summaryrefslogtreecommitdiffstats
path: root/mm/vmscan.c
AgeCommit message (Collapse)AuthorFilesLines
2012-12-11mm,vmscan: only evict file pages when we have plentyRik van Riel1-2/+13
If we have more inactive file pages than active file pages, we skip scanning the active file pages altogether, with the idea that we do not want to evict the working set when there is plenty of streaming IO in the cache. However, the code forgot to also skip scanning anonymous pages in that situation. That leads to the curious situation of keeping the active file pages protected from being paged out when there are lots of inactive file pages, while still scanning and evicting anonymous pages. This patch fixes that situation, by only evicting file pages when we have plenty of them and most are inactive. [akpm@linux-foundation.org: adjust comment layout] Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11mm: use IS_ENABLED(CONFIG_COMPACTION) instead of COMPACTION_BUILDKirill A. Shutemov1-4/+5
We don't need custom COMPACTION_BUILD anymore, since we have handy IS_ENABLED(). Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-08mm: vmscan: fix inappropriate zone congestion clearingJohannes Weiner1-3/+0
commit c702418f8a2f ("mm: vmscan: do not keep kswapd looping forever due to individual uncompactable zones") removed zone watermark checks from the compaction code in kswapd but left in the zone congestion clearing, which now happens unconditionally on higher order reclaim. This messes up the reclaim throttling logic for zones with dirty/writeback pages, where zones should only lose their congestion status when their watermarks have been restored. Remove the clearing from the zone compaction section entirely. The preliminary zone check and the reclaim loop in kswapd will clear it if the zone is considered balanced. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-06mm: vmscan: do not keep kswapd looping forever due to individual ↵Johannes Weiner1-16/+0
uncompactable zones When a zone meets its high watermark and is compactable in case of higher order allocations, it contributes to the percentage of the node's memory that is considered balanced. This requirement, that a node be only partially balanced, came about when kswapd was desparately trying to balance tiny zones when all bigger zones in the node had plenty of free memory. Arguably, the same should apply to compaction: if a significant part of the node is balanced enough to run compaction, do not get hung up on that tiny zone that might never get in shape. When the compaction logic in kswapd is reached, we know that at least 25% of the node's memory is balanced properly for compaction (see zone_balanced and pgdat_balanced). Remove the individual zone checks that restart the kswapd cycle. Otherwise, we may observe more endless looping in kswapd where the compaction code loops back to reclaim because of a single zone and reclaim does nothing because the node is considered balanced overall. See for example https://bugzilla.redhat.com/show_bug.cgi?id=866988 Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-and-tested-by: Thorsten Leemhuis <fedora@leemhuis.info> Reported-by: Jiri Slaby <jslaby@suse.cz> Tested-by: John Ellson <john.ellson@comcast.net> Tested-by: Zdenek Kabelac <zkabelac@redhat.com> Tested-by: Bruno Wolff III <bruno@wolff.to> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-11-30mm: vmscan: fix endless loop in kswapd balancingJohannes Weiner1-9/+18
Kswapd does not in all places have the same criteria for a balanced zone. Zones are only being reclaimed when their high watermark is breached, but compaction checks loop over the zonelist again when the zone does not meet the low watermark plus two times the size of the allocation. This gets kswapd stuck in an endless loop over a small zone, like the DMA zone, where the high watermark is smaller than the compaction requirement. Add a function, zone_balanced(), that checks the watermark, and, for higher order allocations, if compaction has enough free memory. Then use it uniformly to check for balanced zones. This makes sure that when the compaction watermark is not met, at least reclaim happens and progress is made - or the zone is declared unreclaimable at some point and skipped entirely. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: George Spelvin <linux@horizon.com> Reported-by: Johannes Hirte <johannes.hirte@fem.tu-ilmenau.de> Reported-by: Tomas Racek <tracek@redhat.com> Tested-by: Johannes Hirte <johannes.hirte@fem.tu-ilmenau.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-11-26mm: vmscan: check for fatal signals iff the process was throttledMel Gorman1-10/+27
Commit 5515061d22f0 ("mm: throttle direct reclaimers if PF_MEMALLOC reserves are low and swap is backed by network storage") introduced a check for fatal signals after a process gets throttled for network storage. The intention was that if a process was throttled and got killed that it should not trigger the OOM killer. As pointed out by Minchan Kim and David Rientjes, this check is in the wrong place and too broad. If a system is in am OOM situation and a process is exiting, it can loop in __alloc_pages_slowpath() and calling direct reclaim in a loop. As the fatal signal is pending it returns 1 as if it is making forward progress and can effectively deadlock. This patch moves the fatal_signal_pending() check after throttling to throttle_direct_reclaim() where it belongs. If the process is killed while throttled, it will return immediately without direct reclaim except now it will have TIF_MEMDIE set and will use the PFMEMALLOC reserves. Minchan pointed out that it may be better to direct reclaim before returning to avoid using the reserves because there may be pages that can easily reclaim that would avoid using the reserves. However, we do no such targetted reclaim and there is no guarantee that suitable pages are available. As it is expected that this throttling happens when swap-over-NFS is used there is a possibility that the process will instead swap which may allocate network buffers from the PFMEMALLOC reserves. Hence, in the swap-over-nfs case where a process can be throtted and be killed it can use the reserves to exit or it can potentially use reserves to swap a few pages and then exit. This patch takes the option of using the reserves if necessary to allow the process exit quickly. If this patch passes review it should be considered a -stable candidate for 3.6. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-11-16mm: revert "mm: vmscan: scale number of pages reclaimed by ↵Mel Gorman1-25/+0
reclaim/compaction based on failures" Jiri Slaby reported the following: (It's an effective revert of "mm: vmscan: scale number of pages reclaimed by reclaim/compaction based on failures".) Given kswapd had hours of runtime in ps/top output yesterday in the morning and after the revert it's now 2 minutes in sum for the last 24h, I would say, it's gone. The intention of the patch in question was to compensate for the loss of lumpy reclaim. Part of the reason lumpy reclaim worked is because it aggressively reclaimed pages and this patch was meant to be a sane compromise. When compaction fails, it gets deferred and both compaction and reclaim/compaction is deferred avoid excessive reclaim. However, since commit c654345924f7 ("mm: remove __GFP_NO_KSWAPD"), kswapd is woken up each time and continues reclaiming which was not taken into account when the patch was developed. Attempts to address the problem ended up just changing the shape of the problem instead of fixing it. The release window gets closer and while a THP allocation failing is not a major problem, kswapd chewing up a lot of CPU is. This patch reverts commit 83fde0f22872 ("mm: vmscan: scale number of pages reclaimed by reclaim/compaction based on failures") and will be revisited in the future. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Zdenek Kabelac <zkabelac@redhat.com> Tested-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Jiri Slaby <jirislaby@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Johannes Hirte <johannes.hirte@fem.tu-ilmenau.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-11-09mm: bugfix: set current->reclaim_state to NULL while returning from kswapd()Takamori Yamaguchi1-0/+2
In kswapd(), set current->reclaim_state to NULL before returning, as current->reclaim_state holds reference to variable on kswapd()'s stack. In rare cases, while returning from kswapd() during memory offlining, __free_slab() and freepages() can access the dangling pointer of current->reclaim_state. Signed-off-by: Takamori Yamaguchi <takamori.yamaguchi@jp.sony.com> Signed-off-by: Aaditya Kumar <aaditya.kumar@ap.sony.com> Acked-by: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09CMA: migrate mlocked pagesMinchan Kim1-2/+2
Presently CMA cannot migrate mlocked pages so it ends up failing to allocate contiguous memory space. This patch makes mlocked pages be migrated out. Of course, it can affect realtime processes but in CMA usecase, contiguous memory allocation failing is far worse than access latency to an mlocked page being variable while CMA is running. If someone wants to make the system realtime, he shouldn't enable CMA because stalls can still happen at random times. [akpm@linux-foundation.org: tweak comment text, per Mel] Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: remove vma arg from page_evictableHugh Dickins1-18/+9
page_evictable(page, vma) is an irritant: almost all its callers pass NULL for vma. Remove the vma arg and use mlocked_vma_newpage(vma, page) explicitly in the couple of places it's needed. But in those places we don't even need page_evictable() itself! They're dealing with a freshly allocated anonymous page, which has no "mapping" and cannot be mlocked yet. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: clear PG_migrate_skip based on compaction and reclaim activityMel Gorman1-0/+8
Compaction caches if a pageblock was scanned and no pages were isolated so that the pageblocks can be skipped in the future to reduce scanning. This information is not cleared by the page allocator based on activity due to the impact it would have to the page allocator fast paths. Hence there is a requirement that something clear the cache or pageblocks will be skipped forever. Currently the cache is cleared if there were a number of recent allocation failures and it has not been cleared within the last 5 seconds. Time-based decisions like this are terrible as they have no relationship to VM activity and is basically a big hammer. Unfortunately, accurate heuristics would add cost to some hot paths so this patch implements a rough heuristic. There are two cases where the cache is cleared. 1. If a !kswapd process completes a compaction cycle (migrate and free scanner meet), the zone is marked compact_blockskip_flush. When kswapd goes to sleep, it will clear the cache. This is expected to be the common case where the cache is cleared. It does not really matter if kswapd happens to be asleep or going to sleep when the flag is set as it will be woken on the next allocation request. 2. If there have been multiple failures recently and compaction just finished being deferred then a process will clear the cache and start a full scan. This situation happens if there are multiple high-order allocation requests under heavy memory pressure. The clearing of the PG_migrate_skip bits and other scans is inherently racy but the race is harmless. For allocations that can fail such as THP, they will simply fail. For requests that cannot fail, they will retry the allocation. Tests indicated that scanning rates were roughly similar to when the time-based heuristic was used and the allocation success rates were similar. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: cma: discard clean pages during contiguous allocation instead of migrationMinchan Kim1-6/+37
Drop clean cache pages instead of migration during alloc_contig_range() to minimise allocation latency by reducing the amount of migration that is necessary. It's useful for CMA because latency of migration is more important than evicting the background process's working set. In addition, as pages are reclaimed then fewer free pages for migration targets are required so it avoids memory reclaiming to get free pages, which is a contributory factor to increased latency. I measured elapsed time of __alloc_contig_migrate_range() which migrates 10M in 40M movable zone in QEMU machine. Before - 146ms, After - 7ms [akpm@linux-foundation.org: fix nommu build] Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Mel Gorman <mgorman@suse.de> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Rik van Riel <riel@redhat.com> Tested-by: Kyungmin Park <kyungmin.park@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm/vmscan: fix error number for failed kthreadGavin Shan1-2/+2
Fix the return value while failing to create the kswapd kernel thread. Also, the error message is prioritized as KERN_ERR. Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: vmscan: scale number of pages reclaimed by reclaim/compaction based on ↵Mel Gorman1-0/+25
failures If allocation fails after compaction then compaction may be deferred for a number of allocation attempts. If there are subsequent failures, compact_defer_shift is increased to defer for longer periods. This patch uses that information to scale the number of pages reclaimed with compact_defer_shift until allocations succeed again. The rationale is that reclaiming the normal number of pages still allowed compaction to fail and its success depends on the number of pages. If it's failing, reclaim more pages until it succeeds again. Note that this is not implying that VM reclaim is not reclaiming enough pages or that its logic is broken. try_to_free_pages() always asks for SWAP_CLUSTER_MAX pages to be reclaimed regardless of order and that is what it does. Direct reclaim stops normally with this check. if (sc->nr_reclaimed >= sc->nr_to_reclaim) goto out; should_continue_reclaim delays when that check is made until a minimum number of pages for reclaim/compaction are reclaimed. It is possible that this patch could instead set nr_to_reclaim in try_to_free_pages() and drive it from there but that's behaves differently and not necessarily for the better. If driven from do_try_to_free_pages(), it is also possible that priorities will rise. When they reach DEF_PRIORITY-2, it will also start stalling and setting pages for immediate reclaim which is more disruptive than not desirable in this case. That is a more wide-reaching change that could cause another regression related to THP requests causing interactive jitter. [akpm@linux-foundation.org: fix build] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-09-17memory hotplug: reset pgdat->kswapd to NULL if creating kernel thread failsWen Congyang1-0/+1
If kthread_run() fails, pgdat->kswapd contains errno. When we stop this thread, we only check whether pgdat->kswapd is NULL and access it. If it contains errno, it will cause page fault. Reset pgdat->kswapd to NULL when creating kernel thread fails can avoid this problem. Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31memcg: gix memory accounting scalability in shrink_page_listTim Chen1-0/+2
I noticed in a multi-process parallel files reading benchmark I ran on a 8 socket machine, throughput slowed down by a factor of 8 when I ran the benchmark within a cgroup container. I traced the problem to the following code path (see below) when we are trying to reclaim memory from file cache. The res_counter_uncharge function is called on every page that's reclaimed and created heavy lock contention. The patch below allows the reclaimed pages to be uncharged from the resource counter in batch and recovered the regression. Tim 40.67% usemem [kernel.kallsyms] [k] _raw_spin_lock | --- _raw_spin_lock | |--92.61%-- res_counter_uncharge | | | |--100.00%-- __mem_cgroup_uncharge_common | | | | | |--100.00%-- mem_cgroup_uncharge_cache_page | | | __remove_mapping | | | shrink_page_list | | | shrink_inactive_list | | | shrink_mem_cgroup_zone | | | shrink_zone | | | do_try_to_free_pages | | | try_to_free_pages | | | __alloc_pages_nodemask | | | alloc_pages_current Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31memcg: further prevent OOM with too many dirty pagesHugh Dickins1-9/+24
The may_enter_fs test turns out to be too restrictive: though I saw no problem with it when testing on 3.5-rc6, it very soon OOMed when I tested on 3.5-rc6-mm1. I don't know what the difference there is, perhaps I just slightly changed the way I started off the testing: dd if=/dev/zero of=/mnt/temp bs=1M count=1024; rm -f /mnt/temp; sync repeatedly, in 20M memory.limit_in_bytes cgroup to ext4 on USB stick. ext4 (and gfs2 and xfs) turn out to allocate new pages for writing with AOP_FLAG_NOFS: that seems a little worrying, and it's unclear to me why the transaction needs to be started even before allocating pagecache memory. But it may not be worth worrying about these days: if direct reclaim avoids FS writeback, does __GFP_FS now mean anything? Anyway, we insisted on the may_enter_fs test to avoid hangs with the loop device; but since that also masks off __GFP_IO, we can test for __GFP_IO directly, ignoring may_enter_fs and __GFP_FS. But even so, the test still OOMs sometimes: when originally testing on 3.5-rc6, it OOMed about one time in five or ten; when testing just now on 3.5-rc6-mm1, it OOMed on the first iteration. This residual problem comes from an accumulation of pages under ordinary writeback, not marked PageReclaim, so rightly not causing the memcg check to wait on their writeback: these too can prevent shrink_page_list() from freeing any pages, so many times that memcg reclaim fails and OOMs. Deal with these in the same way as direct reclaim now deals with dirty FS pages: mark them PageReclaim. It is appropriate to rotate these to tail of list when writepage completes, but more importantly, the PageReclaim flag makes memcg reclaim wait on them if encountered again. Increment NR_VMSCAN_IMMEDIATE? That's arguable: I chose not. Setting PageReclaim here may occasionally race with end_page_writeback() clearing it: lru_deactivate_fn() already faced the same race, and correctly concluded that the window is small and the issue non-critical. With these changes, the test runs indefinitely without OOMing on ext4, ext3 and ext2: I'll move on to test with other filesystems later. Trivia: invert conditions for a clearer block without an else, and goto keep_locked to do the unlock_page. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31memcg: prevent OOM with too many dirty pagesMichal Hocko1-3/+20
The current implementation of dirty pages throttling is not memcg aware which makes it easy to have memcg LRUs full of dirty pages. Without throttling, these LRUs can be scanned faster than the rate of writeback, leading to memcg OOM conditions when the hard limit is small. This patch fixes the problem by throttling the allocating process (possibly a writer) during the hard limit reclaim by waiting on PageReclaim pages. We are waiting only for PageReclaim pages because those are the pages that made one full round over LRU and that means that the writeback is much slower than scanning. The solution is far from being ideal - long term solution is memcg aware dirty throttling - but it is meant to be a band aid until we have a real fix. We are seeing this happening during nightly backups which are placed into containers to prevent from eviction of the real working set. The change affects only memcg reclaim and only when we encounter PageReclaim pages which is a signal that the reclaim doesn't catch up on with the writers so somebody should be throttled. This could be potentially unfair because it could be somebody else from the group who gets throttled on behalf of the writer but as writers need to allocate as well and they allocate in higher rate the probability that only innocent processes would be penalized is not that high. I have tested this change by a simple dd copying /dev/zero to tmpfs or ext3 running under small memcg (1G copy under 5M, 60M, 300M and 2G containers) and dd got killed by OOM killer every time. With the patch I could run the dd with the same size under 5M controller without any OOM. The issue is more visible with slower devices for output. * With the patch ================ * tmpfs size=2G --------------- $ vim cgroup_cache_oom_test.sh $ ./cgroup_cache_oom_test.sh 5M using Limit 5M for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 30.4049 s, 34.5 MB/s $ ./cgroup_cache_oom_test.sh 60M using Limit 60M for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 31.4561 s, 33.3 MB/s $ ./cgroup_cache_oom_test.sh 300M using Limit 300M for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 20.4618 s, 51.2 MB/s $ ./cgroup_cache_oom_test.sh 2G using Limit 2G for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 1.42172 s, 738 MB/s * ext3 ------ $ ./cgroup_cache_oom_test.sh 5M using Limit 5M for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 27.9547 s, 37.5 MB/s $ ./cgroup_cache_oom_test.sh 60M using Limit 60M for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 30.3221 s, 34.6 MB/s $ ./cgroup_cache_oom_test.sh 300M using Limit 300M for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 24.5764 s, 42.7 MB/s $ ./cgroup_cache_oom_test.sh 2G using Limit 2G for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 3.35828 s, 312 MB/s * Without the patch =================== * tmpfs size=2G --------------- $ ./cgroup_cache_oom_test.sh 5M using Limit 5M for group ./cgroup_cache_oom_test.sh: line 46: 4668 Killed dd if=/dev/zero of=$OUT/zero bs=1M count=$count $ ./cgroup_cache_oom_test.sh 60M using Limit 60M for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 25.4989 s, 41.1 MB/s $ ./cgroup_cache_oom_test.sh 300M using Limit 300M for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 24.3928 s, 43.0 MB/s $ ./cgroup_cache_oom_test.sh 2G using Limit 2G for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 1.49797 s, 700 MB/s * ext3 ------ $ ./cgroup_cache_oom_test.sh 5M using Limit 5M for group ./cgroup_cache_oom_test.sh: line 46: 4689 Killed dd if=/dev/zero of=$OUT/zero bs=1M count=$count $ ./cgroup_cache_oom_test.sh 60M using Limit 60M for group ./cgroup_cache_oom_test.sh: line 46: 4692 Killed dd if=/dev/zero of=$OUT/zero bs=1M count=$count $ ./cgroup_cache_oom_test.sh 300M using Limit 300M for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 20.248 s, 51.8 MB/s $ ./cgroup_cache_oom_test.sh 2G using Limit 2G for group 1000+0 records in 1000+0 records out 1048576000 bytes (1.0 GB) copied, 2.85201 s, 368 MB/s [akpm@linux-foundation.org: tweak changelog, reordered the test to optimize for CONFIG_CGROUP_MEM_RES_CTLR=n] [hughd@google.com: fix deadlock with loop driver] Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Reviewed-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31mm: account for the number of times direct reclaimers get throttledMel Gorman1-0/+3
Under significant pressure when writing back to network-backed storage, direct reclaimers may get throttled. This is expected to be a short-lived event and the processes get woken up again but processes do get stalled. This patch counts how many times such stalling occurs. It's up to the administrator whether to reduce these stalls by increasing min_free_kbytes. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31mm: throttle direct reclaimers if PF_MEMALLOC reserves are low and swap is ↵Mel Gorman1-8/+120
backed by network storage If swap is backed by network storage such as NBD, there is a risk that a large number of reclaimers can hang the system by consuming all PF_MEMALLOC reserves. To avoid these hangs, the administrator must tune min_free_kbytes in advance which is a bit fragile. This patch throttles direct reclaimers if half the PF_MEMALLOC reserves are in use. If the system is routinely getting throttled the system administrator can increase min_free_kbytes so degradation is smoother but the system will keep running. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31memcg: rename config variablesAndrew Morton1-2/+2
Sanity: CONFIG_CGROUP_MEM_RES_CTLR -> CONFIG_MEMCG CONFIG_CGROUP_MEM_RES_CTLR_SWAP -> CONFIG_MEMCG_SWAP CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED -> CONFIG_MEMCG_SWAP_ENABLED CONFIG_CGROUP_MEM_RES_CTLR_KMEM -> CONFIG_MEMCG_KMEM [mhocko@suse.cz: fix missed bits] Cc: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-24Merge branch 'for-linus' of ↵Linus Torvalds1-2/+3
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial Pull trivial tree from Jiri Kosina: "Trivial updates all over the place as usual." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (29 commits) Fix typo in include/linux/clk.h . pci: hotplug: Fix typo in pci iommu: Fix typo in iommu video: Fix typo in drivers/video Documentation: Add newline at end-of-file to files lacking one arm,unicore32: Remove obsolete "select MISC_DEVICES" module.c: spelling s/postition/position/g cpufreq: Fix typo in cpufreq driver trivial: typo in comment in mksysmap mach-omap2: Fix typo in debug message and comment scsi: aha152x: Fix sparse warning and make printing pointer address more portable. Change email address for Steve Glendinning Btrfs: fix typo in convert_extent_bit via: Remove bogus if check netprio_cgroup.c: fix comment typo backlight: fix memory leak on obscure error path Documentation: asus-laptop.txt references an obsolete Kconfig item Documentation: ManagementStyle: fixed typo mm/vmscan: cleanup comment error in balance_pgdat mm: cleanup on the comments of zone_reclaim_stat ...
2012-07-17mm: fix lost kswapd wakeup in kswapd_stop()Aaditya Kumar1-1/+4
Offlining memory may block forever, waiting for kswapd() to wake up because kswapd() does not check the event kthread->should_stop before sleeping. The proper pattern, from Documentation/memory-barriers.txt, is: --- waker --- event_indicated = 1; wake_up_process(event_daemon); --- sleeper --- for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (event_indicated) break; schedule(); } set_current_state() may be wrapped by: prepare_to_wait(); In the kswapd() case, event_indicated is kthread->should_stop. === offlining memory (waker) === kswapd_stop() kthread_stop() kthread->should_stop = 1 wake_up_process() wait_for_completion() === kswapd_try_to_sleep (sleeper) === kswapd_try_to_sleep() prepare_to_wait() . . schedule() . . finish_wait() The schedule() needs to be protected by a test of kthread->should_stop, which is wrapped by kthread_should_stop(). Reproducer: Do heavy file I/O in background. Do a memory offline/online in a tight loop Signed-off-by: Aaditya Kumar <aaditya.kumar@ap.sony.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-11memory hotplug: fix invalid memory access caused by stale kswapd pointerJiang Liu1-2/+5
kswapd_stop() is called to destroy the kswapd work thread when all memory of a NUMA node has been offlined. But kswapd_stop() only terminates the work thread without resetting NODE_DATA(nid)->kswapd to NULL. The stale pointer will prevent kswapd_run() from creating a new work thread when adding memory to the memory-less NUMA node again. Eventually the stale pointer may cause invalid memory access. An example stack dump as below. It's reproduced with 2.6.32, but latest kernel has the same issue. BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff81051a94>] exit_creds+0x12/0x78 PGD 0 Oops: 0000 [#1] SMP last sysfs file: /sys/devices/system/memory/memory391/state CPU 11 Modules linked in: cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq microcode fuse loop dm_mod tpm_tis rtc_cmos i2c_i801 rtc_core tpm serio_raw pcspkr sg tpm_bios igb i2c_core iTCO_wdt rtc_lib mptctl iTCO_vendor_support button dca bnx2 usbhid hid uhci_hcd ehci_hcd usbcore sd_mod crc_t10dif edd ext3 mbcache jbd fan ide_pci_generic ide_core ata_generic ata_piix libata thermal processor thermal_sys hwmon mptsas mptscsih mptbase scsi_transport_sas scsi_mod Pid: 7949, comm: sh Not tainted 2.6.32.12-qiuxishi-5-default #92 Tecal RH2285 RIP: 0010:exit_creds+0x12/0x78 RSP: 0018:ffff8806044f1d78 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffff880604f22140 RCX: 0000000000019502 RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000 RBP: ffff880604f22150 R08: 0000000000000000 R09: ffffffff81a4dc10 R10: 00000000000032a0 R11: ffff880006202500 R12: 0000000000000000 R13: 0000000000c40000 R14: 0000000000008000 R15: 0000000000000001 FS: 00007fbc03d066f0(0000) GS:ffff8800282e0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 000000060f029000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process sh (pid: 7949, threadinfo ffff8806044f0000, task ffff880603d7c600) Stack: ffff880604f22140 ffffffff8103aac5 ffff880604f22140 ffffffff8104d21e ffff880006202500 0000000000008000 0000000000c38000 ffffffff810bd5b1 0000000000000000 ffff880603d7c600 00000000ffffdd29 0000000000000003 Call Trace: __put_task_struct+0x5d/0x97 kthread_stop+0x50/0x58 offline_pages+0x324/0x3da memory_block_change_state+0x179/0x1db store_mem_state+0x9e/0xbb sysfs_write_file+0xd0/0x107 vfs_write+0xad/0x169 sys_write+0x45/0x6e system_call_fastpath+0x16/0x1b Code: ff 4d 00 0f 94 c0 84 c0 74 08 48 89 ef e8 1f fd ff ff 5b 5d 31 c0 41 5c c3 53 48 8b 87 20 06 00 00 48 89 fb 48 8b bf 18 06 00 00 <8b> 00 48 c7 83 18 06 00 00 00 00 00 00 f0 ff 0f 0f 94 c0 84 c0 RIP exit_creds+0x12/0x78 RSP <ffff8806044f1d78> CR2: 0000000000000000 [akpm@linux-foundation.org: add pglist_data.kswapd locking comments] Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-29Merge branch 'master' into for-nextJiri Kosina1-267/+39
Conflicts: include/linux/mmzone.h Synced with Linus' tree so that trivial patch can be applied on top of up-to-date code properly. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
2012-06-28mm/vmscan: cleanup comment error in balance_pgdatWanpeng Li1-1/+1
Signed-off-by: Wanpeng Li <liwp.linux@gmail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2012-06-28mm: fix page reclaim comment errorWanpeng Li1-1/+2
Since there are five lists in LRU cache, the array nr in get_scan_count should be: nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan nr[2] = file inactive pages to scan; nr[3] = file active pages to scan Signed-off-by: Wanpeng Li <liwp.linux@gmail.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2012-05-29mm/memcg: apply add/del_page to lruvecHugh Dickins1-20/+27
Take lruvec further: pass it instead of zone to add_page_to_lru_list() and del_page_from_lru_list(); and pagevec_lru_move_fn() pass lruvec down to its target functions. This cleanup eliminates a swathe of cruft in memcontrol.c, including mem_cgroup_lru_add_list(), mem_cgroup_lru_del_list() and mem_cgroup_lru_move_lists() - which never actually touched the lists. In their place, mem_cgroup_page_lruvec() to decide the lruvec, previously a side-effect of add, and mem_cgroup_update_lru_size() to maintain the lru_size stats. Whilst these are simplifications in their own right, the goal is to bring the evaluation of lruvec next to the spin_locking of the lrus, in preparation for a future patch. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: trivial cleanups in vmscan.cHugh Dickins1-21/+10
Utter trivia in mm/vmscan.c, mostly just reducing the linecount slightly; most exciting change being get_scan_count() calling vmscan_swappiness() once instead of twice. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/memcg: get_lru_size not get_lruvec_sizeHugh Dickins1-10/+9
Konstantin just introduced mem_cgroup_get_lruvec_size() and get_lruvec_size(), I'm about to add mem_cgroup_update_lru_size(): but we're dealing with the same thing, lru_size[lru]. We ought to agree on the naming, and I do think lru_size is the more correct: so rename his ones to get_lru_size(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: kill struct mem_cgroup_zoneKonstantin Khlebnikov1-20/+6
Kill struct mem_cgroup_zone and rename shrink_mem_cgroup_zone() to shrink_lruvec(), it always shrinks one lruvec which it takes as an argument. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: push lruvec pointer into should_continue_reclaim()Konstantin Khlebnikov1-5/+3
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: push lruvec pointer into get_scan_count()Konstantin Khlebnikov1-16/+9
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: push lruvec pointer into shrink_list()Konstantin Khlebnikov1-22/+12
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: push lruvec pointer into inactive_list_is_low()Konstantin Khlebnikov1-18/+22
Switch mem_cgroup_inactive_anon_is_low() to lruvec pointers, mem_cgroup_get_lruvec_size() is more effective than mem_cgroup_zone_nr_lru_pages() Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: replace zone_nr_lru_pages() with get_lruvec_size()Konstantin Khlebnikov1-15/+16
If memory cgroup is enabled we always use lruvecs which are embedded into struct mem_cgroup_per_zone, so we can reach lru_size counters via container_of(). Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: push lruvec pointer into putback_inactive_pages()Konstantin Khlebnikov1-4/+4
As zone_reclaim_stat is now located in the lruvec, we can reach it directly. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: remove update_isolated_counts()Konstantin Khlebnikov1-54/+6
update_isolated_counts() is no longer required, because lumpy-reclaim was removed. Insanity is over, now there is only one kind of inactive page. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: push zone pointer into shrink_page_list()Konstantin Khlebnikov1-6/+5
It doesn't need a pointer to the cgroup - pointer to the zone is enough. This patch also kills the "mz" argument of page_check_references() - it is unused after "mm: memcg: count pte references from every member of the reclaimed hierarch" Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: push lruvec pointer into isolate_lru_pages()Konstantin Khlebnikov1-8/+8
Move the mem_cgroup_zone_lruvec() call from isolate_lru_pages() into shrink_[in]active_list(). Further patches push it to shrink_zone() step by step. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/vmscan: store "priority" in struct scan_controlKonstantin Khlebnikov1-56/+61
In memory reclaim some function have too many arguments - "priority" is one of them. It can be stored in struct scan_control - we construct them on the same level. Instead of an open coded loop we set the initial sc.priority, and do_try_to_free_pages() decreases it down to zero. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/memcg: use vm_swappiness from target memory cgroupKonstantin Khlebnikov1-6/+5
Use vm_swappiness from memory cgroup which is triggered this memory reclaim. This is more reasonable and allows to kill one argument. [akpm@linux-foundation.org: fix build (patch skew)] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Glauber Costa <glommer@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/memcg: move reclaim_stat into lruvecHugh Dickins1-4/+1
With mem_cgroup_disabled() now explicit, it becomes clear that the zone_reclaim_stat structure actually belongs in lruvec, per-zone when memcg is disabled but per-memcg per-zone when it's enabled. We can delete mem_cgroup_get_reclaim_stat(), and change update_page_reclaim_stat() to update just the one set of stats, the one which get_scan_count() will actually use. Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/memcg: scanning_global_lru means mem_cgroup_disabledHugh Dickins1-14/+4
Although one has to admire the skill with which it has been concealed, scanning_global_lru(mz) is actually just an interesting way to test mem_cgroup_disabled(). Too many developer hours have been wasted on confusing it with global_reclaim(): just use mem_cgroup_disabled(). Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Glauber Costa <glommer@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/memcg: kill mem_cgroup_lru_del()Konstantin Khlebnikov1-1/+1
This patch kills mem_cgroup_lru_del(), we can use mem_cgroup_lru_del_list() instead. On 0-order isolation we already have right lru list id. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Glauber Costa <glommer@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: remove lru type checks from __isolate_lru_page()Konstantin Khlebnikov1-19/+4
After patch "mm: forbid lumpy-reclaim in shrink_active_list()" we can completely remove anon/file and active/inactive lru type filters from __isolate_lru_page(), because isolation for 0-order reclaim always isolates pages from right lru list. And pages-isolation for lumpy shrink_inactive_list() or memory-compaction anyway allowed to isolate pages from all evictable lru lists. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: push lru index into shrink_[in]active_list()Konstantin Khlebnikov1-24/+17
Let's toss lru index through call stack to isolate_lru_pages(), this is better than its reconstructing from individual bits. [akpm@linux-foundation.org: fix kerneldoc, per Minchan] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Glauber Costa <glommer@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: avoid swapping out with swappiness==0Satoru Moriya1-3/+3
Sometimes we'd like to avoid swapping out anonymous memory. In particular, avoid swapping out pages of important process or process groups while there is a reasonable amount of pagecache on RAM so that we can satisfy our customers' requirements. OTOH, we can control how aggressive the kernel will swap memory pages with /proc/sys/vm/swappiness for global and /sys/fs/cgroup/memory/memory.swappiness for each memcg. But with current reclaim implementation, the kernel may swap out even if we set swappiness=0 and there is pagecache in RAM. This patch changes the behavior with swappiness==0. If we set swappiness==0, the kernel does not swap out completely (for global reclaim until the amount of free pages and filebacked pages in a zone has been reduced to something very very small (nr_free + nr_filebacked < high watermark)). Signed-off-by: Satoru Moriya <satoru.moriya@hds.com> Acked-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: consider all swapped back pages in used-once logicMichal Hocko1-1/+1
Commit 645747462435 ("vmscan: detect mapped file pages used only once") made mapped pages have another round in inactive list because they might be just short lived and so we could consider them again next time. This heuristic helps to reduce pressure on the active list with a streaming IO worklods. This patch fixes a regression introduced by this commit for heavy shmem based workloads because unlike Anon pages, which are excluded from this heuristic because they are usually long lived, shmem pages are handled as a regular page cache. This doesn't work quite well, unfortunately, if the workload is mostly backed by shmem (in memory database sitting on 80% of memory) with a streaming IO in the background (backup - up to 20% of memory). Anon inactive list is full of (dirty) shmem pages when watermarks are hit. Shmem pages are kept in the inactive list (they are referenced) in the first round and it is hard to reclaim anything else so we reach lower scanning priorities very quickly which leads to an excessive swap out. Let's fix this by excluding all swap backed pages (they tend to be long lived wrt. the regular page cache anyway) from used-once heuristic and rather activate them if they are referenced. The customer's workload is shmem backed database (80% of RAM) and they are measuring transactions/s with an IO in the background (20%). Transactions touch more or less random rows in the table. The transaction rate fell by a factor of 3 (in the worst case) because of commit 64574746. This patch restores the previous numbers. Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.34+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: rename is_mlocked_vma() to mlocked_vma_newpage()Ying Han1-1/+1
Andrew pointed out that the is_mlocked_vma() is misnamed. A function with name like that would expect bool return and no side-effects. Since it is called on the fault path for new page, rename it in this patch. Signed-off-by: Ying Han <yinghan@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com> Reviewed-by: Minchan Kim <minchan@kernel.org> [akpm@linux-foundation.org: s/mlock_vma_newpage/mlock_vma_newpage/, per Minchan] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>