summaryrefslogtreecommitdiffstats
path: root/mm/vmstat.c
AgeCommit message (Collapse)AuthorFilesLines
2014-10-09vmstat: on-demand vmstat workers V8Christoph Lameter1-21/+120
vmstat workers are used for folding counter differentials into the zone, per node and global counters at certain time intervals. They currently run at defined intervals on all processors which will cause some holdoff for processors that need minimal intrusion by the OS. The current vmstat_update mechanism depends on a deferrable timer firing every other second by default which registers a work queue item that runs on the local CPU, with the result that we have 1 interrupt and one additional schedulable task on each CPU every 2 seconds If a workload indeed causes VM activity or multiple tasks are running on a CPU, then there are probably bigger issues to deal with. However, some workloads dedicate a CPU for a single CPU bound task. This is done in high performance computing, in high frequency financial applications, in networking (Intel DPDK, EZchip NPS) and with the advent of systems with more and more CPUs over time, this may become more and more common to do since when one has enough CPUs one cares less about efficiently sharing a CPU with other tasks and more about efficiently monopolizing a CPU per task. The difference of having this timer firing and workqueue kernel thread scheduled per second can be enormous. An artificial test measuring the worst case time to do a simple "i++" in an endless loop on a bare metal system and under Linux on an isolated CPU with dynticks and with and without this patch, have Linux match the bare metal performance (~700 cycles) with this patch and loose by couple of orders of magnitude (~200k cycles) without it[*]. The loss occurs for something that just calculates statistics. For networking applications, for example, this could be the difference between dropping packets or sustaining line rate. Statistics are important and useful, but it would be great if there would be a way to not cause statistics gathering produce a huge performance difference. This patche does just that. This patch creates a vmstat shepherd worker that monitors the per cpu differentials on all processors. If there are differentials on a processor then a vmstat worker local to the processors with the differentials is created. That worker will then start folding the diffs in regular intervals. Should the worker find that there is no work to be done then it will make the shepherd worker monitor the differentials again. With this patch it is possible then to have periods longer than 2 seconds without any OS event on a "cpu" (hardware thread). The patch shows a very minor increased in system performance. hackbench -s 512 -l 2000 -g 15 -f 25 -P Results before the patch: Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 4.992 Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 4.971 Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 5.063 Hackbench after the patch: Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 4.973 Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 4.990 Running in process mode with 15 groups using 50 file descriptors each (== 750 tasks) Each sender will pass 2000 messages of 512 bytes Time: 4.993 [fengguang.wu@intel.com: cpu_stat_off can be static] Signed-off-by: Christoph Lameter <cl@linux.com> Reviewed-by: Gilad Ben-Yossef <gilad@benyossef.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tejun Heo <tj@kernel.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Mike Frysinger <vapier@gentoo.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Max Krasnyansky <maxk@qti.qualcomm.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm/balloon_compaction: add vmstat counters and kpageflags bitKonstantin Khlebnikov1-1/+11
Always mark pages with PageBalloon even if balloon compaction is disabled and expose this mark in /proc/kpageflags as KPF_BALLOON. Also this patch adds three counters into /proc/vmstat: "balloon_inflate", "balloon_deflate" and "balloon_migrate". They accumulate balloon activity. Current size of balloon is (balloon_inflate - balloon_deflate) pages. All generic balloon code now gathered under option CONFIG_MEMORY_BALLOON. It should be selected by ballooning driver which wants use this feature. Currently virtio-balloon is the only user. Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm: vmscan: only update per-cpu thresholds for online CPUMel Gorman1-1/+1
When kswapd is awake reclaiming, the per-cpu stat thresholds are lowered to get more accurate counts to avoid breaching watermarks. This threshold update iterates over all possible CPUs which is unnecessary. Only online CPUs need to be updated. If a new CPU is onlined, refresh_zone_stat_thresholds() will set the thresholds correctly. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm: move zone->pages_scanned into a vmstat counterMel Gorman1-1/+2
zone->pages_scanned is a write-intensive cache line during page reclaim and it's also updated during page free. Move the counter into vmstat to take advantage of the per-cpu updates and do not update it in the free paths unless necessary. On a small UMA machine running tiobench the difference is marginal. On a 4-node machine the overhead is more noticable. Note that automatic NUMA balancing was disabled for this test as otherwise the system CPU overhead is unpredictable. 3.16.0-rc3 3.16.0-rc3 3.16.0-rc3 vanillarearrange-v5 vmstat-v5 User 746.94 759.78 774.56 System 65336.22 58350.98 32847.27 Elapsed 27553.52 27282.02 27415.04 Note that the overhead reduction will vary depending on where exactly pages are allocated and freed. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm: rearrange zone fields into read-only, page alloc, statistics and page ↵Mel Gorman1-2/+2
reclaim lines The arrangement of struct zone has changed over time and now it has reached the point where there is some inappropriate sharing going on. On x86-64 for example o The zone->node field is shared with the zone lock and zone->node is accessed frequently from the page allocator due to the fair zone allocation policy. o span_seqlock is almost never used by shares a line with free_area o Some zone statistics share a cache line with the LRU lock so reclaim-intensive and allocator-intensive workloads can bounce the cache line on a stat update This patch rearranges struct zone to put read-only and read-mostly fields together and then splits the page allocator intensive fields, the zone statistics and the page reclaim intensive fields into their own cache lines. Note that the type of lowmem_reserve changes due to the watermark calculations being signed and avoiding a signed/unsigned conversion there. On the test configuration I used the overall size of struct zone shrunk by one cache line. On smaller machines, this is not likely to be noticable. However, on a 4-node NUMA machine running tiobench the system CPU overhead is reduced by this patch. 3.16.0-rc3 3.16.0-rc3 vanillarearrange-v5r9 User 746.94 759.78 System 65336.22 58350.98 Elapsed 27553.52 27282.02 Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04mm: use the light version __mod_zone_page_state in mlocked_vma_newpage()Jianyu Zhan1-1/+3
mlocked_vma_newpage() is called with pte lock held(a spinlock), which implies preemtion disabled, and the vm stat counter is not modified from interrupt context, so we need not use an irq-safe mod_zone_page_state() here, using a light-weight version __mod_zone_page_state() would be OK. This patch also documents __mod_zone_page_state() and some of its callsites. The comment above __mod_zone_page_state() is from Hugh Dickins, and acked by Christoph. Most credits to Hugh and Christoph for the clarification on the usage of the __mod_zone_page_state(). [akpm@linux-foundation.org: coding-style fixes] Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Jianyu Zhan <nasa4836@gmail.com> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04mm: replace __get_cpu_var uses with this_cpu_ptrChristoph Lameter1-2/+2
Replace places where __get_cpu_var() is used for an address calculation with this_cpu_ptr(). Signed-off-by: Christoph Lameter <cl@linux.com> Cc: Tejun Heo <tj@kernel.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04mm,vmacache: add debug dataDavidlohr Bueso1-0/+4
Introduce a CONFIG_DEBUG_VM_VMACACHE option to enable counting the cache hit rate -- exported in /proc/vmstat. Any updates to the caching scheme needs this kind of data, thus it can save some work re-implementing the counting all the time. Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07Merge tag 'cpu-hotplug-3.15-rc1' of ↵Linus Torvalds1-3/+3
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull CPU hotplug notifiers registration fixes from Rafael Wysocki: "The purpose of this single series of commits from Srivatsa S Bhat (with a small piece from Gautham R Shenoy) touching multiple subsystems that use CPU hotplug notifiers is to provide a way to register them that will not lead to deadlocks with CPU online/offline operations as described in the changelog of commit 93ae4f978ca7f ("CPU hotplug: Provide lockless versions of callback registration functions"). The first three commits in the series introduce the API and document it and the rest simply goes through the users of CPU hotplug notifiers and converts them to using the new method" * tag 'cpu-hotplug-3.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits) net/iucv/iucv.c: Fix CPU hotplug callback registration net/core/flow.c: Fix CPU hotplug callback registration mm, zswap: Fix CPU hotplug callback registration mm, vmstat: Fix CPU hotplug callback registration profile: Fix CPU hotplug callback registration trace, ring-buffer: Fix CPU hotplug callback registration xen, balloon: Fix CPU hotplug callback registration hwmon, via-cputemp: Fix CPU hotplug callback registration hwmon, coretemp: Fix CPU hotplug callback registration thermal, x86-pkg-temp: Fix CPU hotplug callback registration octeon, watchdog: Fix CPU hotplug callback registration oprofile, nmi-timer: Fix CPU hotplug callback registration intel-idle: Fix CPU hotplug callback registration clocksource, dummy-timer: Fix CPU hotplug callback registration drivers/base/topology.c: Fix CPU hotplug callback registration acpi-cpufreq: Fix CPU hotplug callback registration zsmalloc: Fix CPU hotplug callback registration scsi, fcoe: Fix CPU hotplug callback registration scsi, bnx2fc: Fix CPU hotplug callback registration scsi, bnx2i: Fix CPU hotplug callback registration ...
2014-04-03drop_caches: add some documentation and info messageDave Hansen1-0/+3
There is plenty of anecdotal evidence and a load of blog posts suggesting that using "drop_caches" periodically keeps your system running in "tip top shape". Perhaps adding some kernel documentation will increase the amount of accurate data on its use. If we are not shrinking caches effectively, then we have real bugs. Using drop_caches will simply mask the bugs and make them harder to find, but certainly does not fix them, nor is it an appropriate "workaround" to limit the size of the caches. On the contrary, there have been bug reports on issues that turned out to be misguided use of cache dropping. Dropping caches is a very drastic and disruptive operation that is good for debugging and running tests, but if it creates bug reports from production use, kernel developers should be aware of its use. Add a bit more documentation about it, a syslog message to track down abusers, and vmstat drop counters to help analyze problem reports. [akpm@linux-foundation.org: checkpatch fixes] [hannes@cmpxchg.org: add runtime suppression control] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm: keep page cache radix tree nodes in checkJohannes Weiner1-0/+1
Previously, page cache radix tree nodes were freed after reclaim emptied out their page pointers. But now reclaim stores shadow entries in their place, which are only reclaimed when the inodes themselves are reclaimed. This is problematic for bigger files that are still in use after they have a significant amount of their cache reclaimed, without any of those pages actually refaulting. The shadow entries will just sit there and waste memory. In the worst case, the shadow entries will accumulate until the machine runs out of memory. To get this under control, the VM will track radix tree nodes exclusively containing shadow entries on a per-NUMA node list. Per-NUMA rather than global because we expect the radix tree nodes themselves to be allocated node-locally and we want to reduce cross-node references of otherwise independent cache workloads. A simple shrinker will then reclaim these nodes on memory pressure. A few things need to be stored in the radix tree node to implement the shadow node LRU and allow tree deletions coming from the list: 1. There is no index available that would describe the reverse path from the node up to the tree root, which is needed to perform a deletion. To solve this, encode in each node its offset inside the parent. This can be stored in the unused upper bits of the same member that stores the node's height at no extra space cost. 2. The number of shadow entries needs to be counted in addition to the regular entries, to quickly detect when the node is ready to go to the shadow node LRU list. The current entry count is an unsigned int but the maximum number of entries is 64, so a shadow counter can easily be stored in the unused upper bits. 3. Tree modification needs tree lock and tree root, which are located in the address space, so store an address_space backpointer in the node. The parent pointer of the node is in a union with the 2-word rcu_head, so the backpointer comes at no extra cost as well. 4. The node needs to be linked to an LRU list, which requires a list head inside the node. This does increase the size of the node, but it does not change the number of objects that fit into a slab page. [akpm@linux-foundation.org: export the right function] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm: thrash detection-based file cache sizingJohannes Weiner1-0/+2
The VM maintains cached filesystem pages on two types of lists. One list holds the pages recently faulted into the cache, the other list holds pages that have been referenced repeatedly on that first list. The idea is to prefer reclaiming young pages over those that have shown to benefit from caching in the past. We call the recently usedbut ultimately was not significantly better than a FIFO policy and still thrashed cache based on eviction speed, rather than actual demand for cache. This patch solves one half of the problem by decoupling the ability to detect working set changes from the inactive list size. By maintaining a history of recently evicted file pages it can detect frequently used pages with an arbitrarily small inactive list size, and subsequently apply pressure on the active list based on actual demand for cache, not just overall eviction speed. Every zone maintains a counter that tracks inactive list aging speed. When a page is evicted, a snapshot of this counter is stored in the now-empty page cache radix tree slot. On refault, the minimum access distance of the page can be assessed, to evaluate whether the page should be part of the active list or not. This fixes the VM's blindness towards working set changes in excess of the inactive list. And it's the foundation to further improve the protection ability and reduce the minimum inactive list size of 50%. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Bob Liu <bob.liu@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-03-20mm, vmstat: Fix CPU hotplug callback registrationSrivatsa S. Bhat1-3/+3
Subsystems that want to register CPU hotplug callbacks, as well as perform initialization for the CPUs that are already online, often do it as shown below: get_online_cpus(); for_each_online_cpu(cpu) init_cpu(cpu); register_cpu_notifier(&foobar_cpu_notifier); put_online_cpus(); This is wrong, since it is prone to ABBA deadlocks involving the cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently with CPU hotplug operations). Instead, the correct and race-free way of performing the callback registration is: cpu_notifier_register_begin(); for_each_online_cpu(cpu) init_cpu(cpu); /* Note the use of the double underscored version of the API */ __register_cpu_notifier(&foobar_cpu_notifier); cpu_notifier_register_done(); Fix the vmstat code in the MM subsystem by using this latter form of callback registration. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Cody P Schafer <cody@linux.vnet.ibm.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Dave Hansen <dave@sr71.net> Cc: Ingo Molnar <mingo@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-01-25mm, x86: Account for TLB flushes only when debuggingMel Gorman1-1/+3
Bisection between 3.11 and 3.12 fingered commit 9824cf97 ("mm: vmstats: tlb flush counters") to cause overhead problems. The counters are undeniably useful but how often do we really need to debug TLB flush related issues? It does not justify taking the penalty everywhere so make it a debugging option. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Alex Shi <alex.shi@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-XzxjntugxuwpxXhcrxqqh53b@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-13mm: numa: return the number of base pages altered by protection changesMel Gorman1-0/+1
Commit 0255d4918480 ("mm: Account for a THP NUMA hinting update as one PTE update") was added to account for the number of PTE updates when marking pages prot_numa. task_numa_work was using the old return value to track how much address space had been updated. Altering the return value causes the scanner to do more work than it is configured or documented to in a single unit of work. This patch reverts that commit and accounts for the number of THP updates separately in vmstat. It is up to the administrator to interpret the pair of values correctly. This is a straight-forward operation and likely to only be of interest when actively debugging NUMA balancing problems. The impact of this patch is that the NUMA PTE scanner will scan slower when THP is enabled and workloads may converge slower as a result. On the flip size system CPU usage should be lower than recent tests reported. This is an illustrative example of a short single JVM specjbb test specjbb 3.12.0 3.12.0 vanilla acctupdates TPut 1 26143.00 ( 0.00%) 25747.00 ( -1.51%) TPut 7 185257.00 ( 0.00%) 183202.00 ( -1.11%) TPut 13 329760.00 ( 0.00%) 346577.00 ( 5.10%) TPut 19 442502.00 ( 0.00%) 460146.00 ( 3.99%) TPut 25 540634.00 ( 0.00%) 549053.00 ( 1.56%) TPut 31 512098.00 ( 0.00%) 519611.00 ( 1.47%) TPut 37 461276.00 ( 0.00%) 474973.00 ( 2.97%) TPut 43 403089.00 ( 0.00%) 414172.00 ( 2.75%) 3.12.0 3.12.0 vanillaacctupdates User 5169.64 5184.14 System 100.45 80.02 Elapsed 252.75 251.85 Performance is similar but note the reduction in system CPU time. While this showed a performance gain, it will not be universal but at least it'll be behaving as documented. The vmstats are obviously different but here is an obvious interpretation of them from mmtests. 3.12.0 3.12.0 vanillaacctupdates NUMA page range updates 1408326 11043064 NUMA huge PMD updates 0 21040 NUMA PTE updates 1408326 291624 "NUMA page range updates" == nr_pte_updates and is the value returned to the NUMA pte scanner. NUMA huge PMD updates were the number of THP updates which in combination can be used to calculate how many ptes were updated from userspace. Signed-off-by: Mel Gorman <mgorman@suse.de> Reported-by: Alex Thorlton <athorlton@sgi.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm: clear N_CPU from node_states at CPU offlineToshi Kani1-0/+15
vmstat_cpuup_callback() is a CPU notifier callback, which marks N_CPU to a node at CPU online event. However, it does not update this N_CPU info at CPU offline event. Changed vmstat_cpuup_callback() to clear N_CPU when the last CPU in the node is put into offline, i.e. the node no longer has any online CPU. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm: set N_CPU to node_states during bootToshi Kani1-1/+5
After a system booted, N_CPU is not set to any node as has_cpu shows an empty line. # cat /sys/devices/system/node/has_cpu (show-empty-line) setup_vmstat() registers its CPU notifier callback, vmstat_cpuup_callback(), which marks N_CPU to a node when a CPU is put into online. However, setup_vmstat() is called after all CPUs are launched in the boot sequence. Changed setup_vmstat() to mark N_CPU to the nodes with online CPUs at boot, which is consistent with other operations in vmstat_cpuup_callback(), i.e. start_cpu_timer() and refresh_zone_stat_thresholds(). Also added get_online_cpus() to protect the for_each_online_cpu() loop. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Acked-by: Christoph Lameter <cl@linux.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm: vmscan: fix do_try_to_free_pages() livelockLisa Du1-1/+4
This patch is based on KOSAKI's work and I add a little more description, please refer https://lkml.org/lkml/2012/6/14/74. Currently, I found system can enter a state that there are lots of free pages in a zone but only order-0 and order-1 pages which means the zone is heavily fragmented, then high order allocation could make direct reclaim path's long stall(ex, 60 seconds) especially in no swap and no compaciton enviroment. This problem happened on v3.4, but it seems issue still lives in current tree, the reason is do_try_to_free_pages enter live lock: kswapd will go to sleep if the zones have been fully scanned and are still not balanced. As kswapd thinks there's little point trying all over again to avoid infinite loop. Instead it changes order from high-order to 0-order because kswapd think order-0 is the most important. Look at 73ce02e9 in detail. If watermarks are ok, kswapd will go back to sleep and may leave zone->all_unreclaimable =3D 0. It assume high-order users can still perform direct reclaim if they wish. Direct reclaim continue to reclaim for a high order which is not a COSTLY_ORDER without oom-killer until kswapd turn on zone->all_unreclaimble= . This is because to avoid too early oom-kill. So it means direct_reclaim depends on kswapd to break this loop. In worst case, direct-reclaim may continue to page reclaim forever when kswapd sleeps forever until someone like watchdog detect and finally kill the process. As described in: http://thread.gmane.org/gmane.linux.kernel.mm/103737 We can't turn on zone->all_unreclaimable from direct reclaim path because direct reclaim path don't take any lock and this way is racy. Thus this patch removes zone->all_unreclaimable field completely and recalculates zone reclaimable state every time. Note: we can't take the idea that direct-reclaim see zone->pages_scanned directly and kswapd continue to use zone->all_unreclaimable. Because, it is racy. commit 929bea7c71 (vmscan: all_unreclaimable() use zone->all_unreclaimable as a name) describes the detail. [akpm@linux-foundation.org: uninline zone_reclaimable_pages() and zone_reclaimable()] Cc: Aaditya Kumar <aaditya.kumar.30@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Nick Piggin <npiggin@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Bob Liu <lliubbo@gmail.com> Cc: Neil Zhang <zhangwm@marvell.com> Cc: Russell King - ARM Linux <linux@arm.linux.org.uk> Reviewed-by: Michal Hocko <mhocko@suse.cz> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Lisa Du <cldu@marvell.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11vmstat: use this_cpu() to avoid irqon/off sequence in refresh_cpu_vm_statsChristoph Lameter1-19/+16
Disabling interrupts repeatedly can be avoided in the inner loop if we use a this_cpu operation. Signed-off-by: Christoph Lameter <cl@linux.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> CC: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11vmstat: create fold_diffChristoph Lameter1-7/+11
Both functions that update global counters use the same mechanism. Create a function that contains the common code. Signed-off-by: Christoph Lameter <cl@linux.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> CC: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11vmstat: create separate function to fold per cpu diffs into local countersChristoph Lameter1-6/+34
The main idea behind this patchset is to reduce the vmstat update overhead by avoiding interrupt enable/disable and the use of per cpu atomics. This patch (of 3): It is better to have a separate folding function because refresh_cpu_vm_stats() also does other things like expire pages in the page allocator caches. If we have a separate function then refresh_cpu_vm_stats() is only called from the local cpu which allows additional optimizations. The folding function is only called when a cpu is being downed and therefore no other processor will be accessing the counters. Also simplifies synchronization. [akpm@linux-foundation.org: fix UP build] Signed-off-by: Christoph Lameter <cl@linux.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> CC: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm: page_alloc: fair zone allocator policyJohannes Weiner1-0/+1
Each zone that holds userspace pages of one workload must be aged at a speed proportional to the zone size. Otherwise, the time an individual page gets to stay in memory depends on the zone it happened to be allocated in. Asymmetry in the zone aging creates rather unpredictable aging behavior and results in the wrong pages being reclaimed, activated etc. But exactly this happens right now because of the way the page allocator and kswapd interact. The page allocator uses per-node lists of all zones in the system, ordered by preference, when allocating a new page. When the first iteration does not yield any results, kswapd is woken up and the allocator retries. Due to the way kswapd reclaims zones below the high watermark while a zone can be allocated from when it is above the low watermark, the allocator may keep kswapd running while kswapd reclaim ensures that the page allocator can keep allocating from the first zone in the zonelist for extended periods of time. Meanwhile the other zones rarely see new allocations and thus get aged much slower in comparison. The result is that the occasional page placed in lower zones gets relatively more time in memory, even gets promoted to the active list after its peers have long been evicted. Meanwhile, the bulk of the working set may be thrashing on the preferred zone even though there may be significant amounts of memory available in the lower zones. Even the most basic test -- repeatedly reading a file slightly bigger than memory -- shows how broken the zone aging is. In this scenario, no single page should be able stay in memory long enough to get referenced twice and activated, but activation happens in spades: $ grep active_file /proc/zoneinfo nr_inactive_file 0 nr_active_file 0 nr_inactive_file 0 nr_active_file 8 nr_inactive_file 1582 nr_active_file 11994 $ cat data data data data >/dev/null $ grep active_file /proc/zoneinfo nr_inactive_file 0 nr_active_file 70 nr_inactive_file 258753 nr_active_file 443214 nr_inactive_file 149793 nr_active_file 12021 Fix this with a very simple round robin allocator. Each zone is allowed a batch of allocations that is proportional to the zone's size, after which it is treated as full. The batch counters are reset when all zones have been tried and the allocator enters the slowpath and kicks off kswapd reclaim. Allocation and reclaim is now fairly spread out to all available/allowable zones: $ grep active_file /proc/zoneinfo nr_inactive_file 0 nr_active_file 0 nr_inactive_file 174 nr_active_file 4865 nr_inactive_file 53 nr_active_file 860 $ cat data data data data >/dev/null $ grep active_file /proc/zoneinfo nr_inactive_file 0 nr_active_file 0 nr_inactive_file 666622 nr_active_file 4988 nr_inactive_file 190969 nr_active_file 937 When zone_reclaim_mode is enabled, allocations will now spread out to all zones on the local node, not just the first preferred zone (which on a 4G node might be a tiny Normal zone). Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Paul Bolle <paul.bollee@gmail.com> Cc: Zlatko Calusic <zcalusic@bitsync.net> Tested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm: vmstats: track TLB flush stats on UP tooDave Hansen1-1/+2
The previous patch doing vmstats for TLB flushes ("mm: vmstats: tlb flush counters") effectively missed UP since arch/x86/mm/tlb.c is only compiled for SMP. UP systems do not do remote TLB flushes, so compile those counters out on UP. arch/x86/kernel/cpu/mtrr/generic.c calls __flush_tlb() directly. This is probably an optimization since both the mtrr code and __flush_tlb() write cr4. It would probably be safe to make that a flush_tlb_all() (and then get these statistics), but the mtrr code is ancient and I'm hesitant to touch it other than to just stick in the counters. [akpm@linux-foundation.org: tweak comments] Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm: vmstats: tlb flush countersDave Hansen1-0/+5
I was investigating some TLB flush scaling issues and realized that we do not have any good methods for figuring out how many TLB flushes we are doing. It would be nice to be able to do these in generic code, but the arch-independent calls don't explicitly specify whether we actually need to do remote flushes or not. In the end, we really need to know if we actually _did_ global vs. local invalidations, so that leaves us with few options other than to muck with the counters from arch-specific code. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-14kernel: delete __cpuinit usage from all core kernel filesPaul Gortmaker1-3/+3
The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. This removes all the uses of the __cpuinit macros from C files in the core kernel directories (kernel, init, lib, mm, and include) that don't really have a specific maintainer. [1] https://lkml.org/lkml/2013/5/20/589 Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-04-29mm/vmstat: add note on safety of drain_zonestatCody P Schafer1-0/+4
Signed-off-by: Cody P Schafer <cody@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29mm: remove CONFIG_HOTPLUG ifdefsYijing Wang1-2/+0
CONFIG_HOTPLUG is going away as an option, cleanup CONFIG_HOTPLUG ifdefs in mm files. Signed-off-by: Yijing Wang <wangyijing@huawei.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23mm: add & use zone_end_pfn() and zone_spans_pfn()Cody P Schafer1-1/+1
Add 2 helpers (zone_end_pfn() and zone_spans_pfn()) to reduce code duplication. This also switches to using them in compaction (where an additional variable needed to be renamed), page_alloc, vmstat, memory_hotplug, and kmemleak. Note that in compaction.c I avoid calling zone_end_pfn() repeatedly because I expect at some point the sycronization issues with start_pfn & spanned_pages will need fixing, either by actually using the seqlock or clever memory barrier usage. Signed-off-by: Cody P Schafer <cody@linux.vnet.ibm.com> Cc: David Hansen <dave@linux.vnet.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23mm: don't wait on congested zones in balance_pgdat()Zlatko Calusic1-1/+0
From: Zlatko Calusic <zlatko.calusic@iskon.hr> Commit 92df3a723f84 ("mm: vmscan: throttle reclaim if encountering too many dirty pages under writeback") introduced waiting on congested zones based on a sane algorithm in shrink_inactive_list(). What this means is that there's no more need for throttling and additional heuristics in balance_pgdat(). So, let's remove it and tidy up the code. Signed-off-by: Zlatko Calusic <zlatko.calusic@iskon.hr> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23mm: remove MIGRATE_ISOLATE check in hotpathMinchan Kim1-0/+2
Several functions test MIGRATE_ISOLATE and some of those are hotpath but MIGRATE_ISOLATE is used only if we enable CONFIG_MEMORY_ISOLATION(ie, CMA, memory-hotplug and memory-failure) which are not common config option. So let's not add unnecessary overhead and code when we don't enable CONFIG_MEMORY_ISOLATION. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23mm: use zone->present_pages instead of zone->managed_pages where appropriateJiang Liu1-1/+1
Now we have zone->managed_pages for "pages managed by the buddy system in the zone", so replace zone->present_pages with zone->managed_pages if what the user really wants is number of allocatable pages. Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Maciej Rutecki <maciej.rutecki@gmail.com> Cc: Chris Clayton <chris2553@googlemail.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jianguo Wu <wujianguo@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-16Merge tag 'balancenuma-v11' of ↵Linus Torvalds1-3/+13
git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma Pull Automatic NUMA Balancing bare-bones from Mel Gorman: "There are three implementations for NUMA balancing, this tree (balancenuma), numacore which has been developed in tip/master and autonuma which is in aa.git. In almost all respects balancenuma is the dumbest of the three because its main impact is on the VM side with no attempt to be smart about scheduling. In the interest of getting the ball rolling, it would be desirable to see this much merged for 3.8 with the view to building scheduler smarts on top and adapting the VM where required for 3.9. The most recent set of comparisons available from different people are mel: https://lkml.org/lkml/2012/12/9/108 mingo: https://lkml.org/lkml/2012/12/7/331 tglx: https://lkml.org/lkml/2012/12/10/437 srikar: https://lkml.org/lkml/2012/12/10/397 The results are a mixed bag. In my own tests, balancenuma does reasonably well. It's dumb as rocks and does not regress against mainline. On the other hand, Ingo's tests shows that balancenuma is incapable of converging for this workloads driven by perf which is bad but is potentially explained by the lack of scheduler smarts. Thomas' results show balancenuma improves on mainline but falls far short of numacore or autonuma. Srikar's results indicate we all suffer on a large machine with imbalanced node sizes. My own testing showed that recent numacore results have improved dramatically, particularly in the last week but not universally. We've butted heads heavily on system CPU usage and high levels of migration even when it shows that overall performance is better. There are also cases where it regresses. Of interest is that for specjbb in some configurations it will regress for lower numbers of warehouses and show gains for higher numbers which is not reported by the tool by default and sometimes missed in treports. Recently I reported for numacore that the JVM was crashing with NullPointerExceptions but currently it's unclear what the source of this problem is. Initially I thought it was in how numacore batch handles PTEs but I'm no longer think this is the case. It's possible numacore is just able to trigger it due to higher rates of migration. These reports were quite late in the cycle so I/we would like to start with this tree as it contains much of the code we can agree on and has not changed significantly over the last 2-3 weeks." * tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits) mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable mm/rmap: Convert the struct anon_vma::mutex to an rwsem mm: migrate: Account a transhuge page properly when rate limiting mm: numa: Account for failed allocations and isolations as migration failures mm: numa: Add THP migration for the NUMA working set scanning fault case build fix mm: numa: Add THP migration for the NUMA working set scanning fault case. mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG mm: sched: numa: Control enabling and disabling of NUMA balancing mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships mm: numa: migrate: Set last_nid on newly allocated page mm: numa: split_huge_page: Transfer last_nid on tail page mm: numa: Introduce last_nid to the page frame sched: numa: Slowly increase the scanning period as NUMA faults are handled mm: numa: Rate limit setting of pte_numa if node is saturated mm: numa: Rate limit the amount of memory that is migrated between nodes mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting mm: numa: Migrate pages handled during a pmd_numa hinting fault mm: numa: Migrate on reference policy ...
2012-12-12mm: introduce new field "managed_pages" to struct zoneJiang Liu1-2/+4
Currently a zone's present_pages is calcuated as below, which is inaccurate and may cause trouble to memory hotplug. spanned_pages - absent_pages - memmap_pages - dma_reserve. During fixing bugs caused by inaccurate zone->present_pages, we found zone->present_pages has been abused. The field zone->present_pages may have different meanings in different contexts: 1) pages existing in a zone. 2) pages managed by the buddy system. For more discussions about the issue, please refer to: http://lkml.org/lkml/2012/11/5/866 https://patchwork.kernel.org/patch/1346751/ This patchset tries to introduce a new field named "managed_pages" to struct zone, which counts "pages managed by the buddy system". And revert zone->present_pages to count "physical pages existing in a zone", which also keep in consistence with pgdat->node_present_pages. We will set an initial value for zone->managed_pages in function free_area_init_core() and will adjust it later if the initial value is inaccurate. For DMA/normal zones, the initial value is set to: (spanned_pages - absent_pages - memmap_pages - dma_reserve) Later zone->managed_pages will be adjusted to the accurate value when the bootmem allocator frees all free pages to the buddy system in function free_all_bootmem_node() and free_all_bootmem(). The bootmem allocator doesn't touch highmem pages, so highmem zones' managed_pages is set to the accurate value "spanned_pages - absent_pages" in function free_area_init_core() and won't be updated anymore. This patch also adds a new field "managed_pages" to /proc/zoneinfo and sysrq showmem. [akpm@linux-foundation.org: small comment tweaks] Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Maciej Rutecki <maciej.rutecki@gmail.com> Tested-by: Chris Clayton <chris2553@googlemail.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12vmstat: use N_MEMORY instead N_HIGH_MEMORYLai Jiangshan1-2/+2
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12thp, vmstat: implement HZP_ALLOC and HZP_ALLOC_FAILED eventsKirill A. Shutemov1-0/+2
hzp_alloc is incremented every time a huge zero page is successfully allocated. It includes allocations which where dropped due race with other allocation. Note, it doesn't count every map of the huge zero page, only its allocation. hzp_alloc_failed is incremented if kernel fails to allocate huge zero page and falls back to using small pages. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11mm: numa: Add pte updates, hinting and migration statsMel Gorman1-0/+6
It is tricky to quantify the basic cost of automatic NUMA placement in a meaningful manner. This patch adds some vmstats that can be used as part of a basic costing model. u = basic unit = sizeof(void *) Ca = cost of struct page access = sizeof(struct page) / u Cpte = Cost PTE access = Ca Cupdate = Cost PTE update = (2 * Cpte) + (2 * Wlock) where Cpte is incurred twice for a read and a write and Wlock is a constant representing the cost of taking or releasing a lock Cnumahint = Cost of a minor page fault = some high constant e.g. 1000 Cpagerw = Cost to read or write a full page = Ca + PAGE_SIZE/u Ci = Cost of page isolation = Ca + Wi where Wi is a constant that should reflect the approximate cost of the locking operation Cpagecopy = Cpagerw + (Cpagerw * Wnuma) + Ci + (Ci * Wnuma) where Wnuma is the approximate NUMA factor. 1 is local. 1.2 would imply that remote accesses are 20% more expensive Balancing cost = Cpte * numa_pte_updates + Cnumahint * numa_hint_faults + Ci * numa_pages_migrated + Cpagecopy * numa_pages_migrated Note that numa_pages_migrated is used as a measure of how many pages were isolated even though it would miss pages that failed to migrate. A vmstat counter could have been added for it but the isolation cost is pretty marginal in comparison to the overall cost so it seemed overkill. The ideal way to measure automatic placement benefit would be to count the number of remote accesses versus local accesses and do something like benefit = (remote_accesses_before - remove_access_after) * Wnuma but the information is not readily available. As a workload converges, the expection would be that the number of remote numa hints would reduce to 0. convergence = numa_hint_faults_local / numa_hint_faults where this is measured for the last N number of numa hints recorded. When the workload is fully converged the value is 1. This can measure if the placement policy is converging and how fast it is doing it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: compaction: Add scanned and isolated counters for compactionMel Gorman1-0/+3
Compaction already has tracepoints to count scanned and isolated pages but it requires that ftrace be enabled and if that information has to be written to disk then it can be disruptive. This patch adds vmstat counters for compaction called compact_migrate_scanned, compact_free_scanned and compact_isolated. With these counters, it is possible to define a basic cost model for compaction. This approximates of how much work compaction is doing and can be compared that with an oprofile showing TLB misses and see if the cost of compaction is being offset by THP for example. Minimally a compaction patch can be evaluated in terms of whether it increases or decreases cost. The basic cost model looks like this Fundamental unit u: a word sizeof(void *) Ca = cost of struct page access = sizeof(struct page) / u Cmc = Cost migrate page copy = (Ca + PAGE_SIZE/u) * 2 Cmf = Cost migrate failure = Ca * 2 Ci = Cost page isolation = (Ca + Wi) where Wi is a constant that should reflect the approximate cost of the locking operation. Csm = Cost migrate scanning = Ca Csf = Cost free scanning = Ca Overall cost = (Csm * compact_migrate_scanned) + (Csf * compact_free_scanned) + (Ci * compact_isolated) + (Cmc * pgmigrate_success) + (Cmf * pgmigrate_failed) Where the values are read from /proc/vmstat. This is very basic and ignores certain costs such as the allocation cost to do a migrate page copy but any improvement to the model would still use the same vmstat counters. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11mm: compaction: Move migration fail/success stats to migrate.cMel Gorman1-3/+4
The compact_pages_moved and compact_pagemigrate_failed events are convenient for determining if compaction is active and to what degree migration is succeeding but it's at the wrong level. Other users of migration may also want to know if migration is working properly and this will be particularly true for any automated NUMA migration. This patch moves the counters down to migration with the new events called pgmigrate_success and pgmigrate_fail. The compact_blocks_moved counter is removed because while it was useful for debugging initially, it's worthless now as no meaningful conclusions can be drawn from its value. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com>
2012-10-09mm: remove unevictable_pgs_mlockfreedHugh Dickins1-1/+0
Simply remove UNEVICTABLE_MLOCKFREED and unevictable_pgs_mlockfreed line from /proc/vmstat: Johannes and Mel point out that it was very unlikely to have been used by any tool, and of course we can restore it easily enough if that turns out to be wrong. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09memory-hotplug: fix zone stat mismatchMinchan Kim1-0/+12
During memory-hotplug, I found NR_ISOLATED_[ANON|FILE] are increasing, causing the kernel to hang. When the system doesn't have enough free pages, it enters reclaim but never reclaim any pages due to too_many_isolated()==true and loops forever. The cause is that when we do memory-hotadd after memory-remove, __zone_pcp_update() clears a zone's ZONE_STAT_ITEMS in setup_pageset() although the vm_stat_diff of all CPUs still have values. In addtion, when we offline all pages of the zone, we reset them in zone_pcp_reset without draining so we loss some zone stat item. Reviewed-by: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: remove free_page_mlockHugh Dickins1-1/+1
We should not be seeing non-0 unevictable_pgs_mlockfreed any longer. So remove free_page_mlock() from the page freeing paths: __PG_MLOCKED is already in PAGE_FLAGS_CHECK_AT_FREE, so free_pages_check() will now be checking it, reporting "BUG: Bad page state" if it's ever found set. Comment UNEVICTABLE_MLOCKFREED and unevictable_pgs_mlockfreed always 0. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09cma: count free CMA pagesBartlomiej Zolnierkiewicz1-0/+1
Add NR_FREE_CMA_PAGES counter to be later used for checking watermark in __zone_watermark_ok(). For simplicity and to avoid #ifdef hell make this counter always available (not only when CONFIG_CMA=y). [akpm@linux-foundation.org: use conventional migratetype naming] Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-21workqueue: make deferrable delayed_work initializer names consistentTejun Heo1-1/+1
Initalizers for deferrable delayed_work are confused. * __DEFERRED_WORK_INITIALIZER() * DECLARE_DEFERRED_WORK() * INIT_DELAYED_WORK_DEFERRABLE() Rename them to * __DEFERRABLE_WORK_INITIALIZER() * DECLARE_DEFERRABLE_WORK() * INIT_DEFERRABLE_WORK() This patch doesn't cause any functional changes. Signed-off-by: Tejun Heo <tj@kernel.org>
2012-07-31mm: account for the number of times direct reclaimers get throttledMel Gorman1-0/+1
Under significant pressure when writing back to network-backed storage, direct reclaimers may get throttled. This is expected to be a short-lived event and the processes get woken up again but processes do get stalled. This patch counts how many times such stalling occurs. It's up to the administrator whether to reduce these stalls by increasing min_free_kbytes. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmstat.c: remove debug fs entries on failure of file creation and made ↵Sasikantha babu1-3/+7
extfrag_debug_root dentry local Remove debug fs files and directory on failure. Since no one is using "extfrag_debug_root" dentry outside of extfrag_debug_init(), make it local to the function. Signed-off-by: Sasikantha babu <sasikanth.v19@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-21mm: mmzone: MIGRATE_CMA migration type addedMichal Nazarewicz1-0/+3
The MIGRATE_CMA migration type has two main characteristics: (i) only movable pages can be allocated from MIGRATE_CMA pageblocks and (ii) page allocator will never change migration type of MIGRATE_CMA pageblocks. This guarantees (to some degree) that page in a MIGRATE_CMA page block can always be migrated somewhere else (unless there's no memory left in the system). It is designed to be used for allocating big chunks (eg. 10MiB) of physically contiguous memory. Once driver requests contiguous memory, pages from MIGRATE_CMA pageblocks may be migrated away to create a contiguous block. To minimise number of migrations, MIGRATE_CMA migration type is the last type tried when page allocator falls back to other migration types when requested. Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Rob Clark <rob.clark@linaro.org> Tested-by: Ohad Ben-Cohen <ohad@wizery.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Robert Nelson <robertcnelson@gmail.com> Tested-by: Barry Song <Baohua.Song@csr.com>
2012-04-25mm: fix up the vmscan stat in vmstatYing Han1-2/+2
The "pgsteal" stat is confusing because it counts both direct reclaim as well as background reclaim. However, we have "kswapd_steal" which also counts background reclaim value. This patch fixes it and also makes it match the existng "pgscan_" stats. Test: pgsteal_kswapd_dma32 447623 pgsteal_kswapd_normal 42272677 pgsteal_kswapd_movable 0 pgsteal_direct_dma32 2801 pgsteal_direct_normal 44353270 pgsteal_direct_movable 0 Signed-off-by: Ying Han <yinghan@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm,x86,um: move CMPXCHG_LOCAL config optionHeiko Carstens1-1/+1
Move CMPXCHG_LOCAL and rename it to HAVE_CMPXCHG_LOCAL so architectures can simply select the option if it is supported. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm/vmstat.c: cache align vm_statDimitri Sivanich1-1/+1
Avoid false sharing of the vm_stat array. This was found to adversely affect tmpfs I/O performance. Tests run on a 640 cpu UV system. With 120 threads doing parallel writes, each to different tmpfs mounts: No patch: ~300 MB/sec With vm_stat alignment: ~430 MB/sec Signed-off-by: Dimitri Sivanich <sivanich@sgi.com> Acked-by: Christoph Lameter <cl@gentwo.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: vmscan: immediately reclaim end-of-LRU dirty pages when writeback completesMel Gorman1-1/+1
When direct reclaim encounters a dirty page, it gets recycled around the LRU for another cycle. This patch marks the page PageReclaim similar to deactivate_page() so that the page gets reclaimed almost immediately after the page gets cleaned. This is to avoid reclaiming clean pages that are younger than a dirty page encountered at the end of the LRU that might have been something like a use-once page. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <jweiner@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Alex Elder <aelder@sgi.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>