fixes: 62906027091f ("mm: add PageWaiters indicating tasks are waiting for a page bit")
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Tim Chen and Kan Liang have been battling a customer load that shows
extremely long page wakeup lists. The cause seems to be constant NUMA
migration of a hot page that is shared across a lot of threads, but the
actual root cause for the exact behavior has not been found.
Tim has a patch that batches the wait list traversal at wakeup time, so
that we at least don't get long uninterruptible cases where we traverse
and wake up thousands of processes and get nasty latency spikes. That
is likely 4.14 material, but we're still discussing the page waitqueue
specific parts of it.
In the meantime, I've tried to look at making the page wait queues less
expensive, and failing miserably. If you have thousands of threads
waiting for the same page, it will be painful. We'll need to try to
figure out the NUMA balancing issue some day, in addition to avoiding
the excessive spinlock hold times.
That said, having tried to rewrite the page wait queues, I can at least
fix up some of the braindamage in the current situation. In particular:
(a) we don't want to continue walking the page wait list if the bit
we're waiting for already got set again (which seems to be one of
the patterns of the bad load). That makes no progress and just
causes pointless cache pollution chasing the pointers.
(b) we don't want to put the non-locking waiters always on the front of
the queue, and the locking waiters always on the back. Not only is
that unfair, it means that we wake up thousands of reading threads
that will just end up being blocked by the writer later anyway.
Also add a comment about the layout of 'struct wait_page_key' - there is
an external user of it in the cachefiles code that means that it has to
match the layout of 'struct wait_bit_key' in the two first members. It
so happens to match, because 'struct page *' and 'unsigned long *' end
up having the same values simply because the page flags are the first
member in struct page.
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Christopher Lameter <cl@linux.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In recently introduced memblock_discard() there is a reversed logic bug.
Memory is freed of static array instead of dynamically allocated one.
Link: http://lkml.kernel.org/r/1503511441-95478-2-git-send-email-pasha.tatashin@oracle.com
Fixes: 3010f876500f ("mm: discard memblock data later")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reported-by: Woody Suwalski <terraluna977@gmail.com>
Tested-by: Woody Suwalski <terraluna977@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If madvise(..., MADV_FREE) split a transparent hugepage, it called
put_page() before unlock_page().
This was wrong because put_page() can free the page, e.g. if a
concurrent madvise(..., MADV_DONTNEED) has removed it from the memory
mapping. put_page() then rightfully complained about freeing a locked
page.
Fix this by moving the unlock_page() before put_page().
This bug was found by syzkaller, which encountered the following splat:
BUG: Bad page state in process syzkaller412798 pfn:1bd800
page:ffffea0006f60000 count:0 mapcount:0 mapping: (null) index:0x20a00
flags: 0x200000000040019(locked|uptodate|dirty|swapbacked)
raw: 0200000000040019 0000000000000000 0000000000020a00 00000000ffffffff
raw: ffffea0006f60020 ffffea0006f60020 0000000000000000 0000000000000000
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
bad because of flags: 0x1(locked)
Modules linked in:
CPU: 1 PID: 3037 Comm: syzkaller412798 Not tainted 4.13.0-rc5+ #35
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:16 [inline]
dump_stack+0x194/0x257 lib/dump_stack.c:52
bad_page+0x230/0x2b0 mm/page_alloc.c:565
free_pages_check_bad+0x1f0/0x2e0 mm/page_alloc.c:943
free_pages_check mm/page_alloc.c:952 [inline]
free_pages_prepare mm/page_alloc.c:1043 [inline]
free_pcp_prepare mm/page_alloc.c:1068 [inline]
free_hot_cold_page+0x8cf/0x12b0 mm/page_alloc.c:2584
__put_single_page mm/swap.c:79 [inline]
__put_page+0xfb/0x160 mm/swap.c:113
put_page include/linux/mm.h:814 [inline]
madvise_free_pte_range+0x137a/0x1ec0 mm/madvise.c:371
walk_pmd_range mm/pagewalk.c:50 [inline]
walk_pud_range mm/pagewalk.c:108 [inline]
walk_p4d_range mm/pagewalk.c:134 [inline]
walk_pgd_range mm/pagewalk.c:160 [inline]
__walk_page_range+0xc3a/0x1450 mm/pagewalk.c:249
walk_page_range+0x200/0x470 mm/pagewalk.c:326
madvise_free_page_range.isra.9+0x17d/0x230 mm/madvise.c:444
madvise_free_single_vma+0x353/0x580 mm/madvise.c:471
madvise_dontneed_free mm/madvise.c:555 [inline]
madvise_vma mm/madvise.c:664 [inline]
SYSC_madvise mm/madvise.c:832 [inline]
SyS_madvise+0x7d3/0x13c0 mm/madvise.c:760
entry_SYSCALL_64_fastpath+0x1f/0xbe
Here is a C reproducer:
#define _GNU_SOURCE
#include <pthread.h>
#include <sys/mman.h>
#include <unistd.h>
#define MADV_FREE 8
#define PAGE_SIZE 4096
static void *mapping;
static const size_t mapping_size = 0x1000000;
static void *madvise_thrproc(void *arg)
{
madvise(mapping, mapping_size, (long)arg);
}
int main(void)
{
pthread_t t[2];
for (;;) {
mapping = mmap(NULL, mapping_size, PROT_WRITE,
MAP_POPULATE|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
munmap(mapping + mapping_size / 2, PAGE_SIZE);
pthread_create(&t[0], 0, madvise_thrproc, (void*)MADV_DONTNEED);
pthread_create(&t[1], 0, madvise_thrproc, (void*)MADV_FREE);
pthread_join(t[0], NULL);
pthread_join(t[1], NULL);
munmap(mapping, mapping_size);
}
}
Note: to see the splat, CONFIG_TRANSPARENT_HUGEPAGE=y and
CONFIG_DEBUG_VM=y are needed.
Google Bug Id: 64696096
Link: http://lkml.kernel.org/r/20170823205235.132061-1-ebiggers3@gmail.com
Fixes: 854e9ed09ded ("mm: support madvise(MADV_FREE)")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [v4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
/sys/kernel/mm/transparent_hugepage/shmem_enabled controls if we want
to allocate huge pages when allocate pages for private in-kernel shmem
mount.
Unfortunately, as Dan noticed, I've screwed it up and the only way to
make kernel allocate huge page for the mount is to use "force" there.
All other values will be effectively ignored.
Link: http://lkml.kernel.org/r/20170822144254.66431-1-kirill.shutemov@linux.intel.com
Fixes: 5a6e75f8110c ("shmem: prepare huge= mount option and sysfs knob")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: stable <stable@vger.kernel.org> [4.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is a problem that when counting the pages for creating the
hibernation snapshot will take significant amount of time, especially on
system with large memory. Since the counting job is performed with irq
disabled, this might lead to NMI lockup. The following warning were
found on a system with 1.5TB DRAM:
Freezing user space processes ... (elapsed 0.002 seconds) done.
OOM killer disabled.
PM: Preallocating image memory...
NMI watchdog: Watchdog detected hard LOCKUP on cpu 27
CPU: 27 PID: 3128 Comm: systemd-sleep Not tainted 4.13.0-0.rc2.git0.1.fc27.x86_64 #1
task: ffff9f01971ac000 task.stack: ffffb1a3f325c000
RIP: 0010:memory_bm_find_bit+0xf4/0x100
Call Trace:
swsusp_set_page_free+0x2b/0x30
mark_free_pages+0x147/0x1c0
count_data_pages+0x41/0xa0
hibernate_preallocate_memory+0x80/0x450
hibernation_snapshot+0x58/0x410
hibernate+0x17c/0x310
state_store+0xdf/0xf0
kobj_attr_store+0xf/0x20
sysfs_kf_write+0x37/0x40
kernfs_fop_write+0x11c/0x1a0
__vfs_write+0x37/0x170
vfs_write+0xb1/0x1a0
SyS_write+0x55/0xc0
entry_SYSCALL_64_fastpath+0x1a/0xa5
...
done (allocated 6590003 pages)
PM: Allocated 26360012 kbytes in 19.89 seconds (1325.28 MB/s)
It has taken nearly 20 seconds(2.10GHz CPU) thus the NMI lockup was
triggered. In case the timeout of the NMI watch dog has been set to 1
second, a safe interval should be 6590003/20 = 320k pages in theory.
However there might also be some platforms running at a lower frequency,
so feed the watchdog every 100k pages.
[yu.c.chen@intel.com: simplification]
Link: http://lkml.kernel.org/r/1503460079-29721-1-git-send-email-yu.c.chen@intel.com
[yu.c.chen@intel.com: use interval of 128k instead of 100k to avoid modulus]
Link: http://lkml.kernel.org/r/1503328098-5120-1-git-send-email-yu.c.chen@intel.com
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Reported-by: Jan Filipcewicz <jan.filipcewicz@intel.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Len Brown <lenb@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The 'move_paghes()' system call was introduced long long ago with the
same permission checks as for sending a signal (except using
CAP_SYS_NICE instead of CAP_SYS_KILL for the overriding capability).
That turns out to not be a great choice - while the system call really
only moves physical page allocations around (and you need other
capabilities to do a lot of it), you can check the return value to map
out some the virtual address choices and defeat ASLR of a binary that
still shares your uid.
So change the access checks to the more common 'ptrace_may_access()'
model instead.
This tightens the access checks for the uid, and also effectively
changes the CAP_SYS_NICE check to CAP_SYS_PTRACE, but it's unlikely that
anybody really _uses_ this legacy system call any more (we hav ebetter
NUMA placement models these days), so I expect nobody to notice.
Famous last words.
Reported-by: Otto Ebeling <otto.ebeling@iki.fi>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 19809c2da28a ("mm, vmalloc: use __GFP_HIGHMEM implicitly") added
use of __GFP_HIGHMEM for allocations. vmalloc_32 may use
GFP_DMA/GFP_DMA32 which does not play nice with __GFP_HIGHMEM and will
trigger a BUG in gfp_zone.
Only add __GFP_HIGHMEM if we aren't using GFP_DMA/GFP_DMA32.
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1482249
Link: http://lkml.kernel.org/r/20170816220705.31374-1-labbott@redhat.com
Fixes: 19809c2da28a ("mm, vmalloc: use __GFP_HIGHMEM implicitly")
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I hit a use after free issue when executing trinity and repoduced it
with KASAN enabled. The related call trace is as follows.
BUG: KASan: use after free in SyS_get_mempolicy+0x3c8/0x960 at addr ffff8801f582d766
Read of size 2 by task syz-executor1/798
INFO: Allocated in mpol_new.part.2+0x74/0x160 age=3 cpu=1 pid=799
__slab_alloc+0x768/0x970
kmem_cache_alloc+0x2e7/0x450
mpol_new.part.2+0x74/0x160
mpol_new+0x66/0x80
SyS_mbind+0x267/0x9f0
system_call_fastpath+0x16/0x1b
INFO: Freed in __mpol_put+0x2b/0x40 age=4 cpu=1 pid=799
__slab_free+0x495/0x8e0
kmem_cache_free+0x2f3/0x4c0
__mpol_put+0x2b/0x40
SyS_mbind+0x383/0x9f0
system_call_fastpath+0x16/0x1b
INFO: Slab 0xffffea0009cb8dc0 objects=23 used=8 fp=0xffff8801f582de40 flags=0x200000000004080
INFO: Object 0xffff8801f582d760 @offset=5984 fp=0xffff8801f582d600
Bytes b4 ffff8801f582d750: ae 01 ff ff 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
Object ffff8801f582d760: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
Object ffff8801f582d770: 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkk.
Redzone ffff8801f582d778: bb bb bb bb bb bb bb bb ........
Padding ffff8801f582d8b8: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
Memory state around the buggy address:
ffff8801f582d600: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff8801f582d680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff8801f582d700: fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb fc
!shared memory policy is not protected against parallel removal by other
thread which is normally protected by the mmap_sem. do_get_mempolicy,
however, drops the lock midway while we can still access it later.
Early premature up_read is a historical artifact from times when
put_user was called in this path see https://lwn.net/Articles/124754/
but that is gone since 8bccd85ffbaf ("[PATCH] Implement sys_* do_*
layering in the memory policy layer."). but when we have the the
current mempolicy ref count model. The issue was introduced
accordingly.
Fix the issue by removing the premature release.
Link: http://lkml.kernel.org/r/1502950924-27521-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org> [2.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
name[] in cma_debugfs_add_one() can only accommodate 16 chars including
NULL to store sprintf output. It's common for cma device name to be
larger than 15 chars. This can cause stack corrpution. If the gcc
stack protector is turned on, this can cause a panic due to stack
corruption.
Below is one example trace:
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in:
ffffff8e69a75730
Call trace:
dump_backtrace+0x0/0x2c4
show_stack+0x20/0x28
dump_stack+0xb8/0xf4
panic+0x154/0x2b0
print_tainted+0x0/0xc0
cma_debugfs_init+0x274/0x290
do_one_initcall+0x5c/0x168
kernel_init_freeable+0x1c8/0x280
Fix the short sprintf buffer in cma_debugfs_add_one() by using
scnprintf() instead of sprintf().
Link: http://lkml.kernel.org/r/1502446217-21840-1-git-send-email-guptap@codeaurora.org
Fixes: f318dd083c81 ("cma: Store a name in the cma structure")
Signed-off-by: Prakash Gupta <guptap@codeaurora.org>
Acked-by: Laura Abbott <labbott@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Wenwei Tao has noticed that our current assumption that the oom victim
is dying and never doing any visible changes after it dies, and so the
oom_reaper can tear it down, is not entirely true.
__task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set
but do_group_exit sends SIGKILL to all threads _after_ the flag is set.
So there is a race window when some threads won't have
fatal_signal_pending while the oom_reaper could start unmapping the
address space. Moreover some paths might not check for fatal signals
before each PF/g-u-p/copy_from_user.
We already have a protection for oom_reaper vs. PF races by checking
MMF_UNSTABLE. This has been, however, checked only for kernel threads
(use_mm users) which can outlive the oom victim. A simple fix would be
to extend the current check in handle_mm_fault for all tasks but that
wouldn't be sufficient because the current check assumes that a kernel
thread would bail out after EFAULT from get_user*/copy_from_user and
never re-read the same address which would succeed because the PF path
has established page tables already. This seems to be the case for the
only existing use_mm user currently (virtio driver) but it is rather
fragile in general.
This is even more fragile in general for more complex paths such as
generic_perform_write which can re-read the same address more times
(e.g. iov_iter_copy_from_user_atomic to fail and then
iov_iter_fault_in_readable on retry).
Therefore we have to implement MMF_UNSTABLE protection in a robust way
and never make a potentially corrupted content visible. That requires
to hook deeper into the PF path and check for the flag _every time_
before a pte for anonymous memory is established (that means all
!VM_SHARED mappings).
The corruption can be triggered artificially
(http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp)
but there doesn't seem to be any real life bug report. The race window
should be quite tight to trigger most of the time.
Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org
Fixes: aac453635549 ("mm, oom: introduce oom reaper")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com>
Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Tetsuo Handa has noticed that MMF_UNSTABLE SIGBUS path in
handle_mm_fault causes a lockdep splat
Out of memory: Kill process 1056 (a.out) score 603 or sacrifice child
Killed process 1056 (a.out) total-vm:4268108kB, anon-rss:2246048kB, file-rss:0kB, shmem-rss:0kB
a.out (1169) used greatest stack depth: 11664 bytes left
DEBUG_LOCKS_WARN_ON(depth <= 0)
------------[ cut here ]------------
WARNING: CPU: 6 PID: 1339 at kernel/locking/lockdep.c:3617 lock_release+0x172/0x1e0
CPU: 6 PID: 1339 Comm: a.out Not tainted 4.13.0-rc3-next-20170803+ #142
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/02/2015
RIP: 0010:lock_release+0x172/0x1e0
Call Trace:
up_read+0x1a/0x40
__do_page_fault+0x28e/0x4c0
do_page_fault+0x30/0x80
page_fault+0x28/0x30
The reason is that the page fault path might have dropped the mmap_sem
and returned with VM_FAULT_RETRY. MMF_UNSTABLE check however rewrites
the error path to VM_FAULT_SIGBUS and we always expect mmap_sem taken in
that path. Fix this by taking mmap_sem when VM_FAULT_RETRY is held in
the MMF_UNSTABLE path.
We cannot simply add VM_FAULT_SIGBUS to the existing error code because
all arch specific page fault handlers and g-u-p would have to learn a
new error code combination.
Link: http://lkml.kernel.org/r/20170807113839.16695-2-mhocko@kernel.org
Fixes: 3f70dc38cec2 ("mm: make sure that kthreads will not refault oom reaped memory")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Andrea Argangeli <andrea@kernel.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Wenwei Tao <wenwei.tww@alibaba-inc.com>
Cc: <stable@vger.kernel.org> [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To avoid a possible deadlock, sysfs_slab_remove() schedules an
asynchronous work to delete sysfs entries corresponding to the kmem
cache. To ensure the cache isn't freed before the work function is
called, it takes a reference to the cache kobject. The reference is
supposed to be released by the work function.
However, the work function (sysfs_slab_remove_workfn()) does nothing in
case the cache sysfs entry has already been deleted, leaking the kobject
and the corresponding cache.
This may happen on a per memcg cache destruction, because sysfs entries
of a per memcg cache are deleted on memcg offline if the cache is empty
(see __kmemcg_cache_deactivate()).
The kmemleak report looks like this:
unreferenced object 0xffff9f798a79f540 (size 32):
comm "kworker/1:4", pid 15416, jiffies 4307432429 (age 28687.554s)
hex dump (first 32 bytes):
6b 6d 61 6c 6c 6f 63 2d 31 36 28 31 35 39 39 3a kmalloc-16(1599:
6e 65 77 72 6f 6f 74 29 00 23 6b c0 ff ff ff ff newroot).#k.....
backtrace:
kmemleak_alloc+0x4a/0xa0
__kmalloc_track_caller+0x148/0x2c0
kvasprintf+0x66/0xd0
kasprintf+0x49/0x70
memcg_create_kmem_cache+0xe6/0x160
memcg_kmem_cache_create_func+0x20/0x110
process_one_work+0x205/0x5d0
worker_thread+0x4e/0x3a0
kthread+0x109/0x140
ret_from_fork+0x2a/0x40
unreferenced object 0xffff9f79b6136840 (size 416):
comm "kworker/1:4", pid 15416, jiffies 4307432429 (age 28687.573s)
hex dump (first 32 bytes):
40 fb 80 c2 3e 33 00 00 00 00 00 40 00 00 00 00 @...>3.....@....
00 00 00 00 00 00 00 00 10 00 00 00 10 00 00 00 ................
backtrace:
kmemleak_alloc+0x4a/0xa0
kmem_cache_alloc+0x128/0x280
create_cache+0x3b/0x1e0
memcg_create_kmem_cache+0x118/0x160
memcg_kmem_cache_create_func+0x20/0x110
process_one_work+0x205/0x5d0
worker_thread+0x4e/0x3a0
kthread+0x109/0x140
ret_from_fork+0x2a/0x40
Fix the leak by adding the missing call to kobject_put() to
sysfs_slab_remove_workfn().
Link: http://lkml.kernel.org/r/20170812181134.25027-1-vdavydov.dev@gmail.com
Fixes: 3b7b314053d02 ("slub: make sysfs file removal asynchronous")
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Andrei Vagin <avagin@gmail.com>
Tested-by: Andrei Vagin <avagin@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org> [4.12.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is existing use after free bug when deferred struct pages are
enabled:
The memblock_add() allocates memory for the memory array if more than
128 entries are needed. See comment in e820__memblock_setup():
* The bootstrap memblock region count maximum is 128 entries
* (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
* than that - so allow memblock resizing.
This memblock memory is freed here:
free_low_memory_core_early()
We access the freed memblock.memory later in boot when deferred pages
are initialized in this path:
deferred_init_memmap()
for_each_mem_pfn_range()
__next_mem_pfn_range()
type = &memblock.memory;
One possible explanation for why this use-after-free hasn't been hit
before is that the limit of INIT_MEMBLOCK_REGIONS has never been
exceeded at least on systems where deferred struct pages were enabled.
Tested by reducing INIT_MEMBLOCK_REGIONS down to 4 from the current 128,
and verifying in qemu that this code is getting excuted and that the
freed pages are sane.
Link: http://lkml.kernel.org/r/1502485554-318703-2-git-send-email-pasha.tatashin@oracle.com
Fixes: 7e18adb4f80b ("mm: meminit: initialise remaining struct pages in parallel with kswapd")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Jaegeuk and Brad report a NULL pointer crash when writeback ending tries
to update the memcg stats:
BUG: unable to handle kernel NULL pointer dereference at 00000000000003b0
IP: test_clear_page_writeback+0x12e/0x2c0
[...]
RIP: 0010:test_clear_page_writeback+0x12e/0x2c0
Call Trace:
<IRQ>
end_page_writeback+0x47/0x70
f2fs_write_end_io+0x76/0x180 [f2fs]
bio_endio+0x9f/0x120
blk_update_request+0xa8/0x2f0
scsi_end_request+0x39/0x1d0
scsi_io_completion+0x211/0x690
scsi_finish_command+0xd9/0x120
scsi_softirq_done+0x127/0x150
__blk_mq_complete_request_remote+0x13/0x20
flush_smp_call_function_queue+0x56/0x110
generic_smp_call_function_single_interrupt+0x13/0x30
smp_call_function_single_interrupt+0x27/0x40
call_function_single_interrupt+0x89/0x90
RIP: 0010:native_safe_halt+0x6/0x10
(gdb) l *(test_clear_page_writeback+0x12e)
0xffffffff811bae3e is in test_clear_page_writeback (./include/linux/memcontrol.h:619).
614 mod_node_page_state(page_pgdat(page), idx, val);
615 if (mem_cgroup_disabled() || !page->mem_cgroup)
616 return;
617 mod_memcg_state(page->mem_cgroup, idx, val);
618 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)];
619 this_cpu_add(pn->lruvec_stat->count[idx], val);
620 }
621
622 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
623 gfp_t gfp_mask,
The issue is that writeback doesn't hold a page reference and the page
might get freed after PG_writeback is cleared (and the mapping is
unlocked) in test_clear_page_writeback(). The stat functions looking up
the page's node or zone are safe, as those attributes are static across
allocation and free cycles. But page->mem_cgroup is not, and it will
get cleared if we race with truncation or migration.
It appears this race window has been around for a while, but less likely
to trigger when the memcg stats were updated first thing after
PG_writeback is cleared. Recent changes reshuffled this code to update
the global node stats before the memcg ones, though, stretching the race
window out to an extent where people can reproduce the problem.
Update test_clear_page_writeback() to look up and pin page->mem_cgroup
before clearing PG_writeback, then not use that pointer afterward. It
is a partial revert of 62cccb8c8e7a ("mm: simplify lock_page_memcg()")
but leaves the pageref-holding callsites that aren't affected alone.
Link: http://lkml.kernel.org/r/20170809183825.GA26387@cmpxchg.org
Fixes: 62cccb8c8e7a ("mm: simplify lock_page_memcg()")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Jaegeuk Kim <jaegeuk@kernel.org>
Tested-by: Jaegeuk Kim <jaegeuk@kernel.org>
Reported-by: Bradley Bolen <bradleybolen@gmail.com>
Tested-by: Brad Bolen <bradleybolen@gmail.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org> [4.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
MMU notifiers can sleep, but in page_mkclean_one() we call
mmu_notifier_invalidate_page() under page table lock.
Let's instead use mmu_notifier_invalidate_range() outside
page_vma_mapped_walk() loop.
[jglisse@redhat.com: try_to_unmap_one() do not call mmu_notifier under ptl]
Link: http://lkml.kernel.org/r/20170809204333.27485-1-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20170804134928.l4klfcnqatni7vsc@black.fi.intel.com
Fixes: c7ab0d2fdc84 ("mm: convert try_to_unmap_one() to use page_vma_mapped_walk()")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reported-by: axie <axie@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "Writer, Tim" <Tim.Writer@amd.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We saw many list corruption warnings on shmem shrinklist:
WARNING: CPU: 18 PID: 177 at lib/list_debug.c:59 __list_del_entry+0x9e/0xc0
list_del corruption. prev->next should be ffff9ae5694b82d8, but was ffff9ae5699ba960
Modules linked in: intel_rapl sb_edac edac_core x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul ghash_clmulni_intel raid0 dcdbas shpchp wmi hed i2c_i801 ioatdma lpc_ich i2c_smbus acpi_cpufreq tcp_diag inet_diag sch_fq_codel ipmi_si ipmi_devintf ipmi_msghandler igb ptp crc32c_intel pps_core i2c_algo_bit i2c_core dca ipv6 crc_ccitt
CPU: 18 PID: 177 Comm: kswapd1 Not tainted 4.9.34-t3.el7.twitter.x86_64 #1
Hardware name: Dell Inc. PowerEdge C6220/0W6W6G, BIOS 2.2.3 11/07/2013
Call Trace:
dump_stack+0x4d/0x66
__warn+0xcb/0xf0
warn_slowpath_fmt+0x4f/0x60
__list_del_entry+0x9e/0xc0
shmem_unused_huge_shrink+0xfa/0x2e0
shmem_unused_huge_scan+0x20/0x30
super_cache_scan+0x193/0x1a0
shrink_slab.part.41+0x1e3/0x3f0
shrink_slab+0x29/0x30
shrink_node+0xf9/0x2f0
kswapd+0x2d8/0x6c0
kthread+0xd7/0xf0
ret_from_fork+0x22/0x30
WARNING: CPU: 23 PID: 639 at lib/list_debug.c:33 __list_add+0x89/0xb0
list_add corruption. prev->next should be next (ffff9ae5699ba960), but was ffff9ae5694b82d8. (prev=ffff9ae5694b82d8).
Modules linked in: intel_rapl sb_edac edac_core x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul ghash_clmulni_intel raid0 dcdbas shpchp wmi hed i2c_i801 ioatdma lpc_ich i2c_smbus acpi_cpufreq tcp_diag inet_diag sch_fq_codel ipmi_si ipmi_devintf ipmi_msghandler igb ptp crc32c_intel pps_core i2c_algo_bit i2c_core dca ipv6 crc_ccitt
CPU: 23 PID: 639 Comm: systemd-udevd Tainted: G W 4.9.34-t3.el7.twitter.x86_64 #1
Hardware name: Dell Inc. PowerEdge C6220/0W6W6G, BIOS 2.2.3 11/07/2013
Call Trace:
dump_stack+0x4d/0x66
__warn+0xcb/0xf0
warn_slowpath_fmt+0x4f/0x60
__list_add+0x89/0xb0
shmem_setattr+0x204/0x230
notify_change+0x2ef/0x440
do_truncate+0x5d/0x90
path_openat+0x331/0x1190
do_filp_open+0x7e/0xe0
do_sys_open+0x123/0x200
SyS_open+0x1e/0x20
do_syscall_64+0x61/0x170
entry_SYSCALL64_slow_path+0x25/0x25
The problem is that shmem_unused_huge_shrink() moves entries from the
global sbinfo->shrinklist to its local lists and then releases the
spinlock. However, a parallel shmem_setattr() could access one of these
entries directly and add it back to the global shrinklist if it is
removed, with the spinlock held.
The logic itself looks solid since an entry could be either in a local
list or the global list, otherwise it is removed from one of them by
list_del_init(). So probably the race condition is that, one CPU is in
the middle of INIT_LIST_HEAD() but the other CPU calls list_empty()
which returns true too early then the following list_add_tail() sees a
corrupted entry.
list_empty_careful() is designed to fix this situation.
[akpm@linux-foundation.org: add comments]
Link: http://lkml.kernel.org/r/20170803054630.18775-1-xiyou.wangcong@gmail.com
Fixes: 779750d20b93 ("shmem: split huge pages beyond i_size under memory pressure")
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Revert commit bb01b64cfab7 ("mm/balloon_compaction.c: enqueue zero page
to balloon device")'
Zeroing ballon pages is rather time consuming, especially when a lot of
pages are in flight. E.g. 7GB worth of ballooned memory takes 2.8s with
__GFP_ZERO while it takes ~491ms without it.
The original commit argued that zeroing will help ksmd to merge these
pages on the host but this argument is assuming that the host actually
marks balloon pages for ksm which is not universally true. So we pay
performance penalty for something that even might not be used in the end
which is wrong. The host can zero out pages on its own when there is a
need.
[mhocko@kernel.org: new changelog text]
Link: http://lkml.kernel.org/r/1501761557-9758-1-git-send-email-wei.w.wang@intel.com
Fixes: bb01b64cfab7 ("mm/balloon_compaction.c: enqueue zero page to balloon device")
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: zhenwei.pi <zhenwei.pi@youruncloud.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Nadav reported KSM can corrupt the user data by the TLB batching
race[1]. That means data user written can be lost.
Quote from Nadav Amit:
"For this race we need 4 CPUs:
CPU0: Caches a writable and dirty PTE entry, and uses the stale value
for write later.
CPU1: Runs madvise_free on the range that includes the PTE. It would
clear the dirty-bit. It batches TLB flushes.
CPU2: Writes 4 to /proc/PID/clear_refs , clearing the PTEs soft-dirty.
We care about the fact that it clears the PTE write-bit, and of
course, batches TLB flushes.
CPU3: Runs KSM. Our purpose is to pass the following test in
write_protect_page():
if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
(pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)))
Since it will avoid TLB flush. And we want to do it while the PTE is
stale. Later, and before replacing the page, we would be able to
change the page.
Note that all the operations the CPU1-3 perform canhappen in parallel
since they only acquire mmap_sem for read.
We start with two identical pages. Everything below regards the same
page/PTE.
CPU0 CPU1 CPU2 CPU3
---- ---- ---- ----
Write the same
value on page
[cache PTE as
dirty in TLB]
MADV_FREE
pte_mkclean()
4 > clear_refs
pte_wrprotect()
write_protect_page()
[ success, no flush ]
pages_indentical()
[ ok ]
Write to page
different value
[Ok, using stale
PTE]
replace_page()
Later, CPU1, CPU2 and CPU3 would flush the TLB, but that is too late.
CPU0 already wrote on the page, but KSM ignored this write, and it got
lost"
In above scenario, MADV_FREE is fixed by changing TLB batching API
including [set|clear]_tlb_flush_pending. Remained thing is soft-dirty
part.
This patch changes soft-dirty uses TLB batching API instead of
flush_tlb_mm and KSM checks pending TLB flush by using
mm_tlb_flush_pending so that it will flush TLB to avoid data lost if
there are other parallel threads pending TLB flush.
[1] http://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com
Link: http://lkml.kernel.org/r/20170802000818.4760-8-namit@vmware.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Reported-by: Nadav Amit <namit@vmware.com>
Tested-by: Nadav Amit <namit@vmware.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Nadav reported parallel MADV_DONTNEED on same range has a stale TLB
problem and Mel fixed it[1] and found same problem on MADV_FREE[2].
Quote from Mel Gorman:
"The race in question is CPU 0 running madv_free and updating some PTEs
while CPU 1 is also running madv_free and looking at the same PTEs.
CPU 1 may have writable TLB entries for a page but fail the pte_dirty
check (because CPU 0 has updated it already) and potentially fail to
flush.
Hence, when madv_free on CPU 1 returns, there are still potentially
writable TLB entries and the underlying PTE is still present so that a
subsequent write does not necessarily propagate the dirty bit to the
underlying PTE any more. Reclaim at some unknown time at the future
may then see that the PTE is still clean and discard the page even
though a write has happened in the meantime. I think this is possible
but I could have missed some protection in madv_free that prevents it
happening."
This patch aims for solving both problems all at once and is ready for
other problem with KSM, MADV_FREE and soft-dirty story[3].
TLB batch API(tlb_[gather|finish]_mmu] uses [inc|dec]_tlb_flush_pending
and mmu_tlb_flush_pending so that when tlb_finish_mmu is called, we can
catch there are parallel threads going on. In that case, forcefully,
flush TLB to prevent for user to access memory via stale TLB entry
although it fail to gather page table entry.
I confirmed this patch works with [4] test program Nadav gave so this
patch supersedes "mm: Always flush VMA ranges affected by zap_page_range
v2" in current mmotm.
NOTE:
This patch modifies arch-specific TLB gathering interface(x86, ia64,
s390, sh, um). It seems most of architecture are straightforward but
s390 need to be careful because tlb_flush_mmu works only if
mm->context.flush_mm is set to non-zero which happens only a pte entry
really is cleared by ptep_get_and_clear and friends. However, this
problem never changes the pte entries but need to flush to prevent
memory access from stale tlb.
[1] http://lkml.kernel.org/r/20170725101230.5v7gvnjmcnkzzql3@techsingularity.net
[2] http://lkml.kernel.org/r/20170725100722.2dxnmgypmwnrfawp@suse.de
[3] http://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com
[4] https://patchwork.kernel.org/patch/9861621/
[minchan@kernel.org: decrease tlb flush pending count in tlb_finish_mmu]
Link: http://lkml.kernel.org/r/20170808080821.GA31730@bbox
Link: http://lkml.kernel.org/r/20170802000818.4760-7-namit@vmware.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Reported-by: Nadav Amit <namit@vmware.com>
Reported-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently, tlb_flush_pending is used only for CONFIG_[NUMA_BALANCING|
COMPACTION] but upcoming patches to solve subtle TLB flush batching
problem will use it regardless of compaction/NUMA so this patch doesn't
remove the dependency.
[akpm@linux-foundation.org: remove more ifdefs from world's ugliest printk statement]
Link: http://lkml.kernel.org/r/20170802000818.4760-6-namit@vmware.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch is a preparatory patch for solving race problems caused by
TLB batch. For that, we will increase/decrease TLB flush pending count
of mm_struct whenever tlb_[gather|finish]_mmu is called.
Before making it simple, this patch separates architecture specific part
and rename it to arch_tlb_[gather|finish]_mmu and generic part just
calls it.
It shouldn't change any behavior.
Link: http://lkml.kernel.org/r/20170802000818.4760-5-namit@vmware.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
While deferring TLB flushes is a good practice, the reverted patch
caused pending TLB flushes to be checked while the page-table lock is
not taken. As a result, in architectures with weak memory model (PPC),
Linux may miss a memory-barrier, miss the fact TLB flushes are pending,
and cause (in theory) a memory corruption.
Since the alternative of using smp_mb__after_unlock_lock() was
considered a bit open-coded, and the performance impact is expected to
be small, the previous patch is reverted.
This reverts b0943d61b8fa ("mm: numa: defer TLB flush for THP migration
as long as possible").
Link: http://lkml.kernel.org/r/20170802000818.4760-4-namit@vmware.com
Signed-off-by: Nadav Amit <namit@vmware.com>
Suggested-by: Mel Gorman <mgorman@suse.de>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "fixes of TLB batching races", v6.
It turns out that Linux TLB batching mechanism suffers from various
races. Races that are caused due to batching during reclamation were
recently handled by Mel and this patch-set deals with others. The more
fundamental issue is that concurrent updates of the page-tables allow
for TLB flushes to be batched on one core, while another core changes
the page-tables. This other core may assume a PTE change does not
require a flush based on the updated PTE value, while it is unaware that
TLB flushes are still pending.
This behavior affects KSM (which may result in memory corruption) and
MADV_FREE and MADV_DONTNEED (which may result in incorrect behavior). A
proof-of-concept can easily produce the wrong behavior of MADV_DONTNEED.
Memory corruption in KSM is harder to produce in practice, but was
observed by hacking the kernel and adding a delay before flushing and
replacing the KSM page.
Finally, there is also one memory barrier missing, which may affect
architectures with weak memory model.
This patch (of 7):
Setting and clearing mm->tlb_flush_pending can be performed by multiple
threads, since mmap_sem may only be acquired for read in
task_numa_work(). If this happens, tlb_flush_pending might be cleared
while one of the threads still changes PTEs and batches TLB flushes.
This can lead to the same race between migration and
change_protection_range() that led to the introduction of
tlb_flush_pending. The result of this race was data corruption, which
means that this patch also addresses a theoretically possible data
corruption.
An actual data corruption was not observed, yet the race was was
confirmed by adding assertion to check tlb_flush_pending is not set by
two threads, adding artificial latency in change_protection_range() and
using sysctl to reduce kernel.numa_balancing_scan_delay_ms.
Link: http://lkml.kernel.org/r/20170802000818.4760-2-namit@vmware.com
Fixes: 20841405940e ("mm: fix TLB flush race between migration, and
change_protection_range")
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
huge_add_to_page_cache->add_to_page_cache implicitly unlocks the page
before returning in case of errors.
The error returned was -EEXIST by running UFFDIO_COPY on a non-hole
offset of a VM_SHARED hugetlbfs mapping. It was an userland bug that
triggered it and the kernel must cope with it returning -EEXIST from
ioctl(UFFDIO_COPY) as expected.
page dumped because: VM_BUG_ON_PAGE(!PageLocked(page))
kernel BUG at mm/filemap.c:964!
invalid opcode: 0000 [#1] SMP
CPU: 1 PID: 22582 Comm: qemu-system-x86 Not tainted 4.11.11-300.fc26.x86_64 #1
RIP: unlock_page+0x4a/0x50
Call Trace:
hugetlb_mcopy_atomic_pte+0xc0/0x320
mcopy_atomic+0x96f/0xbe0
userfaultfd_ioctl+0x218/0xe90
do_vfs_ioctl+0xa5/0x600
SyS_ioctl+0x79/0x90
entry_SYSCALL_64_fastpath+0x1a/0xa9
Link: http://lkml.kernel.org/r/20170802165145.22628-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Alexey Perevalov <a.perevalov@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The RDMA subsystem can generate several thousand of these messages per
second eventually leading to a kernel crash. Ratelimit these messages
to prevent this crash.
Doug said:
"I've been carrying a version of this for several kernel versions. I
don't remember when they started, but we have one (and only one) class
of machines: Dell PE R730xd, that generate these errors. When it
happens, without a rate limit, we get rcu timeouts and kernel oopses.
With the rate limit, we just get a lot of annoying kernel messages but
the machine continues on, recovers, and eventually the memory
operations all succeed"
And:
"> Well... why are all these EBUSY's occurring? It sounds inefficient
> (at least) but if it is expected, normal and unavoidable then
> perhaps we should just remove that message altogether?
I don't have an answer to that question. To be honest, I haven't
looked real hard. We never had this at all, then it started out of the
blue, but only on our Dell 730xd machines (and it hits all of them),
but no other classes or brands of machines. And we have our 730xd
machines loaded up with different brands and models of cards (for
instance one dedicated to mlx4 hardware, one for qib, one for mlx5, an
ocrdma/cxgb4 combo, etc), so the fact that it hit all of the machines
meant it wasn't tied to any particular brand/model of RDMA hardware.
To me, it always smelled of a hardware oddity specific to maybe the
CPUs or mainboard chipsets in these machines, so given that I'm not an
mm expert anyway, I never chased it down.
A few other relevant details: it showed up somewhere around 4.8/4.9 or
thereabouts. It never happened before, but the prinkt has been there
since the 3.18 days, so possibly the test to trigger this message was
changed, or something else in the allocator changed such that the
situation started happening on these machines?
And, like I said, it is specific to our 730xd machines (but they are
all identical, so that could mean it's something like their specific
ram configuration is causing the allocator to hit this on these
machine but not on other machines in the cluster, I don't want to say
it's necessarily the model of chipset or CPU, there are other bits of
identicalness between these machines)"
Link: http://lkml.kernel.org/r/499c0f6cc10d6eb829a67f2a4d75b4228a9b356e.1501695897.git.jtoppins@redhat.com
Signed-off-by: Jonathan Toppins <jtoppins@redhat.com>
Reviewed-by: Doug Ledford <dledford@redhat.com>
Tested-by: Doug Ledford <dledford@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
As Tetsuo points out:
"Commit 385386cff4c6 ("mm: vmstat: move slab statistics from zone to
node counters") broke "Slab:" field of /proc/meminfo . It shows nearly
0kB"
In addition to /proc/meminfo, this problem also affects the slab
counters OOM/allocation failure info dumps, can cause early -ENOMEM from
overcommit protection, and miscalculate image size requirements during
suspend-to-disk.
This is because the patch in question switched the slab counters from
the zone level to the node level, but forgot to update the global
accessor functions to read the aggregate node data instead of the
aggregate zone data.
Use global_node_page_state() to access the global slab counters.
Fixes: 385386cff4c6 ("mm: vmstat: move slab statistics from zone to node counters")
Link: http://lkml.kernel.org/r/20170801134256.5400-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Stefan Agner <stefan@agner.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Andre Wild reported the following warning:
WARNING: CPU: 2 PID: 1205 at kernel/cpu.c:240 lockdep_assert_cpus_held+0x4c/0x60
Modules linked in:
CPU: 2 PID: 1205 Comm: bash Not tainted 4.13.0-rc2-00022-gfd2b2c57ec20 #10
Hardware name: IBM 2964 N96 702 (z/VM 6.4.0)
task: 00000000701d8100 task.stack: 0000000073594000
Krnl PSW : 0704f00180000000 0000000000145e24 (lockdep_assert_cpus_held+0x4c/0x60)
...
Call Trace:
lockdep_assert_cpus_held+0x42/0x60)
stop_machine_cpuslocked+0x62/0xf0
build_all_zonelists+0x92/0x150
numa_zonelist_order_handler+0x102/0x150
proc_sys_call_handler.isra.12+0xda/0x118
proc_sys_write+0x34/0x48
__vfs_write+0x3c/0x178
vfs_write+0xbc/0x1a0
SyS_write+0x66/0xc0
system_call+0xc4/0x2b0
locks held by bash/1205:
#0: (sb_writers#4){.+.+.+}, at: vfs_write+0xa6/0x1a0
#1: (zl_order_mutex){+.+...}, at: numa_zonelist_order_handler+0x44/0x150
#2: (zonelists_mutex){+.+...}, at: numa_zonelist_order_handler+0xf4/0x150
Last Breaking-Event-Address:
lockdep_assert_cpus_held+0x48/0x60
This can be easily triggered with e.g.
echo n > /proc/sys/vm/numa_zonelist_order
In commit 3f906ba23689a ("mm/memory-hotplug: switch locking to a percpu
rwsem") memory hotplug locking was changed to fix a potential deadlock.
This also switched the stop_machine() invocation within
build_all_zonelists() to stop_machine_cpuslocked() which now expects
that online cpus are locked when being called.
This assumption is not true if build_all_zonelists() is being called
from numa_zonelist_order_handler().
In order to fix this simply add a mem_hotplug_begin()/mem_hotplug_done()
pair to numa_zonelist_order_handler().
Link: http://lkml.kernel.org/r/20170726111738.38768-1-heiko.carstens@de.ibm.com
Fixes: 3f906ba23689a ("mm/memory-hotplug: switch locking to a percpu rwsem")
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reported-by: Andre Wild <wild@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When a thread is OOM-killed during swap_readpage() operation, an oops
occurs because end_swap_bio_read() is calling wake_up_process() based on
an assumption that the thread which called swap_readpage() is still
alive.
Out of memory: Kill process 525 (polkitd) score 0 or sacrifice child
Killed process 525 (polkitd) total-vm:528128kB, anon-rss:0kB, file-rss:4kB, shmem-rss:0kB
oom_reaper: reaped process 525 (polkitd), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB
general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC
Modules linked in: nf_conntrack_netbios_ns nf_conntrack_broadcast ip6t_rpfilter ipt_REJECT nf_reject_ipv4 ip6t_REJECT nf_reject_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter coretemp ppdev pcspkr vmw_balloon sg shpchp vmw_vmci parport_pc parport i2c_piix4 ip_tables xfs libcrc32c sd_mod sr_mod cdrom ata_generic pata_acpi vmwgfx ahci libahci drm_kms_helper ata_piix syscopyarea sysfillrect sysimgblt fb_sys_fops mptspi scsi_transport_spi ttm e1000 mptscsih drm mptbase i2c_core libata serio_raw
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.13.0-rc2-next-20170725 #129
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013
task: ffffffffb7c16500 task.stack: ffffffffb7c00000
RIP: 0010:__lock_acquire+0x151/0x12f0
Call Trace:
<IRQ>
lock_acquire+0x59/0x80
_raw_spin_lock_irqsave+0x3b/0x4f
try_to_wake_up+0x3b/0x410
wake_up_process+0x10/0x20
end_swap_bio_read+0x6f/0xf0
bio_endio+0x92/0xb0
blk_update_request+0x88/0x270
scsi_end_request+0x32/0x1c0
scsi_io_completion+0x209/0x680
scsi_finish_command+0xd4/0x120
scsi_softirq_done+0x120/0x140
__blk_mq_complete_request_remote+0xe/0x10
flush_smp_call_function_queue+0x51/0x120
generic_smp_call_function_single_interrupt+0xe/0x20
smp_trace_call_function_single_interrupt+0x22/0x30
smp_call_function_single_interrupt+0x9/0x10
call_function_single_interrupt+0xa7/0xb0
</IRQ>
RIP: 0010:native_safe_halt+0x6/0x10
default_idle+0xe/0x20
arch_cpu_idle+0xa/0x10
default_idle_call+0x1e/0x30
do_idle+0x187/0x200
cpu_startup_entry+0x6e/0x70
rest_init+0xd0/0xe0
start_kernel+0x456/0x477
x86_64_start_reservations+0x24/0x26
x86_64_start_kernel+0xf7/0x11a
secondary_startup_64+0xa5/0xa5
Code: c3 49 81 3f 20 9e 0b b8 41 bc 00 00 00 00 44 0f 45 e2 83 fe 01 0f 87 62 ff ff ff 89 f0 49 8b 44 c7 08 48 85 c0 0f 84 52 ff ff ff <f0> ff 80 98 01 00 00 8b 3d 5a 49 c4 01 45 8b b3 18 0c 00 00 85
RIP: __lock_acquire+0x151/0x12f0 RSP: ffffa01f39e03c50
---[ end trace 6c441db499169b1e ]---
Kernel panic - not syncing: Fatal exception in interrupt
Kernel Offset: 0x36000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
---[ end Kernel panic - not syncing: Fatal exception in interrupt
Fix it by holding a reference to the thread.
[akpm@linux-foundation.org: add comment]
Fixes: 23955622ff8d231b ("swap: add block io poll in swapin path")
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Shaohua Li <shli@fb.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Mike reported kernel goes oops with ltp:zram03 testcase.
zram: Added device: zram0
zram0: detected capacity change from 0 to 107374182400
BUG: unable to handle kernel paging request at 0000306d61727a77
IP: zs_map_object+0xb9/0x260
PGD 0
P4D 0
Oops: 0000 [#1] SMP
Dumping ftrace buffer:
(ftrace buffer empty)
Modules linked in: zram(E) xfs(E) libcrc32c(E) btrfs(E) xor(E) raid6_pq(E) loop(E) ebtable_filter(E) ebtables(E) ip6table_filter(E) ip6_tables(E) iptable_filter(E) ip_tables(E) x_tables(E) af_packet(E) br_netfilter(E) bridge(E) stp(E) llc(E) iscsi_ibft(E) iscsi_boot_sysfs(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) intel_powerclamp(E) coretemp(E) cdc_ether(E) kvm_intel(E) usbnet(E) mii(E) kvm(E) irqbypass(E) crct10dif_pclmul(E) crc32_pclmul(E) crc32c_intel(E) iTCO_wdt(E) ghash_clmulni_intel(E) bnx2(E) iTCO_vendor_support(E) pcbc(E) ioatdma(E) ipmi_ssif(E) aesni_intel(E) i5500_temp(E) i2c_i801(E) aes_x86_64(E) lpc_ich(E) shpchp(E) mfd_core(E) crypto_simd(E) i7core_edac(E) dca(E) glue_helper(E) cryptd(E) ipmi_si(E) button(E) acpi_cpufreq(E) ipmi_devintf(E) pcspkr(E) ipmi_msghandler(E)
nfsd(E) auth_rpcgss(E) nfs_acl(E) lockd(E) grace(E) sunrpc(E) ext4(E) crc16(E) mbcache(E) jbd2(E) sd_mod(E) ata_generic(E) i2c_algo_bit(E) ata_piix(E) drm_kms_helper(E) ahci(E) syscopyarea(E) sysfillrect(E) libahci(E) sysimgblt(E) fb_sys_fops(E) uhci_hcd(E) ehci_pci(E) ttm(E) ehci_hcd(E) libata(E) drm(E) megaraid_sas(E) usbcore(E) sg(E) dm_multipath(E) dm_mod(E) scsi_dh_rdac(E) scsi_dh_emc(E) scsi_dh_alua(E) scsi_mod(E) efivarfs(E) autofs4(E) [last unloaded: zram]
CPU: 6 PID: 12356 Comm: swapon Tainted: G E 4.13.0.g87b2c3f-default #194
Hardware name: IBM System x3550 M3 -[7944K3G]-/69Y5698 , BIOS -[D6E150AUS-1.10]- 12/15/2010
task: ffff880158d2c4c0 task.stack: ffffc90001680000
RIP: 0010:zs_map_object+0xb9/0x260
Call Trace:
zram_bvec_rw.isra.26+0xe8/0x780 [zram]
zram_rw_page+0x6e/0xa0 [zram]
bdev_read_page+0x81/0xb0
do_mpage_readpage+0x51a/0x710
mpage_readpages+0x122/0x1a0
blkdev_readpages+0x1d/0x20
__do_page_cache_readahead+0x1b2/0x270
ondemand_readahead+0x180/0x2c0
page_cache_sync_readahead+0x31/0x50
generic_file_read_iter+0x7e7/0xaf0
blkdev_read_iter+0x37/0x40
__vfs_read+0xce/0x140
vfs_read+0x9e/0x150
SyS_read+0x46/0xa0
entry_SYSCALL_64_fastpath+0x1a/0xa5
Code: 81 e6 00 c0 3f 00 81 fe 00 00 16 00 0f 85 9f 01 00 00 0f b7 13 65 ff 05 5e 07 dc 7e 66 c1 ea 02 81 e2 ff 01 00 00 49 8b 54 d4 08 <8b> 4a 48 41 0f af ce 81 e1 ff 0f 00 00 41 89 c9 48 c7 c3 a0 70
RIP: zs_map_object+0xb9/0x260 RSP: ffffc90001683988
CR2: 0000306d61727a77
He bisected the problem is [1].
After commit cf8e0fedf078 ("mm/zsmalloc: simplify zs_max_alloc_size
handling"), zram doesn't use double pointer for pool->size_class any
more in zs_create_pool so counter function zs_destroy_pool don't need to
free it, either.
Otherwise, it does kfree wrong address and then, kernel goes Oops.
Link: http://lkml.kernel.org/r/20170725062650.GA12134@bbox
Fixes: cf8e0fedf078 ("mm/zsmalloc: simplify zs_max_alloc_size handling")
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Mike Galbraith <efault@gmx.de>
Tested-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
gcc-7 produces this warning:
mm/kasan/report.c: In function 'kasan_report':
mm/kasan/report.c:351:3: error: 'info.first_bad_addr' may be used uninitialized in this function [-Werror=maybe-uninitialized]
print_shadow_for_address(info->first_bad_addr);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
mm/kasan/report.c:360:27: note: 'info.first_bad_addr' was declared here
The code seems fine as we only print info.first_bad_addr when there is a
shadow, and we always initialize it in that case, but this is relatively
hard for gcc to figure out after the latest rework.
Adding an intialization to the most likely value together with the other
struct members shuts up that warning.
Fixes: b235b9808664 ("kasan: unify report headers")
Link: https://patchwork.kernel.org/patch/9641417/
Link: http://lkml.kernel.org/r/20170725152739.4176967-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Suggested-by: Alexander Potapenko <glider@google.com>
Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When mremap is called with MREMAP_FIXED it unmaps memory at the
destination address without notifying userfaultfd monitor.
If the destination were registered with userfaultfd, the monitor has no
way to distinguish between the old and new ranges and to properly relate
the page faults that would occur in the destination region.
Fixes: 897ab3e0c49e ("userfaultfd: non-cooperative: add event for memory unmaps")
Link: http://lkml.kernel.org/r/1500276876-3350-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
leaving stale TLB entries
Nadav Amit identified a theoritical race between page reclaim and
mprotect due to TLB flushes being batched outside of the PTL being held.
He described the race as follows:
CPU0 CPU1
---- ----
user accesses memory using RW PTE
[PTE now cached in TLB]
try_to_unmap_one()
==> ptep_get_and_clear()
==> set_tlb_ubc_flush_pending()
mprotect(addr, PROT_READ)
==> change_pte_range()
==> [ PTE non-present - no flush ]
user writes using cached RW PTE
...
try_to_unmap_flush()
The same type of race exists for reads when protecting for PROT_NONE and
also exists for operations that can leave an old TLB entry behind such
as munmap, mremap and madvise.
For some operations like mprotect, it's not necessarily a data integrity
issue but it is a correctness issue as there is a window where an
mprotect that limits access still allows access. For munmap, it's
potentially a data integrity issue although the race is massive as an
munmap, mmap and return to userspace must all complete between the
window when reclaim drops the PTL and flushes the TLB. However, it's
theoritically possible so handle this issue by flushing the mm if
reclaim is potentially currently batching TLB flushes.
Other instances where a flush is required for a present pte should be ok
as either the page lock is held preventing parallel reclaim or a page
reference count is elevated preventing a parallel free leading to
corruption. In the case of page_mkclean there isn't an obvious path
that userspace could take advantage of without using the operations that
are guarded by this patch. Other users such as gup as a race with
reclaim looks just at PTEs. huge page variants should be ok as they
don't race with reclaim. mincore only looks at PTEs. userfault also
should be ok as if a parallel reclaim takes place, it will either fault
the page back in or read some of the data before the flush occurs
triggering a fault.
Note that a variant of this patch was acked by Andy Lutomirski but this
was for the x86 parts on top of his PCID work which didn't make the 4.13
merge window as expected. His ack is dropped from this version and
there will be a follow-on patch on top of PCID that will include his
ack.
[akpm@linux-foundation.org: tweak comments]
[akpm@linux-foundation.org: fix spello]
Link: http://lkml.kernel.org/r/20170717155523.emckq2esjro6hf3z@suse.de
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: <stable@vger.kernel.org> [v4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 9a291a7c9428 ("mm/hugetlb: report -EHWPOISON not -EFAULT when
FOLL_HWPOISON is specified") causes __get_user_pages to ignore certain
errors from follow_hugetlb_page. After such error, __get_user_pages
subsequently calls faultin_page on the same VMA and start address that
follow_hugetlb_page failed on instead of returning the error immediately
as it should.
In follow_hugetlb_page, when hugetlb_fault returns a value covered under
VM_FAULT_ERROR, follow_hugetlb_page returns it without setting nr_pages
to 0 as __get_user_pages expects in this case, which causes the
following to happen in __get_user_pages: the "while (nr_pages)" check
succeeds, we skip the "if (!vma..." check because we got a VMA the last
time around, we find no page with follow_page_mask, and we call
faultin_page, which calls hugetlb_fault for the second time.
This issue also slightly changes how __get_user_pages works. Before, it
only returned error if it had made no progress (i = 0). But now,
follow_hugetlb_page can clobber "i" with an error code since its new
return path doesn't check for progress. So if "i" is nonzero before a
failing call to follow_hugetlb_page, that indication of progress is lost
and __get_user_pages can return error even if some pages were
successfully pinned.
To fix this, change follow_hugetlb_page so that it updates nr_pages,
allowing __get_user_pages to fail immediately and restoring the "error
only if no progress" behavior to __get_user_pages.
Tested that __get_user_pages returns when expected on error from
hugetlb_fault in follow_hugetlb_page.
Fixes: 9a291a7c9428 ("mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified")
Link: http://lkml.kernel.org/r/1500406795-58462-1-git-send-email-daniel.m.jordan@oracle.com
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: James Morse <james.morse@arm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: <stable@vger.kernel.org> [4.12.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull ->s_options removal from Al Viro:
"Preparations for fsmount/fsopen stuff (coming next cycle). Everything
gets moved to explicit ->show_options(), killing ->s_options off +
some cosmetic bits around fs/namespace.c and friends. Basically, the
stuff needed to work with fsmount series with minimum of conflicts
with other work.
It's not strictly required for this merge window, but it would reduce
the PITA during the coming cycle, so it would be nice to have those
bits and pieces out of the way"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
isofs: Fix isofs_show_options()
VFS: Kill off s_options and helpers
orangefs: Implement show_options
9p: Implement show_options
isofs: Implement show_options
afs: Implement show_options
affs: Implement show_options
befs: Implement show_options
spufs: Implement show_options
bpf: Implement show_options
ramfs: Implement show_options
pstore: Implement show_options
omfs: Implement show_options
hugetlbfs: Implement show_options
VFS: Don't use save/replace_mount_options if not using generic_show_options
VFS: Provide empty name qstr
VFS: Make get_filesystem() return the affected filesystem
VFS: Clean up whitespace in fs/namespace.c and fs/super.c
Provide a function to create a NUL-terminated string from unterminated data
|
|
Jörn Engel noticed that the expand_upwards() function might not return
-ENOMEM in case the requested address is (unsigned long)-PAGE_SIZE and
if the architecture didn't defined TASK_SIZE as multiple of PAGE_SIZE.
Affected architectures are arm, frv, m68k, blackfin, h8300 and xtensa
which all define TASK_SIZE as 0xffffffff, but since none of those have
an upwards-growing stack we currently have no actual issue.
Nevertheless let's fix this just in case any of the architectures with
an upward-growing stack (currently parisc, metag and partly ia64) define
TASK_SIZE similar.
Link: http://lkml.kernel.org/r/20170702192452.GA11868@p100.box
Fixes: bd726c90b6b8 ("Allow stack to grow up to address space limit")
Signed-off-by: Helge Deller <deller@gmx.de>
Reported-by: Jörn Engel <joern@purestorage.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently the writeback statistics code uses a percpu counters to hold
various statistics. Furthermore we have 2 families of functions - those
which disable local irq and those which doesn't and whose names begin
with double underscore. However, they both end up calling
__add_wb_stats which in turn calls percpu_counter_add_batch which is
already irq-safe.
Exploiting this fact allows to eliminated the __wb_* functions since
they don't add any further protection than we already have.
Furthermore, refactor the wb_* function to call __add_wb_stat directly
without the irq-disabling dance. This will likely result in better
runtime of code which deals with modifying the stat counters.
While at it also document why percpu_counter_add_batch is in fact
preempt and irq-safe since at least 3 people got confused.
Link: http://lkml.kernel.org/r/1498029937-27293-1-git-send-email-nborisov@suse.com
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Page migration (for memory hotplug, soft_offline_page or mbind) needs to
allocate a new memory. This can trigger an oom killer if the target
memory is depleated. Although quite unlikely, still possible,
especially for the memory hotplug (offlining of memoery).
Up to now we didn't really have reasonable means to back off.
__GFP_NORETRY can fail just too easily and __GFP_THISNODE sticks to a
single node and that is not suitable for all callers.
But now that we have __GFP_RETRY_MAYFAIL we should use it. It is
preferable to fail the migration than disrupt the system by killing some
processes.
Link: http://lkml.kernel.org/r/20170623085345.11304-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Now that __GFP_RETRY_MAYFAIL has a reasonable semantic regardless of the
request size we can drop the hackish implementation for !costly orders.
__GFP_RETRY_MAYFAIL retries as long as the reclaim makes a forward
progress and backs of when we are out of memory for the requested size.
Therefore we do not need to enforce__GFP_NORETRY for !costly orders just
to silent the oom killer anymore.
Link: http://lkml.kernel.org/r/20170623085345.11304-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
the page allocator. This has been true but only for allocations
requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always
ignored for smaller sizes. This is a bit unfortunate because there is
no way to express the same semantic for those requests and they are
considered too important to fail so they might end up looping in the
page allocator for ever, similarly to GFP_NOFAIL requests.
Now that the whole tree has been cleaned up and accidental or misled
usage of __GFP_REPEAT flag has been removed for !costly requests we can
give the original flag a better name and more importantly a more useful
semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
that the allocator would try really hard but there is no promise of a
success. This will work independent of the order and overrides the
default allocator behavior. Page allocator users have several levels of
guarantee vs. cost options (take GFP_KERNEL as an example)
- GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
attempt to free memory at all. The most light weight mode which even
doesn't kick the background reclaim. Should be used carefully because
it might deplete the memory and the next user might hit the more
aggressive reclaim
- GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
allocation without any attempt to free memory from the current
context but can wake kswapd to reclaim memory if the zone is below
the low watermark. Can be used from either atomic contexts or when
the request is a performance optimization and there is another
fallback for a slow path.
- (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
non sleeping allocation with an expensive fallback so it can access
some portion of memory reserves. Usually used from interrupt/bh
context with an expensive slow path fallback.
- GFP_KERNEL - both background and direct reclaim are allowed and the
_default_ page allocator behavior is used. That means that !costly
allocation requests are basically nofail but there is no guarantee of
that behavior so failures have to be checked properly by callers
(e.g. OOM killer victim is allowed to fail currently).
- GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
and all allocation requests fail early rather than cause disruptive
reclaim (one round of reclaim in this implementation). The OOM killer
is not invoked.
- GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
behavior and all allocation requests try really hard. The request
will fail if the reclaim cannot make any progress. The OOM killer
won't be triggered.
- GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
and all allocation requests will loop endlessly until they succeed.
This might be really dangerous especially for larger orders.
Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
because they already had their semantic. No new users are added.
__alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
there is no progress and we have already passed the OOM point.
This means that all the reclaim opportunities have been exhausted except
the most disruptive one (the OOM killer) and a user defined fallback
behavior is more sensible than keep retrying in the page allocator.
[akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
[mhocko@suse.com: semantic fix]
Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
[mhocko@kernel.org: address other thing spotted by Vlastimil]
Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With gcc 4.1.2:
mm/memory.o: In function `create_huge_pmd':
memory.c:(.text+0x93e): undefined reference to `do_huge_pmd_anonymous_page'
Interestingly, create_huge_pmd() is emitted in the assembler output, but
never called.
Converting transparent_hugepage_enabled() from a macro to a static
inline function reduced the ability of the compiler to remove unused
code.
Fix this by marking create_huge_pmd() inline.
Fixes: 16981d763501c0e0 ("mm: improve readability of transparent_hugepage_enabled()")
Link: http://lkml.kernel.org/r/1499842660-10665-1-git-send-email-geert@linux-m68k.org
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The helper function get_wild_bug_type() does not need to be in global
scope, so make it static.
Cleans up sparse warning:
"symbol 'get_wild_bug_type' was not declared. Should it be static?"
Link: http://lkml.kernel.org/r/20170622090049.10658-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
They return positive value, that is, true, if non-zero value is found.
Rename them to reduce confusion.
Link: http://lkml.kernel.org/r/20170516012350.GA16015@js1304-desktop
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
KASAN doesn't happen work with memory hotplug because hotplugged memory
doesn't have any shadow memory. So any access to hotplugged memory
would cause a crash on shadow check.
Use memory hotplug notifier to allocate and map shadow memory when the
hotplugged memory is going online and free shadow after the memory
offlined.
Link: http://lkml.kernel.org/r/20170601162338.23540-4-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
For some unaligned memory accesses we have to check additional byte of
the shadow memory. Currently we load that byte speculatively to have
only single load + branch on the optimistic fast path.
However, this approach has some downsides:
- It's unaligned access, so this prevents porting KASAN on
architectures which doesn't support unaligned accesses.
- We have to map additional shadow page to prevent crash if speculative
load happens near the end of the mapped memory. This would
significantly complicate upcoming memory hotplug support.
I wasn't able to notice any performance degradation with this patch. So
these speculative loads is just a pain with no gain, let's remove them.
Link: http://lkml.kernel.org/r/20170601162338.23540-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is missing optimization in zero_p4d_populate() that can save some
memory when mapping zero shadow. Implement it like as others.
Link: http://lkml.kernel.org/r/1494829255-23946-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 40f9fb8cffc6 ("mm/zsmalloc: support allocating obj with size of
ZS_MAX_ALLOC_SIZE") fixes a size calculation error that prevented
zsmalloc to allocate an object of the maximal size (ZS_MAX_ALLOC_SIZE).
I think however the fix is unneededly complicated.
This patch replaces the dynamic calculation of zs_size_classes at init
time by a compile time calculation that uses the DIV_ROUND_UP() macro
already used in get_size_class_index().
[akpm@linux-foundation.org: use min_t]
Link: http://lkml.kernel.org/r/20170630114859.1979-1-jmarchan@redhat.com
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Mahendran Ganesh <opensource.ganesh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Andrey reported a potential deadlock with the memory hotplug lock and
the cpu hotplug lock.
The reason is that memory hotplug takes the memory hotplug lock and then
calls stop_machine() which calls get_online_cpus(). That's the reverse
lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c
The problem has been there forever. The reason why this was never
reported is that the cpu hotplug locking had this homebrewn recursive
reader writer semaphore construct which due to the recursion evaded the
full lock dep coverage. The memory hotplug code copied that construct
verbatim and therefor has similar issues.
Three steps to fix this:
1) Convert the memory hotplug locking to a per cpu rwsem so the
potential issues get reported proper by lockdep.
2) Lock the online cpus in mem_hotplug_begin() before taking the memory
hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc
code to avoid recursive locking.
3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu
hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this
by invoking lru_add_drain_all_cpuslocked() instead.
Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The rework of the cpu hotplug locking unearthed potential deadlocks with
the memory hotplug locking code.
The solution for these is to rework the memory hotplug locking code as
well and take the cpu hotplug lock before the memory hotplug lock in
mem_hotplug_begin(), but this will cause a recursive locking of the cpu
hotplug lock when the memory hotplug code calls lru_add_drain_all().
Split out the inner workings of lru_add_drain_all() into
lru_add_drain_all_cpuslocked() so this function can be invoked from the
memory hotplug code with the cpu hotplug lock held.
Link: http://lkml.kernel.org/r/20170704093421.419329357@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use rlimit() helper instead of manually writing whole chain from current
task to rlim_cur.
Link: http://lkml.kernel.org/r/20170705172811.8027-1-k.opasiak@samsung.com
Signed-off-by: Krzysztof Opasiak <k.opasiak@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|