summaryrefslogtreecommitdiffstats
path: root/mm
AgeCommit message (Collapse)AuthorFilesLines
2012-12-18slab: propagate tunable valuesGlauber Costa4-10/+63
SLAB allows us to tune a particular cache behavior with tunables. When creating a new memcg cache copy, we'd like to preserve any tunables the parent cache already had. This could be done by an explicit call to do_tune_cpucache() after the cache is created. But this is not very convenient now that the caches are created from common code, since this function is SLAB-specific. Another method of doing that is taking advantage of the fact that do_tune_cpucache() is always called from enable_cpucache(), which is called at cache initialization. We can just preset the values, and then things work as expected. It can also happen that a root cache has its tunables updated during normal system operation. In this case, we will propagate the change to all caches that are already active. This change will require us to move the assignment of root_cache in memcg_params a bit earlier. We need this to be already set - which memcg_kmem_register_cache will do - when we reach __kmem_cache_create() Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: aggregate memcg cache values in slabinfoGlauber Costa3-5/+96
When we create caches in memcgs, we need to display their usage information somewhere. We'll adopt a scheme similar to /proc/meminfo, with aggregate totals shown in the global file, and per-group information stored in the group itself. For the time being, only reads are allowed in the per-group cache. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg/sl[au]b: shrink dead cachesGlauber Costa1-3/+43
This means that when we destroy a memcg cache that happened to be empty, those caches may take a lot of time to go away: removing the memcg reference won't destroy them - because there are pending references, and the empty pages will stay there, until a shrinker is called upon for any reason. In this patch, we will call kmem_cache_shrink() for all dead caches that cannot be destroyed because of remaining pages. After shrinking, it is possible that it could be freed. If this is not the case, we'll schedule a lazy worker to keep trying. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg/sl[au]b: track all the memcg children of a kmem_cacheGlauber Costa2-2/+50
This enables us to remove all the children of a kmem_cache being destroyed, if for example the kernel module it's being used in gets unloaded. Otherwise, the children will still point to the destroyed parent. Signed-off-by: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: destroy memcg cachesGlauber Costa4-1/+95
Implement destruction of memcg caches. Right now, only caches where our reference counter is the last remaining are deleted. If there are any other reference counters around, we just leave the caches lying around until they go away. When that happens, a destruction function is called from the cache code. Caches are only destroyed in process context, so we queue them up for later processing in the general case. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18sl[au]b: allocate objects from memcg cacheGlauber Costa3-4/+12
We are able to match a cache allocation to a particular memcg. If the task doesn't change groups during the allocation itself - a rare event, this will give us a good picture about who is the first group to touch a cache page. This patch uses the now available infrastructure by calling memcg_kmem_get_cache() before all the cache allocations. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18sl[au]b: always get the cache from its page in kmem_cache_free()Glauber Costa4-14/+48
struct page already has this information. If we start chaining caches, this information will always be more trustworthy than whatever is passed into the function. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: skip memcg kmem allocations in specified code regionsGlauber Costa1-3/+54
Create a mechanism that skip memcg allocations during certain pieces of our core code. It basically works in the same way as preempt_disable()/preempt_enable(): By marking a region under which all allocations will be accounted to the root memcg. We need this to prevent races in early cache creation, when we allocate data using caches that are not necessarily created already. Signed-off-by: Glauber Costa <glommer@parallels.com> yCc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: infrastructure to match an allocation to the right cacheGlauber Costa1-0/+217
The page allocator is able to bind a page to a memcg when it is allocated. But for the caches, we'd like to have as many objects as possible in a page belonging to the same cache. This is done in this patch by calling memcg_kmem_get_cache in the beginning of every allocation function. This function is patched out by static branches when kernel memory controller is not being used. It assumes that the task allocating, which determines the memcg in the page allocator, belongs to the same cgroup throughout the whole process. Misaccounting can happen if the task calls memcg_kmem_get_cache() while belonging to a cgroup, and later on changes. This is considered acceptable, and should only happen upon task migration. Before the cache is created by the memcg core, there is also a possible imbalance: the task belongs to a memcg, but the cache being allocated from is the global cache, since the child cache is not yet guaranteed to be ready. This case is also fine, since in this case the GFP_KMEMCG will not be passed and the page allocator will not attempt any cgroup accounting. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: allocate memory for memcg caches whenever a new memcg appearsGlauber Costa2-16/+219
Every cache that is considered a root cache (basically the "original" caches, tied to the root memcg/no-memcg) will have an array that should be large enough to store a cache pointer per each memcg in the system. Theoreticaly, this is as high as 1 << sizeof(css_id), which is currently in the 64k pointers range. Most of the time, we won't be using that much. What goes in this patch, is a simple scheme to dynamically allocate such an array, in order to minimize memory usage for memcg caches. Because we would also like to avoid allocations all the time, at least for now, the array will only grow. It will tend to be big enough to hold the maximum number of kmem-limited memcgs ever achieved. We'll allocate it to be a minimum of 64 kmem-limited memcgs. When we have more than that, we'll start doubling the size of this array every time the limit is reached. Because we are only considering kmem limited memcgs, a natural point for this to happen is when we write to the limit. At that point, we already have set_limit_mutex held, so that will become our natural synchronization mechanism. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18slab/slub: consider a memcg parameter in kmem_create_cacheGlauber Costa4-17/+118
Allow a memcg parameter to be passed during cache creation. When the slub allocator is being used, it will only merge caches that belong to the same memcg. We'll do this by scanning the global list, and then translating the cache to a memcg-specific cache Default function is created as a wrapper, passing NULL to the memcg version. We only merge caches that belong to the same memcg. A helper is provided, memcg_css_id: because slub needs a unique cache name for sysfs. Since this is visible, but not the canonical location for slab data, the cache name is not used, the css_id should suffice. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18slab: annotate on-slab caches nodelist locksGlauber Costa1-1/+33
We currently provide lockdep annotation for kmalloc caches, and also caches that have SLAB_DEBUG_OBJECTS enabled. The reason for this is that we can quite frequently nest in the l3->list_lock lock, which is not something trivial to avoid. My proposal with this patch, is to extend this to caches whose slab management object lives within the slab as well ("on_slab"). The need for this arose in the context of testing kmemcg-slab patches. With such patchset, we can have per-memcg kmalloc caches. So the same path that led to nesting between kmalloc caches will could then lead to in-memcg nesting. Because they are not annotated, lockdep will trigger. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18slab/slub: struct memcg_paramsGlauber Costa1-0/+13
For the kmem slab controller, we need to record some extra information in the kmem_cache structure. Signed-off-by: Glauber Costa <glommer@parallels.com> Signed-off-by: Suleiman Souhlal <suleiman@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: execute the whole memcg freeing in free_worker()Glauber Costa1-32/+34
A lot of the initialization we do in mem_cgroup_create() is done with softirqs enabled. This include grabbing a css id, which holds &ss->id_lock->rlock, and the per-zone trees, which holds rtpz->lock->rlock. All of those signal to the lockdep mechanism that those locks can be used in SOFTIRQ-ON-W context. This means that the freeing of memcg structure must happen in a compatible context, otherwise we'll get a deadlock, like the one below, caught by lockdep: free_accounted_pages+0x47/0x4c free_task+0x31/0x5c __put_task_struct+0xc2/0xdb put_task_struct+0x1e/0x22 delayed_put_task_struct+0x7a/0x98 __rcu_process_callbacks+0x269/0x3df rcu_process_callbacks+0x31/0x5b __do_softirq+0x122/0x277 This usage pattern could not be triggered before kmem came into play. With the introduction of kmem stack handling, it is possible that we call the last mem_cgroup_put() from the task destructor, which is run in an rcu callback. Such callbacks are run with softirqs disabled, leading to the offensive usage pattern. In general, we have little, if any, means to guarantee in which context the last memcg_put will happen. The best we can do is test it and try to make sure no invalid context releases are happening. But as we add more code to memcg, the possible interactions grow in number and expose more ways to get context conflicts. One thing to keep in mind, is that part of the freeing process is already deferred to a worker, such as vfree(), that can only be called from process context. For the moment, the only two functions we really need moved away are: * free_css_id(), and * mem_cgroup_remove_from_trees(). But because the later accesses per-zone info, free_mem_cgroup_per_zone_info() needs to be moved as well. With that, we are left with the per_cpu stats only. Better move it all. Signed-off-by: Glauber Costa <glommer@parallels.com> Tested-by: Greg Thelen <gthelen@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: allow a memcg with kmem charges to be destructedGlauber Costa1-1/+14
Because the ultimate goal of the kmem tracking in memcg is to track slab pages as well, we can't guarantee that we'll always be able to point a page to a particular process, and migrate the charges along with it - since in the common case, a page will contain data belonging to multiple processes. Because of that, when we destroy a memcg, we only make sure the destruction will succeed by discounting the kmem charges from the user charges when we try to empty the cgroup. Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: use static branches when code not in useGlauber Costa1-4/+75
We can use static branches to patch the code in or out when not used. Because the _ACTIVE bit on kmem_accounted is only set after the increment is done, we guarantee that the root memcg will always be selected for kmem charges until all call sites are patched (see memcg_kmem_enabled). This guarantees that no mischarges are applied. Static branch decrement happens when the last reference count from the kmem accounting in memcg dies. This will only happen when the charges drop down to 0. When that happens, we need to disable the static branch only on those memcgs that enabled it. To achieve this, we would be forced to complicate the code by keeping track of which memcgs were the ones that actually enabled limits, and which ones got it from its parents. It is a lot simpler just to do static_key_slow_inc() on every child that is accounted. Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: kmem accounting lifecycle managementGlauber Costa1-7/+50
Because kmem charges can outlive the cgroup, we need to make sure that we won't free the memcg structure while charges are still in flight. For reviewing simplicity, the charge functions will issue mem_cgroup_get() at every charge, and mem_cgroup_put() at every uncharge. This can get expensive, however, and we can do better. mem_cgroup_get() only really needs to be issued once: when the first limit is set. In the same spirit, we only need to issue mem_cgroup_put() when the last charge is gone. We'll need an extra bit in kmem_account_flags for that: KMEM_ACCOUNTED_DEAD. it will be set when the cgroup dies, if there are charges in the group. If there aren't, we can proceed right away. Our uncharge function will have to test that bit every time the charges drop to 0. Because that is not the likely output of res_counter_uncharge, this should not impose a big hit on us: it is certainly much better than a reference count decrease at every operation. Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18mm: allocate kernel pages to the right memcgGlauber Costa1-0/+35
When a process tries to allocate a page with the __GFP_KMEMCG flag, the page allocator will call the corresponding memcg functions to validate the allocation. Tasks in the root memcg can always proceed. To avoid adding markers to the page - and a kmem flag that would necessarily follow, as much as doing page_cgroup lookups for no reason, whoever is marking its allocations with __GFP_KMEMCG flag is responsible for telling the page allocator that this is such an allocation at free_pages() time. This is done by the invocation of __free_accounted_pages() and free_accounted_pages(). Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: kmem controller infrastructureGlauber Costa1-0/+170
Introduce infrastructure for tracking kernel memory pages to a given memcg. This will happen whenever the caller includes the flag __GFP_KMEMCG flag, and the task belong to a memcg other than the root. In memcontrol.h those functions are wrapped in inline acessors. The idea is to later on, patch those with static branches, so we don't incur any overhead when no mem cgroups with limited kmem are being used. Users of this functionality shall interact with the memcg core code through the following functions: memcg_kmem_newpage_charge: will return true if the group can handle the allocation. At this point, struct page is not yet allocated. memcg_kmem_commit_charge: will either revert the charge, if struct page allocation failed, or embed memcg information into page_cgroup. memcg_kmem_uncharge_page: called at free time, will revert the charge. Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: kmem accounting basic infrastructureGlauber Costa1-3/+123
Add the basic infrastructure for the accounting of kernel memory. To control that, the following files are created: * memory.kmem.usage_in_bytes * memory.kmem.limit_in_bytes * memory.kmem.failcnt * memory.kmem.max_usage_in_bytes They have the same meaning of their user memory counterparts. They reflect the state of the "kmem" res_counter. Per cgroup kmem memory accounting is not enabled until a limit is set for the group. Once the limit is set the accounting cannot be disabled for that group. This means that after the patch is applied, no behavioral changes exists for whoever is still using memcg to control their memory usage, until memory.kmem.limit_in_bytes is set for the first time. We always account to both user and kernel resource_counters. This effectively means that an independent kernel limit is in place when the limit is set to a lower value than the user memory. A equal or higher value means that the user limit will always hit first, meaning that kmem is effectively unlimited. People who want to track kernel memory but not limit it, can set this limit to a very high number (like RESOURCE_MAX - 1page - that no one will ever hit, or equal to the user memory) [akpm@linux-foundation.org: MEMCG_MMEM only works with slab and slub] Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: change defines to an enumGlauber Costa1-10/+16
This is just a cleanup patch for clarity of expression. In earlier submissions, people asked it to be in a separate patch, so here it is. Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: reclaim when more than one page neededSuleiman Souhlal1-7/+9
mem_cgroup_do_charge() was written before kmem accounting, and expects three cases: being called for 1 page, being called for a stock of 32 pages, or being called for a hugepage. If we call for 2 or 3 pages (and both the stack and several slabs used in process creation are such, at least with the debug options I had), it assumed it's being called for stock and just retried without reclaiming. Fix that by passing down a minsize argument in addition to the csize. And what to do about that (csize == PAGE_SIZE && ret) retry? If it's needed at all (and presumably is since it's there, perhaps to handle races), then it should be extended to more than PAGE_SIZE, yet how far? And should there be a retry count limit, of what? For now retry up to COSTLY_ORDER (as page_alloc.c does) and make sure not to do it if __GFP_NORETRY. v4: fixed nr pages calculation pointed out by Christoph Lameter. Signed-off-by: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memcg: make it possible to use the stock for more than one pageSuleiman Souhlal1-10/+18
We currently have a percpu stock cache scheme that charges one page at a time from memcg->res, the user counter. When the kernel memory controller comes into play, we'll need to charge more than that. This is because kernel memory allocations will also draw from the user counter, and can be bigger than a single page, as it is the case with the stack (usually 2 pages) or some higher order slabs. [glommer@parallels.com: added a changelog ] Signed-off-by: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18memory-hotplug: document and enable CONFIG_MOVABLE_NODETang Chen1-1/+12
Add help info for CONFIG_MOVABLE_NODE and permit its selection. This option allows the user to online all memory of a node as movable memory. So that the whole node can be hotplugged. Users who don't use the hotplug feature are also fine with this option on since they won't online memory as movable. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> [akpm@linux-foundation.org: tweak help text] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18mm/page_alloc.c: remove duplicate checkGavin Shan1-2/+1
While allocating pages using buddy allocator, the compound page is probably split up to free pages. Under these circumstances, the compound page should be destroyed by destroy_compound_page(). However, there is a duplicate check to judge if the page is compound. Remove the duplicate check since the compound_order() returns 0 when the page doesn't have PG_head set in destroy_compound_page(). That is to say, destroy_compound_page() needn't check PageHead(). Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18Merge branch 'slab/for-linus' of ↵Linus Torvalds5-484/+387
git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux Pull SLAB changes from Pekka Enberg: "This contains preparational work from Christoph Lameter and Glauber Costa for SLAB memcg and cleanups and improvements from Ezequiel Garcia and Joonsoo Kim. Please note that the SLOB cleanup commit from Arnd Bergmann already appears in your tree but I had also merged it myself which is why it shows up in the shortlog." * 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: mm/sl[aou]b: Common alignment code slab: Use the new create_boot_cache function to simplify bootstrap slub: Use statically allocated kmem_cache boot structure for bootstrap mm, sl[au]b: create common functions for boot slab creation slab: Simplify bootstrap slub: Use correct cpu_slab on dead cpu mm: fix slab.c kernel-doc warnings mm/slob: use min_t() to compare ARCH_SLAB_MINALIGN slab: Ignore internal flags in cache creation mm/slob: Use free_page instead of put_page for page-size kmalloc allocations mm/sl[aou]b: Move common kmem_cache_size() to slab.h mm/slob: Use object_size field in kmem_cache_size() mm/slob: Drop usage of page->private for storing page-sized allocations slub: Commonize slab_cache field in struct page sl[au]b: Process slabinfo_show in common code mm/sl[au]b: Move print_slabinfo_header to slab_common.c mm/sl[au]b: Move slabinfo processing to slab_common.c slub: remove one code path and reduce lock contention in __slab_free()
2012-12-18Merge branch 'slab/next' into slab/for-linusPekka Enberg5-326/+221
Fix up a trivial merge conflict with commit baaf1dd ("mm/slob: use min_t() to compare ARCH_SLAB_MINALIGN") that did not go through the slab tree. Conflicts: mm/slob.c Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-12-18Merge branch 'slab/procfs' into slab/for-linusPekka Enberg4-158/+166
2012-12-17Merge branch 'akpm' (Andrew's patch-bomb)Linus Torvalds2-15/+14
Merge misc patches from Andrew Morton: "Incoming: - lots of misc stuff - backlight tree updates - lib/ updates - Oleg's percpu-rwsem changes - checkpatch - rtc - aoe - more checkpoint/restart support I still have a pile of MM stuff pending - Pekka should be merging later today after which that is good to go. A number of other things are twiddling thumbs awaiting maintainer merges." * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (180 commits) scatterlist: don't BUG when we can trivially return a proper error. docs: update documentation about /proc/<pid>/fdinfo/<fd> fanotify output fs, fanotify: add @mflags field to fanotify output docs: add documentation about /proc/<pid>/fdinfo/<fd> output fs, notify: add procfs fdinfo helper fs, exportfs: add exportfs_encode_inode_fh() helper fs, exportfs: escape nil dereference if no s_export_op present fs, epoll: add procfs fdinfo helper fs, eventfd: add procfs fdinfo helper procfs: add ability to plug in auxiliary fdinfo providers tools/testing/selftests/kcmp/kcmp_test.c: print reason for failure in kcmp_test breakpoint selftests: print failure status instead of cause make error kcmp selftests: print fail status instead of cause make error kcmp selftests: make run_tests fix mem-hotplug selftests: print failure status instead of cause make error cpu-hotplug selftests: print failure status instead of cause make error mqueue selftests: print failure status instead of cause make error vm selftests: print failure status instead of cause make error ubifs: use prandom_bytes mtd: nandsim: use prandom_bytes ...
2012-12-17mm,numa: fix update_mmu_cache_pmd callStephen Rothwell1-1/+1
This build error is currently hidden by the fact that the x86 implementation of 'update_mmu_cache_pmd()' is a macro that doesn't use its last argument, but commit b32967ff101a ("mm: numa: Add THP migration for the NUMA working set scanning fault case") introduced a call with the wrong third argument. In the akpm tree, it causes this build error: mm/migrate.c: In function 'migrate_misplaced_transhuge_page_put': mm/migrate.c:1666:2: error: incompatible type for argument 3 of 'update_mmu_cache_pmd' arch/x86/include/asm/pgtable.h:792:20: note: expected 'struct pmd_t *' but argument is of type 'pmd_t' Fix it. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-17mm: use kbasename()Andy Shevchenko1-5/+3
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-17lseek: the "whence" argument is called "whence"Andrew Morton1-10/+10
But the kernel decided to call it "origin" instead. Fix most of the sites. Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-17mm/memory.c: suppress warningAndrew Morton1-0/+1
gcc-4.4.4 screws this up. mm/memory.c: In function 'do_pmd_numa_page': mm/memory.c:3594: warning: no return statement in function returning non-void Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-17Revert "bdi: add a user-tunable cpu_list for the bdi flusher threads"Linus Torvalds1-84/+0
This reverts commit 8fa72d234da9b6b473bbb1f74d533663e4996e6b. People disagree about how this should be done, so let's revert this for now so that nobody starts using the new tuning interface. Tejun is thinking about a more generic interface for thread pool affinity. Requested-by: Tejun Heo <tj@kernel.org> Acked-by: Jeff Moyer <jmoyer@redhat.com> Acked-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-17Merge branch 'for-3.8/core' of git://git.kernel.dk/linux-blockLinus Torvalds1-0/+84
Pull block layer core updates from Jens Axboe: "Here are the core block IO bits for 3.8. The branch contains: - The final version of the surprise device removal fixups from Bart. - Don't hide EFI partitions under advanced partition types. It's fairly wide spread these days. This is especially dangerous for systems that have both msdos and efi partition tables, where you want to keep them in sync. - Cleanup of using -1 instead of the proper NUMA_NO_NODE - Export control of bdi flusher thread CPU mask and default to using the home node (if known) from Jeff. - Export unplug tracepoint for MD. - Core improvements from Shaohua. Reinstate the recursive merge, as the original bug has been fixed. Add plugging for discard and also fix a problem handling non pow-of-2 discard limits. There's a trivial merge in block/blk-exec.c due to a fix that went into 3.7-rc at a later point than -rc4 where this is based." * 'for-3.8/core' of git://git.kernel.dk/linux-block: block: export block_unplug tracepoint block: add plug for blkdev_issue_discard block: discard granularity might not be power of 2 deadline: Allow 0ms deadline latency, increase the read speed partitions: enable EFI/GPT support by default bsg: Remove unused function bsg_goose_queue() block: Make blk_cleanup_queue() wait until request_fn finished block: Avoid scheduling delayed work on a dead queue block: Avoid that request_fn is invoked on a dead queue block: Let blk_drain_queue() caller obtain the queue lock block: Rename queue dead flag bdi: add a user-tunable cpu_list for the bdi flusher threads block: use NUMA_NO_NODE instead of -1 block: recursive merge requests block CFQ: avoid moving request to different queue
2012-12-16mm: fix kernel BUG at huge_memory.c:1474!Hugh Dickins1-3/+3
Andrea's autonuma-benchmark numa01 hits kernel BUG at huge_memory.c:1474! in change_huge_pmd called from change_protection from change_prot_numa from task_numa_work. That BUG, introduced in the huge zero page commit cad7f613c4d0 ("thp: change_huge_pmd(): make sure we don't try to make a page writable") was trying to verify that newprot never adds write permission to an anonymous huge page; but Automatic NUMA Balancing's 4b10e7d562c9 ("mm: mempolicy: Implement change_prot_numa() in terms of change_protection()") adds a new prot_numa path into change_huge_pmd(), which makes no use of the newprot provided, and may retain the write bit in the pmd. Just move the BUG_ON(pmd_write(entry)) up into the !prot_numa block. Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-16Merge tag 'balancenuma-v11' of ↵Linus Torvalds18-131/+1098
git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma Pull Automatic NUMA Balancing bare-bones from Mel Gorman: "There are three implementations for NUMA balancing, this tree (balancenuma), numacore which has been developed in tip/master and autonuma which is in aa.git. In almost all respects balancenuma is the dumbest of the three because its main impact is on the VM side with no attempt to be smart about scheduling. In the interest of getting the ball rolling, it would be desirable to see this much merged for 3.8 with the view to building scheduler smarts on top and adapting the VM where required for 3.9. The most recent set of comparisons available from different people are mel: https://lkml.org/lkml/2012/12/9/108 mingo: https://lkml.org/lkml/2012/12/7/331 tglx: https://lkml.org/lkml/2012/12/10/437 srikar: https://lkml.org/lkml/2012/12/10/397 The results are a mixed bag. In my own tests, balancenuma does reasonably well. It's dumb as rocks and does not regress against mainline. On the other hand, Ingo's tests shows that balancenuma is incapable of converging for this workloads driven by perf which is bad but is potentially explained by the lack of scheduler smarts. Thomas' results show balancenuma improves on mainline but falls far short of numacore or autonuma. Srikar's results indicate we all suffer on a large machine with imbalanced node sizes. My own testing showed that recent numacore results have improved dramatically, particularly in the last week but not universally. We've butted heads heavily on system CPU usage and high levels of migration even when it shows that overall performance is better. There are also cases where it regresses. Of interest is that for specjbb in some configurations it will regress for lower numbers of warehouses and show gains for higher numbers which is not reported by the tool by default and sometimes missed in treports. Recently I reported for numacore that the JVM was crashing with NullPointerExceptions but currently it's unclear what the source of this problem is. Initially I thought it was in how numacore batch handles PTEs but I'm no longer think this is the case. It's possible numacore is just able to trigger it due to higher rates of migration. These reports were quite late in the cycle so I/we would like to start with this tree as it contains much of the code we can agree on and has not changed significantly over the last 2-3 weeks." * tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits) mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable mm/rmap: Convert the struct anon_vma::mutex to an rwsem mm: migrate: Account a transhuge page properly when rate limiting mm: numa: Account for failed allocations and isolations as migration failures mm: numa: Add THP migration for the NUMA working set scanning fault case build fix mm: numa: Add THP migration for the NUMA working set scanning fault case. mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG mm: sched: numa: Control enabling and disabling of NUMA balancing mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships mm: numa: migrate: Set last_nid on newly allocated page mm: numa: split_huge_page: Transfer last_nid on tail page mm: numa: Introduce last_nid to the page frame sched: numa: Slowly increase the scanning period as NUMA faults are handled mm: numa: Rate limit setting of pte_numa if node is saturated mm: numa: Rate limit the amount of memory that is migrated between nodes mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting mm: numa: Migrate pages handled during a pmd_numa hinting fault mm: numa: Migrate on reference policy ...
2012-12-13Merge branch 'akpm' (Andrew's patch-bomb)Linus Torvalds22-282/+818
Merge misc VM changes from Andrew Morton: "The rest of most-of-MM. The other MM bits await a slab merge. This patch includes the addition of a huge zero_page. Not a performance boost but it an save large amounts of physical memory in some situations. Also a bunch of Fujitsu engineers are working on memory hotplug. Which, as it turns out, was badly broken. About half of their patches are included here; the remainder are 3.8 material." However, this merge disables CONFIG_MOVABLE_NODE, which was totally broken. We don't add new features with "default y", nor do we add Kconfig questions that are incomprehensible to most people without any help text. Does the feature even make sense without compaction or memory hotplug? * akpm: (54 commits) mm/bootmem.c: remove unused wrapper function reserve_bootmem_generic() mm/memory.c: remove unused code from do_wp_page() asm-generic, mm: pgtable: consolidate zero page helpers mm/hugetlb.c: fix warning on freeing hwpoisoned hugepage hwpoison, hugetlbfs: fix RSS-counter warning hwpoison, hugetlbfs: fix "bad pmd" warning in unmapping hwpoisoned hugepage mm: protect against concurrent vma expansion memcg: do not check for mm in __mem_cgroup_count_vm_event tmpfs: support SEEK_DATA and SEEK_HOLE (reprise) mm: provide more accurate estimation of pages occupied by memmap fs/buffer.c: remove redundant initialization in alloc_page_buffers() fs/buffer.c: do not inline exported function writeback: fix a typo in comment mm: introduce new field "managed_pages" to struct zone mm, oom: remove statically defined arch functions of same name mm, oom: remove redundant sleep in pagefault oom handler mm, oom: cleanup pagefault oom handler memory_hotplug: allow online/offline memory to result movable node numa: add CONFIG_MOVABLE_NODE for movable-dedicated node mm, memcg: avoid unnecessary function call when memcg is disabled ...
2012-12-13Merge branch 'for-linus' of ↵Linus Torvalds4-7/+7
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial Pull trivial branch from Jiri Kosina: "Usual stuff -- comment/printk typo fixes, documentation updates, dead code elimination." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (39 commits) HOWTO: fix double words typo x86 mtrr: fix comment typo in mtrr_bp_init propagate name change to comments in kernel source doc: Update the name of profiling based on sysfs treewide: Fix typos in various drivers treewide: Fix typos in various Kconfig wireless: mwifiex: Fix typo in wireless/mwifiex driver messages: i2o: Fix typo in messages/i2o scripts/kernel-doc: check that non-void fcts describe their return value Kernel-doc: Convention: Use a "Return" section to describe return values radeon: Fix typo and copy/paste error in comments doc: Remove unnecessary declarations from Documentation/accounting/getdelays.c various: Fix spelling of "asynchronous" in comments. Fix misspellings of "whether" in comments. eisa: Fix spelling of "asynchronous". various: Fix spelling of "registered" in comments. doc: fix quite a few typos within Documentation target: iscsi: fix comment typos in target/iscsi drivers treewide: fix typo of "suport" in various comments and Kconfig treewide: fix typo of "suppport" in various comments ...
2012-12-12mm/bootmem.c: remove unused wrapper function reserve_bootmem_generic()Lin Feng1-6/+0
reserve_bootmem_generic() has no caller, Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12mm/memory.c: remove unused code from do_wp_page()Dominik Dingel1-6/+1
page_mkwrite is initalized with zero and only set once, from that point exists no way to get to the oom or oom_free_new labels. [akpm@linux-foundation.org: cleanup] Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12asm-generic, mm: pgtable: consolidate zero page helpersKirill A. Shutemov1-7/+0
We have two different implementation of is_zero_pfn() and my_zero_pfn() helpers: for architectures with and without zero page coloring. Let's consolidate them in <asm-generic/pgtable.h>. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12mm/hugetlb.c: fix warning on freeing hwpoisoned hugepageNaoya Horiguchi1-1/+7
Fix the warning from __list_del_entry() which is triggered when a process tries to do free_huge_page() for a hwpoisoned hugepage. free_huge_page() can be called for hwpoisoned hugepage from unpoison_memory(). This function gets refcount once and clears PageHWPoison, and then puts refcount twice to return the hugepage back to free pool. The second put_page() finally reaches free_huge_page(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12hwpoison, hugetlbfs: fix RSS-counter warningNaoya Horiguchi1-5/+7
Memory error handling on hugepages can break a RSS counter, which emits a message like "Bad rss-counter state mm:ffff88040abecac0 idx:1 val:-1". This is because PageAnon returns true for hugepage (this behavior is necessary for reverse mapping to work on hugetlbfs). [akpm@linux-foundation.org: clean up code layout] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12hwpoison, hugetlbfs: fix "bad pmd" warning in unmapping hwpoisoned hugepageNaoya Horiguchi1-1/+3
When a process which used a hwpoisoned hugepage tries to exit() or munmap(), the kernel can print out "bad pmd" message because page table walker in free_pgtables() encounters 'hwpoisoned entry' on pmd. This is because currently we fail to clear the hwpoisoned entry in __unmap_hugepage_range(), so this patch simply does it. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12mm: protect against concurrent vma expansionMichel Lespinasse1-0/+28
expand_stack() runs with a shared mmap_sem lock. Because of this, there could be multiple concurrent stack expansions in the same mm, which may cause problems in the vma gap update code. I propose to solve this by taking the mm->page_table_lock around such vma expansions, in order to avoid the concurrency issue. We only have to worry about concurrent expand_stack() calls here, since we hold a shared mmap_sem lock and all vma modificaitons other than expand_stack() are done under an exclusive mmap_sem lock. I previously tried to achieve the same effect by making sure all growable vmas in a given mm would share the same anon_vma, which we already lock here. However this turned out to be difficult - all of the schemes I tried for refcounting the growable anon_vma and clearing turned out ugly. So, I'm now proposing only the minimal fix. The overhead of taking the page table lock during stack expansion is expected to be small: glibc doesn't use expandable stacks for the threads it creates, so having multiple growable stacks is actually uncommon and we don't expect the page table lock to get bounced between threads. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12memcg: do not check for mm in __mem_cgroup_count_vm_eventMichal Hocko1-3/+0
The mm given to __mem_cgroup_count_vm_event() cannot be NULL because the function is either called from the page fault path or vma->vm_mm is used. So the check can be dropped. The check was introduced by commit 456f998ec817 ("memcg: add the pagefault count into memcg stats") because the originally proposed patch used current->mm for shmem but this has been changed to vma->vm_mm later on without the check being removed (thanks to Hugh for this recollection). Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Ying Han <yinghan@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12tmpfs: support SEEK_DATA and SEEK_HOLE (reprise)Hugh Dickins1-1/+91
Revert 3.5's commit f21f8062201f ("tmpfs: revert SEEK_DATA and SEEK_HOLE") to reinstate 4fb5ef089b28 ("tmpfs: support SEEK_DATA and SEEK_HOLE"), with the intervening additional arg to generic_file_llseek_size(). In 3.8, ext4 is expected to join btrfs, ocfs2 and xfs with proper SEEK_DATA and SEEK_HOLE support; and a good case has now been made for it on tmpfs, so let's join the party. It's quite easy for tmpfs to scan the radix_tree to support llseek's new SEEK_DATA and SEEK_HOLE options: so add them while the minutiae are still on my mind (in particular, the !PageUptodate-ness of pages fallocated but still unwritten). [akpm@linux-foundation.org: fix warning with CONFIG_TMPFS=n] Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jaegeuk Hanse <jaegeuk.hanse@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Zheng Liu <wenqing.lz@taobao.com> Cc: Jeff liu <jeff.liu@oracle.com> Cc: Paul Eggert <eggert@cs.ucla.edu> Cc: Christoph Hellwig <hch@infradead.org> Cc: Josef Bacik <josef@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andreas Dilger <adilger@dilger.ca> Cc: Marco Stornelli <marco.stornelli@gmail.com> Cc: Chris Mason <chris.mason@fusionio.com> Cc: Sunil Mushran <sunil.mushran@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12mm: provide more accurate estimation of pages occupied by memmapJiang Liu1-2/+24
If SPARSEMEM is enabled, it won't build page structures for non-existing pages (holes) within a zone, so provide a more accurate estimation of pages occupied by memmap if there are bigger holes within the zone. And pages for highmem zones' memmap will be allocated from lowmem, so charge nr_kernel_pages for that. [akpm@linux-foundation.org: mark calc_memmap_size __paging_init] Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Maciej Rutecki <maciej.rutecki@gmail.com> Cc: Chris Clayton <chris2553@googlemail.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Tested-by: Jianguo Wu <wujianguo@huawei.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12mm: introduce new field "managed_pages" to struct zoneJiang Liu5-16/+87
Currently a zone's present_pages is calcuated as below, which is inaccurate and may cause trouble to memory hotplug. spanned_pages - absent_pages - memmap_pages - dma_reserve. During fixing bugs caused by inaccurate zone->present_pages, we found zone->present_pages has been abused. The field zone->present_pages may have different meanings in different contexts: 1) pages existing in a zone. 2) pages managed by the buddy system. For more discussions about the issue, please refer to: http://lkml.org/lkml/2012/11/5/866 https://patchwork.kernel.org/patch/1346751/ This patchset tries to introduce a new field named "managed_pages" to struct zone, which counts "pages managed by the buddy system". And revert zone->present_pages to count "physical pages existing in a zone", which also keep in consistence with pgdat->node_present_pages. We will set an initial value for zone->managed_pages in function free_area_init_core() and will adjust it later if the initial value is inaccurate. For DMA/normal zones, the initial value is set to: (spanned_pages - absent_pages - memmap_pages - dma_reserve) Later zone->managed_pages will be adjusted to the accurate value when the bootmem allocator frees all free pages to the buddy system in function free_all_bootmem_node() and free_all_bootmem(). The bootmem allocator doesn't touch highmem pages, so highmem zones' managed_pages is set to the accurate value "spanned_pages - absent_pages" in function free_area_init_core() and won't be updated anymore. This patch also adds a new field "managed_pages" to /proc/zoneinfo and sysrq showmem. [akpm@linux-foundation.org: small comment tweaks] Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Maciej Rutecki <maciej.rutecki@gmail.com> Tested-by: Chris Clayton <chris2553@googlemail.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>