summaryrefslogtreecommitdiffstats
path: root/mm/slab.c
AgeCommit message (Collapse)AuthorFilesLines
2014-12-13slab: fix cpuset check in fallback_allocVladimir Davydov1-1/+1
fallback_alloc is called on kmalloc if the preferred node doesn't have free or partial slabs and there's no pages on the node's free list (GFP_THISNODE allocations fail). Before invoking the reclaimer it tries to locate a free or partial slab on other allowed nodes' lists. While iterating over the preferred node's zonelist it skips those zones which hardwall cpuset check returns false for. That means that for a task bound to a specific node using cpusets fallback_alloc will always ignore free slabs on other nodes and go directly to the reclaimer, which, however, may allocate from other nodes if cpuset.mem_hardwall is unset (default). As a result, we may get lists of free slabs grow without bounds on other nodes, which is bad, because inactive slabs are only evicted by cache_reap at a very slow rate and cannot be dropped forcefully. To reproduce the issue, run a process that will walk over a directory tree with lots of files inside a cpuset bound to a node that constantly experiences memory pressure. Look at num_slabs vs active_slabs growth as reported by /proc/slabinfo. To avoid this we should use softwall cpuset check in fallback_alloc. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Zefan Li <lizefan@huawei.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13memcg: fix possible use-after-free in memcg_kmem_get_cache()Vladimir Davydov1-0/+2
Suppose task @t that belongs to a memory cgroup @memcg is going to allocate an object from a kmem cache @c. The copy of @c corresponding to @memcg, @mc, is empty. Then if kmem_cache_alloc races with the memory cgroup destruction we can access the memory cgroup's copy of the cache after it was destroyed: CPU0 CPU1 ---- ---- [ current=@t @mc->memcg_params->nr_pages=0 ] kmem_cache_alloc(@c): call memcg_kmem_get_cache(@c); proceed to allocation from @mc: alloc a page for @mc: ... move @t from @memcg destroy @memcg: mem_cgroup_css_offline(@memcg): memcg_unregister_all_caches(@memcg): kmem_cache_destroy(@mc) add page to @mc We could fix this issue by taking a reference to a per-memcg cache, but that would require adding a per-cpu reference counter to per-memcg caches, which would look cumbersome. Instead, let's take a reference to a memory cgroup, which already has a per-cpu reference counter, in the beginning of kmem_cache_alloc to be dropped in the end, and move per memcg caches destruction from css offline to css free. As a side effect, per-memcg caches will be destroyed not one by one, but all at once when the last page accounted to the memory cgroup is freed. This doesn't sound as a high price for code readability though. Note, this patch does add some overhead to the kmem_cache_alloc hot path, but it is pretty negligible - it's just a function call plus a per cpu counter decrement, which is comparable to what we already have in memcg_kmem_get_cache. Besides, it's only relevant if there are memory cgroups with kmem accounting enabled. I don't think we can find a way to handle this race w/o it, because alloc_page called from kmem_cache_alloc may sleep so we can't flush all pending kmallocs w/o reference counting. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11Merge branch 'for-3.19' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup update from Tejun Heo: "cpuset got simplified a bit. cgroup core got a fix on unified hierarchy and grew some effective css related interfaces which will be used for blkio support for writeback IO traffic which is currently being worked on" * 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: implement cgroup_get_e_css() cgroup: add cgroup_subsys->css_e_css_changed() cgroup: add cgroup_subsys->css_released() cgroup: fix the async css offline wait logic in cgroup_subtree_control_write() cgroup: restructure child_subsys_mask handling in cgroup_subtree_control_write() cgroup: separate out cgroup_calc_child_subsys_mask() from cgroup_refresh_child_subsys_mask() cpuset: lock vs unlock typo cpuset: simplify cpuset_node_allowed API cpuset: convert callback_mutex to a spinlock
2014-12-10slab: improve checking for invalid gfp_flagsAndrew Morton1-1/+4
The code goes BUG, but doesn't tell us which bits were unexpectedly set. Print that out. Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10slab: print slabinfo header in seq showVladimir Davydov1-7/+1
Currently we print the slabinfo header in the seq start method, which makes it unusable for showing leaks, so we have leaks_show, which does practically the same as s_show except it doesn't show the header. However, we can print the header in the seq show method - we only need to check if the current element is the first on the list. This will allow us to use the same set of seq iterators for both leaks and slabinfo reporting, which is nice. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10mm: slab/slub: coding style: whitespaces and tabs mixtureLQYMGT1-5/+5
Some code in mm/slab.c and mm/slub.c use whitespaces in indent. Clean them up. Signed-off-by: LQYMGT <lqymgt@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-03slab: fix nodeid bounds check for non-contiguous node IDsPaul Mackerras1-1/+1
The bounds check for nodeid in ____cache_alloc_node gives false positives on machines where the node IDs are not contiguous, leading to a panic at boot time. For example, on a POWER8 machine the node IDs are typically 0, 1, 16 and 17. This means that num_online_nodes() returns 4, so when ____cache_alloc_node is called with nodeid = 16 the VM_BUG_ON triggers, like this: kernel BUG at /home/paulus/kernel/kvm/mm/slab.c:3079! Call Trace: .____cache_alloc_node+0x5c/0x270 (unreliable) .kmem_cache_alloc_node_trace+0xdc/0x360 .init_list+0x3c/0x128 .kmem_cache_init+0x1dc/0x258 .start_kernel+0x2a0/0x568 start_here_common+0x20/0xa8 To fix this, we instead compare the nodeid with MAX_NUMNODES, and additionally make sure it isn't negative (since nodeid is an int). The check is there mainly to protect the array dereference in the get_node() call in the next line, and the array being dereferenced is of size MAX_NUMNODES. If the nodeid is in range but invalid (for example if the node is off-line), the BUG_ON in the next line will catch that. Fixes: 14e50c6a9bc2 ("mm: slab: Verify the nodeid passed to ____cache_alloc_node") Signed-off-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-27cpuset: simplify cpuset_node_allowed APIVladimir Davydov1-1/+1
Current cpuset API for checking if a zone/node is allowed to allocate from looks rather awkward. We have hardwall and softwall versions of cpuset_node_allowed with the softwall version doing literally the same as the hardwall version if __GFP_HARDWALL is passed to it in gfp flags. If it isn't, the softwall version may check the given node against the enclosing hardwall cpuset, which it needs to take the callback lock to do. Such a distinction was introduced by commit 02a0e53d8227 ("cpuset: rework cpuset_zone_allowed api"). Before, we had the only version with the __GFP_HARDWALL flag determining its behavior. The purpose of the commit was to avoid sleep-in-atomic bugs when someone would mistakenly call the function without the __GFP_HARDWALL flag for an atomic allocation. The suffixes introduced were intended to make the callers think before using the function. However, since the callback lock was converted from mutex to spinlock by the previous patch, the softwall check function cannot sleep, and these precautions are no longer necessary. So let's simplify the API back to the single check. Suggested-by: David Rientjes <rientjes@google.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-10-14mm/slab: fix unaligned access on sparc64Joonsoo Kim1-1/+1
Commit bf0dea23a9c0 ("mm/slab: use percpu allocator for cpu cache") changed the allocation method for cpu cache array from slab allocator to percpu allocator. Alignment should be provided for aligned memory in percpu allocator case, but, that commit mistakenly set this alignment to 0. So, percpu allocator returns unaligned memory address. It doesn't cause any problem on x86 which permits unaligned access, but, it causes the problem on sparc64 which needs strong guarantee of alignment. Following bug report is reported from David Miller. I'm getting tons of the following on sparc64: [603965.383447] Kernel unaligned access at TPC[546b58] free_block+0x98/0x1a0 [603965.396987] Kernel unaligned access at TPC[546b60] free_block+0xa0/0x1a0 ... [603970.554394] log_unaligned: 333 callbacks suppressed ... This patch provides a proper alignment parameter when allocating cpu cache to fix this unaligned memory access problem on sparc64. Reported-by: David Miller <davem@davemloft.net> Tested-by: David Miller <davem@davemloft.net> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm/slab.c: use __seq_open_private() instead of seq_open()Rob Jones1-13/+9
Using __seq_open_private() removes boilerplate code from slabstats_open() The resultant code is shorter and easier to follow. This patch does not change any functionality. Signed-off-by: Rob Jones <rob.jones@codethink.co.uk> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm/slab: use percpu allocator for cpu cacheJoonsoo Kim1-164/+75
Because of chicken and egg problem, initialization of SLAB is really complicated. We need to allocate cpu cache through SLAB to make the kmem_cache work, but before initialization of kmem_cache, allocation through SLAB is impossible. On the other hand, SLUB does initialization in a more simple way. It uses percpu allocator to allocate cpu cache so there is no chicken and egg problem. So, this patch try to use percpu allocator in SLAB. This simplifies the initialization step in SLAB so that we could maintain SLAB code more easily. In my testing there is no performance difference. This implementation relies on percpu allocator. Because percpu allocator uses vmalloc address space, vmalloc address space could be exhausted by this change on many cpu system with *32 bit* kernel. This implementation can cover 1024 cpus in worst case by following calculation. Worst: 1024 cpus * 4 bytes for pointer * 300 kmem_caches * 120 objects per cpu_cache = 140 MB Normal: 1024 cpus * 4 bytes for pointer * 150 kmem_caches(slab merge) * 80 objects per cpu_cache = 46 MB Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Jeremiah Mahler <jmmahler@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm/slab: support slab mergeJoonsoo Kim1-0/+26
Slab merge is good feature to reduce fragmentation. If new creating slab have similar size and property with exsitent slab, this feature reuse it rather than creating new one. As a result, objects are packed into fewer slabs so that fragmentation is reduced. Below is result of my testing. * After boot, sleep 20; cat /proc/meminfo | grep Slab <Before> Slab: 25136 kB <After> Slab: 24364 kB We can save 3% memory used by slab. For supporting this feature in SLAB, we need to implement SLAB specific kmem_cache_flag() and __kmem_cache_alias(), because SLUB implements some SLUB specific processing related to debug flag and object size change on these functions. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm/slab: factor out unlikely part of cache_free_alien()Joonsoo Kim1-17/+21
cache_free_alien() is rarely used function when node mismatch. But, it is defined with inline attribute so it is inlined to __cache_free() which is core free function of slab allocator. It uselessly makes kmem_cache_free()/kfree() functions large. What we really need to inline is just checking node match so this patch factor out other parts of cache_free_alien() to reduce code size of kmem_cache_free()/ kfree(). <Before> nm -S mm/slab.o | grep -e "T kfree" -e "T kmem_cache_free" 00000000000011e0 0000000000000228 T kfree 0000000000000670 0000000000000216 T kmem_cache_free <After> nm -S mm/slab.o | grep -e "T kfree" -e "T kmem_cache_free" 0000000000001110 00000000000001b5 T kfree 0000000000000750 0000000000000181 T kmem_cache_free You can see slightly reduced size of text: 0x228->0x1b5, 0x216->0x181. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm/slab: noinline __ac_put_obj()Joonsoo Kim1-2/+2
Our intention of __ac_put_obj() is that it doesn't affect anything if sk_memalloc_socks() is disabled. But, because __ac_put_obj() is too small, compiler inline it to ac_put_obj() and affect code size of free path. This patch add noinline keyword for __ac_put_obj() not to distrupt normal free path at all. <Before> nm -S slab-orig.o | grep -e "t cache_alloc_refill" -e "T kfree" -e "T kmem_cache_free" 0000000000001e80 00000000000002f5 t cache_alloc_refill 0000000000001230 0000000000000258 T kfree 0000000000000690 000000000000024c T kmem_cache_free <After> nm -S slab-patched.o | grep -e "t cache_alloc_refill" -e "T kfree" -e "T kmem_cache_free" 0000000000001e00 00000000000002e5 t cache_alloc_refill 00000000000011e0 0000000000000228 T kfree 0000000000000670 0000000000000216 T kmem_cache_free cache_alloc_refill: 0x2f5->0x2e5 kfree: 0x256->0x228 kmem_cache_free: 0x24c->0x216 code size of each function is reduced slightly. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm/slab: move cache_flusharray() out of unlikely.text sectionJoonsoo Kim1-1/+1
Now, due to likely keyword, compiled code of cache_flusharray() is on unlikely.text section. Although it is uncommon case compared to free to cpu cache case, it is common case than free_block(). But, free_block() is on normal text section. This patch fix this odd situation to remove likely keyword. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm/sl[ao]b: always track caller in kmalloc_(node_)track_caller()Joonsoo Kim1-18/+0
Now, we track caller if tracing or slab debugging is enabled. If they are disabled, we could save one argument passing overhead by calling __kmalloc(_node)(). But, I think that it would be marginal. Furthermore, default slab allocator, SLUB, doesn't use this technique so I think that it's okay to change this situation. After this change, we can turn on/off CONFIG_DEBUG_SLAB without full kernel build and remove some complicated '#if' defintion. It looks more benefitial to me. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-09-27Merge branch 'for-3.17-fixes' of ↵Linus Torvalds1-2/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup fixes from Tejun Heo: "This is quite late but these need to be backported anyway. This is the fix for a long-standing cpuset bug which existed from 2009. cpuset makes use of PF_SPREAD_{PAGE|SLAB} flags to modify the task's memory allocation behavior according to the settings of the cpuset it belongs to; unfortunately, when those flags have to be changed, cpuset did so directly even whlie the target task is running, which is obviously racy as task->flags may be modified by the task itself at any time. This obscure bug manifested as corrupt PF_USED_MATH flag leading to a weird crash. The bug is fixed by moving the flag to task->atomic_flags. The first two are prepatory ones to help defining atomic_flags accessors and the third one is the actual fix" * 'for-3.17-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cpuset: PF_SPREAD_PAGE and PF_SPREAD_SLAB should be atomic flags sched: add macros to define bitops for task atomic flags sched: fix confusing PFA_NO_NEW_PRIVS constant
2014-09-26mm, slab: initialize object alignment on cache creationDavid Rientjes1-9/+2
Since commit 4590685546a3 ("mm/sl[aou]b: Common alignment code"), the "ralign" automatic variable in __kmem_cache_create() may be used as uninitialized. The proper alignment defaults to BYTES_PER_WORD and can be overridden by SLAB_RED_ZONE or the alignment specified by the caller. This fixes https://bugzilla.kernel.org/show_bug.cgi?id=85031 Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Andrei Elovikov <a.elovikov@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-09-24cpuset: PF_SPREAD_PAGE and PF_SPREAD_SLAB should be atomic flagsZefan Li1-2/+2
When we change cpuset.memory_spread_{page,slab}, cpuset will flip PF_SPREAD_{PAGE,SLAB} bit of tsk->flags for each task in that cpuset. This should be done using atomic bitops, but currently we don't, which is broken. Tetsuo reported a hard-to-reproduce kernel crash on RHEL6, which happened when one thread tried to clear PF_USED_MATH while at the same time another thread tried to flip PF_SPREAD_PAGE/PF_SPREAD_SLAB. They both operate on the same task. Here's the full report: https://lkml.org/lkml/2014/9/19/230 To fix this, we make PF_SPREAD_PAGE and PF_SPREAD_SLAB atomic flags. v4: - updated mm/slab.c. (Fengguang Wu) - updated Documentation. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Kees Cook <keescook@chromium.org> Fixes: 950592f7b991 ("cpusets: update tasks' page/slab spread flags in time") Cc: <stable@vger.kernel.org> # 2.6.31+ Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-08Revert "slab: remove BAD_ALIEN_MAGIC"Joonsoo Kim1-1/+3
This reverts commit a640616822b2 ("slab: remove BAD_ALIEN_MAGIC"). commit a640616822b2 ("slab: remove BAD_ALIEN_MAGIC") assumes that the system with !CONFIG_NUMA has only one memory node. But, it turns out to be false by the report from Geert. His system, m68k, has many memory nodes and is configured in !CONFIG_NUMA. So it couldn't boot with above change. Here goes his failure report. With latest mainline, I'm getting a crash during bootup on m68k/ARAnyM: enable_cpucache failed for radix_tree_node, error 12. kernel BUG at /scratch/geert/linux/linux-m68k/mm/slab.c:1522! *** TRAP #7 *** FORMAT=0 Current process id is 0 BAD KERNEL TRAP: 00000000 Modules linked in: PC: [<0039c92c>] kmem_cache_init_late+0x70/0x8c SR: 2200 SP: 00345f90 a2: 0034c2e8 d0: 0000003d d1: 00000000 d2: 00000000 d3: 003ac942 d4: 00000000 d5: 00000000 a0: 0034f686 a1: 0034f682 Process swapper (pid: 0, task=0034c2e8) Frame format=0 Stack from 00345fc4: 002f69ef 002ff7e5 000005f2 000360fa 0017d806 003921d4 00000000 00000000 00000000 00000000 00000000 00000000 003ac942 00000000 003912d6 Call Trace: [<000360fa>] parse_args+0x0/0x2ca [<0017d806>] strlen+0x0/0x1a [<003921d4>] start_kernel+0x23c/0x428 [<003912d6>] _sinittext+0x2d6/0x95e Code: f7e5 4879 002f 69ef 61ff ffca 462a 4e47 <4879> 0035 4b1c 61ff fff0 0cc4 7005 23c0 0037 fd20 588f 265f 285f 4e75 48e7 301c Disabling lock debugging due to kernel taint Kernel panic - not syncing: Attempted to kill the idle task! Although there is a alternative way to fix this issue such as disabling use of alien cache on !CONFIG_NUMA, but, reverting issued commit is better to me in this time. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm/slab.c: fix commentsWang Sheng-Hui1-4/+5
Current struct kmem_cache has no 'lock' field, and slab page is managed by struct kmem_cache_node, which has 'list_lock' field. Clean up the related comment. Signed-off-by: Wang Sheng-Hui <shhuiw@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: change int to size_t for representing allocation sizeJoonsoo Kim1-4/+4
It is better to represent allocation size in size_t rather than int. So change it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Cc: Christoph Lameter <cl@linux.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: remove BAD_ALIEN_MAGICJoonsoo Kim1-3/+1
BAD_ALIEN_MAGIC value isn't used anymore. So remove it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: remove a useless lockdep annotationJoonsoo Kim1-153/+0
Now, there is no code to hold two lock simultaneously, since we don't call slab_destroy() with holding any lock. So, lockdep annotation is useless now. Remove it. v2: don't remove BAD_ALIEN_MAGIC in this patch. It will be removed in the following patch. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: destroy a slab without holding any alien cache lockJoonsoo Kim1-7/+13
I haven't heard that this alien cache lock is contended, but to reduce chance of contention would be better generally. And with this change, we can simplify complex lockdep annotation in slab code. In the following patch, it will be implemented. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: use the lock on alien_cache, instead of the lock on array_cacheJoonsoo Kim1-17/+8
Now, we have separate alien_cache structure, so it'd be better to hold the lock on alien_cache while manipulating alien_cache. After that, we don't need the lock on array_cache, so remove it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: introduce alien_cacheJoonsoo Kim1-41/+67
Currently, we use array_cache for alien_cache. Although they are mostly similar, there is one difference, that is, need for spinlock. We don't need spinlock for array_cache itself, but to use array_cache for alien_cache, array_cache structure should have spinlock. This is needless overhead, so removing it would be better. This patch prepare it by introducing alien_cache and using it. In the following patch, we remove spinlock in array_cache. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: factor out initialization of array cacheJoonsoo Kim1-14/+19
Factor out initialization of array cache to use it in following patch. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: defer slab_destroy in free_block()Joonsoo Kim1-19/+41
In free_block(), if freeing object makes new free slab and number of free_objects exceeds free_limit, we start to destroy this new free slab with holding the kmem_cache node lock. Holding the lock is useless and, generally, holding a lock as least as possible is good thing. I never measure performance effect of this, but we'd be better not to hold the lock as much as possible. Commented by Christoph: This is also good because kmem_cache_free is no longer called while holding the node lock. So we avoid one case of recursion. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: move up code to get kmem_cache_node in free_block()Joonsoo Kim1-2/+1
node isn't changed, so we don't need to retreive this structure everytime we move the object. Maybe compiler do this optimization, but making it explicitly is better. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: add unlikely macro to help compilerJoonsoo Kim1-1/+1
This patchset does some cleanup and tries to remove lockdep annotation. Patches 1~2 are just for really really minor improvement. Patches 3~9 are for clean-up and removing lockdep annotation. There are two cases that lockdep annotation is needed in SLAB. 1) holding two node locks 2) holding two array cache(alien cache) locks I looked at the code and found that we can avoid these cases without any negative effect. 1) occurs if freeing object makes new free slab and we decide to destroy it. Although we don't need to hold the lock during destroying a slab, current code do that. Destroying a slab without holding the lock would help the reduction of the lock contention. To do it, I change the implementation that new free slab is destroyed after releasing the lock. 2) occurs on similar situation. When we free object from non-local node, we put this object to alien cache with holding the alien cache lock. If alien cache is full, we try to flush alien cache to proper node cache, and, in this time, new free slab could be made. Destroying it would be started and we will free metadata object which comes from another node. In this case, we need another node's alien cache lock to free object. This forces us to hold two array cache locks and then we need lockdep annotation although they are always different locks and deadlock cannot be possible. To prevent this situation, I use same way as 1). In this way, we can avoid 1) and 2) cases, and then, can remove lockdep annotation. As short stat noted, this makes SLAB code much simpler. This patch (of 9): slab_should_failslab() is called on every allocation, so to optimize it is reasonable. We normally don't allocate from kmem_cache. It is just used when new kmem_cache is created, so it's very rare case. Therefore, add unlikely macro to help compiler optimization. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06slab: use get_node() and kmem_cache_node() functionsChristoph Lameter1-93/+80
Use the two functions to simplify the code avoiding numerous explicit checks coded checking for a certain node to be online. Get rid of various repeated calculations of kmem_cache_node structures. [akpm@linux-foundation.org: fix build] Signed-off-by: Christoph Lameter <cl@linux.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm/slab.c: add __init to init_lock_keysFabian Frederick1-2/+2
init_lock_keys is only called by __init kmem_cache_init_late Signed-off-by: Fabian Frederick <fabf@skynet.be> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-23slab: fix oops when reading /proc/slab_allocatorsJoonsoo Kim1-19/+71
Commit b1cb0982bdd6 ("change the management method of free objects of the slab") introduced a bug on slab leak detector ('/proc/slab_allocators'). This detector works like as following decription. 1. traverse all objects on all the slabs. 2. determine whether it is active or not. 3. if active, print who allocate this object. but that commit changed the way how to manage free objects, so the logic determining whether it is active or not is also changed. In before, we regard object in cpu caches as inactive one, but, with this commit, we mistakenly regard object in cpu caches as active one. This intoduces kernel oops if DEBUG_PAGEALLOC is enabled. If DEBUG_PAGEALLOC is enabled, kernel_map_pages() is used to detect who corrupt free memory in the slab. It unmaps page table mapping if object is free and map it if object is active. When slab leak detector check object in cpu caches, it mistakenly think this object active so try to access object memory to retrieve caller of allocation. At this point, page table mapping to this object doesn't exist, so oops occurs. Following is oops message reported from Dave. It blew up when something tried to read /proc/slab_allocators (Just cat it, and you should see the oops below) Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: [snip...] CPU: 1 PID: 9386 Comm: trinity-c33 Not tainted 3.14.0-rc5+ #131 task: ffff8801aa46e890 ti: ffff880076924000 task.ti: ffff880076924000 RIP: 0010:[<ffffffffaa1a8f4a>] [<ffffffffaa1a8f4a>] handle_slab+0x8a/0x180 RSP: 0018:ffff880076925de0 EFLAGS: 00010002 RAX: 0000000000001000 RBX: 0000000000000000 RCX: 000000005ce85ce7 RDX: ffffea00079be100 RSI: 0000000000001000 RDI: ffff880107458000 RBP: ffff880076925e18 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 000000000000000f R12: ffff8801e6f84000 R13: ffffea00079be100 R14: ffff880107458000 R15: ffff88022bb8d2c0 FS: 00007fb769e45740(0000) GS:ffff88024d040000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff8801e6f84ff8 CR3: 00000000a22db000 CR4: 00000000001407e0 DR0: 0000000002695000 DR1: 0000000002695000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000070602 Call Trace: leaks_show+0xce/0x240 seq_read+0x28e/0x490 proc_reg_read+0x3d/0x80 vfs_read+0x9b/0x160 SyS_read+0x58/0xb0 tracesys+0xd4/0xd9 Code: f5 00 00 00 0f 1f 44 00 00 48 63 c8 44 3b 0c 8a 0f 84 e3 00 00 00 83 c0 01 44 39 c0 72 eb 41 f6 47 1a 01 0f 84 e9 00 00 00 89 f0 <4d> 8b 4c 04 f8 4d 85 c9 0f 84 88 00 00 00 49 8b 7e 08 4d 8d 46 RIP handle_slab+0x8a/0x180 To fix the problem, I introduce an object status buffer on each slab. With this, we can track object status precisely, so slab leak detector would not access active object and no kernel oops would occur. Memory overhead caused by this fix is only imposed to CONFIG_DEBUG_SLAB_LEAK which is mainly used for debugging, so memory overhead isn't big problem. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04memcg, slab: merge memcg_{bind,release}_pages to memcg_{un}charge_slabVladimir Davydov1-2/+0
Currently we have two pairs of kmemcg-related functions that are called on slab alloc/free. The first is memcg_{bind,release}_pages that count the total number of pages allocated on a kmem cache. The second is memcg_{un}charge_slab that {un}charge slab pages to kmemcg resource counter. Let's just merge them to keep the code clean. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04slab: get_online_mems for kmem_cache_{create,destroy,shrink}Vladimir Davydov1-24/+2
When we create a sl[au]b cache, we allocate kmem_cache_node structures for each online NUMA node. To handle nodes taken online/offline, we register memory hotplug notifier and allocate/free kmem_cache_node corresponding to the node that changes its state for each kmem cache. To synchronize between the two paths we hold the slab_mutex during both the cache creationg/destruction path and while tuning per-node parts of kmem caches in memory hotplug handler, but that's not quite right, because it does not guarantee that a newly created cache will have all kmem_cache_nodes initialized in case it races with memory hotplug. For instance, in case of slub: CPU0 CPU1 ---- ---- kmem_cache_create: online_pages: __kmem_cache_create: slab_memory_callback: slab_mem_going_online_callback: lock slab_mutex for each slab_caches list entry allocate kmem_cache node unlock slab_mutex lock slab_mutex init_kmem_cache_nodes: for_each_node_state(node, N_NORMAL_MEMORY) allocate kmem_cache node add kmem_cache to slab_caches list unlock slab_mutex online_pages (continued): node_states_set_node As a result we'll get a kmem cache with not all kmem_cache_nodes allocated. To avoid issues like that we should hold get/put_online_mems() during the whole kmem cache creation/destruction/shrink paths, just like we deal with cpu hotplug. This patch does the trick. Note, that after it's applied, there is no need in taking the slab_mutex for kmem_cache_shrink any more, so it is removed from there. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Jiang Liu <liuj97@gmail.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04sl[au]b: charge slabs to kmemcg explicitlyVladimir Davydov1-1/+6
We have only a few places where we actually want to charge kmem so instead of intruding into the general page allocation path with __GFP_KMEMCG it's better to explictly charge kmem there. All kmem charges will be easier to follow that way. This is a step towards removing __GFP_KMEMCG. It removes __GFP_KMEMCG from memcg caches' allocflags. Instead it makes slab allocation path call memcg_charge_kmem directly getting memcg to charge from the cache's memcg params. This also eliminates any possibility of misaccounting an allocation going from one memcg's cache to another memcg, because now we always charge slabs against the memcg the cache belongs to. That's why this patch removes the big comment to memcg_kmem_get_cache. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04mm, slab: suppress out of memory warning unless debug is enabledDavid Rientjes1-2/+8
When the slab or slub allocators cannot allocate additional slab pages, they emit diagnostic information to the kernel log such as current number of slabs, number of objects, active objects, etc. This is always coupled with a page allocation failure warning since it is controlled by !__GFP_NOWARN. Suppress this out of memory warning if the allocator is configured without debug supported. The page allocation failure warning will indicate it is a failed slab allocation, the order, and the gfp mask, so this is only useful to diagnose allocator issues. Since CONFIG_SLUB_DEBUG is already enabled by default for the slub allocator, there is no functional change with this patch. If debug is disabled, however, the warnings are now suppressed. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-05slab: Fix off by one in object max number tests.David Miller1-1/+1
If freelist_idx_t is a byte, SLAB_OBJ_MAX_NUM should be 255 not 256, and likewise if freelist_idx_t is a short, then it should be 65535 not 65536. This was leading to all kinds of random crashes on sparc64 where PAGE_SIZE is 8192. One problem shown was that if spinlock debugging was enabled, we'd get deadlocks in copy_pte_range() or do_wp_page() with the same cpu already holding a lock it shouldn't hold, or the lock belonging to a completely unrelated process. Fixes: a41adfaa23df ("slab: introduce byte sized index for the freelist of a slab") Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-05slab: fix the type of the index on freelist index accessorJoonsoo Kim1-2/+2
Commit a41adfaa23df ("slab: introduce byte sized index for the freelist of a slab") changes the size of freelist index and also changes prototype of accessor function to freelist index. And there was a mistake. The mistake is that although it changes the size of freelist index correctly, it changes the size of the index of freelist index incorrectly. With patch, freelist index can be 1 byte or 2 bytes, that means that num of object on on a slab can be more than 255. So we need more than 1 byte for the index to find the index of free object on freelist. But, above patch makes this index type 1 byte, so slab which have more than 255 objects cannot work properly and in consequence of it, the system cannot boot. This issue was reported by Steven King on m68knommu which would use 2 bytes freelist index: https://lkml.org/lkml/2014/4/16/433 To fix is easy. To change the type of the index of freelist index on accessor functions is enough to fix this bug. Although 2 bytes is enough, I use 4 bytes since it have no bad effect and make things more easier. This fix was suggested and tested by Steven in his original report. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-and-acked-by: Steven King <sfking@fdwdc.com> Acked-by: Christoph Lameter <cl@linux.com> Tested-by: James Hogan <james.hogan@imgtec.com> Tested-by: David Miller <davem@davemloft.net> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-13Merge branch 'slab/next' of ↵Linus Torvalds1-76/+107
git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux Pull slab changes from Pekka Enberg: "The biggest change is byte-sized freelist indices which reduces slab freelist memory usage: https://lkml.org/lkml/2013/12/2/64" * 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: mm: slab/slub: use page->list consistently instead of page->lru mm/slab.c: cleanup outdated comments and unify variables naming slab: fix wrongly used macro slub: fix high order page allocation problem with __GFP_NOFAIL slab: Make allocations with GFP_ZERO slightly more efficient slab: make more slab management structure off the slab slab: introduce byte sized index for the freelist of a slab slab: restrict the number of objects in a slab slab: introduce helper functions to get/set free object slab: factor out calculate nr objects in cache_estimate
2014-04-11mm: slab/slub: use page->list consistently instead of page->lruDave Hansen1-2/+2
'struct page' has two list_head fields: 'lru' and 'list'. Conveniently, they are unioned together. This means that code can use them interchangably, which gets horribly confusing like with this nugget from slab.c: > list_del(&page->lru); > if (page->active == cachep->num) > list_add(&page->list, &n->slabs_full); This patch makes the slab and slub code use page->lru universally instead of mixing ->list and ->lru. So, the new rule is: page->lru is what the you use if you want to keep your page on a list. Don't like the fact that it's not called ->list? Too bad. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2014-04-07mm, mempolicy: remove per-process flagDavid Rientjes1-2/+2
PF_MEMPOLICY is an unnecessary optimization for CONFIG_SLAB users. There's no significant performance degradation to checking current->mempolicy rather than current->flags & PF_MEMPOLICY in the allocation path, especially since this is considered unlikely(). Running TCP_RR with netperf-2.4.5 through localhost on 16 cpu machine with 64GB of memory and without a mempolicy: threads before after 16 1249409 1244487 32 1281786 1246783 48 1239175 1239138 64 1244642 1241841 80 1244346 1248918 96 1266436 1254316 112 1307398 1312135 128 1327607 1326502 Per-process flags are a scarce resource so we should free them up whenever possible and make them available. We'll be using it shortly for memcg oom reserves. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Tim Hockin <thockin@google.com> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07mm, mempolicy: rename slab_node for clarityDavid Rientjes1-2/+2
slab_node() is actually a mempolicy function, so rename it to mempolicy_slab_node() to make it clearer that it used for processes with mempolicies. At the same time, cleanup its code by saving numa_mem_id() in a local variable (since we require a node with memory, not just any node) and remove an obsolete comment that assumes the mempolicy is actually passed into the function. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Tim Hockin <thockin@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm: optimize put_mems_allowed() usageMel Gorman1-2/+2
Since put_mems_allowed() is strictly optional, its a seqcount retry, we don't need to evaluate the function if the allocation was in fact successful, saving a smp_rmb some loads and comparisons on some relative fast-paths. Since the naming, get/put_mems_allowed() does suggest a mandatory pairing, rename the interface, as suggested by Mel, to resemble the seqcount interface. This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(), where it is important to note that the return value of the latter call is inverted from its previous incarnation. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-01mm/slab.c: cleanup outdated comments and unify variables namingJianyu Zhan1-34/+32
As time goes, the code changes a lot, and this leads to that some old-days comments scatter around , which instead of faciliating understanding, but make more confusion. So this patch cleans up them. Also, this patch unifies some variables naming. Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Jianyu Zhan <nasa4836@gmail.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2014-02-08slab: Make allocations with GFP_ZERO slightly more efficientJoe Perches1-8/+8
Use the likely mechanism already around valid pointer tests to better choose when to memset to 0 allocations with __GFP_ZERO Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2014-02-08slab: make more slab management structure off the slabJoonsoo Kim1-1/+1
Now, the size of the freelist for the slab management diminish, so that the on-slab management structure can waste large space if the object of the slab is large. Consider a 128 byte sized slab. If on-slab is used, 31 objects can be in the slab. The size of the freelist for this case would be 31 bytes so that 97 bytes, that is, more than 75% of object size, are wasted. In a 64 byte sized slab case, no space is wasted if we use on-slab. So set off-slab determining constraint to 128 bytes. Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2014-02-08slab: introduce byte sized index for the freelist of a slabJoonsoo Kim1-9/+9
Currently, the freelist of a slab consist of unsigned int sized indexes. Since most of slabs have less number of objects than 256, large sized indexes is needless. For example, consider the minimum kmalloc slab. It's object size is 32 byte and it would consist of one page, so 256 indexes through byte sized index are enough to contain all possible indexes. There can be some slabs whose object size is 8 byte. We cannot handle this case with byte sized index, so we need to restrict minimum object size. Since these slabs are not major, wasted memory from these slabs would be negligible. Some architectures' page size isn't 4096 bytes and rather larger than 4096 bytes (One example is 64KB page size on PPC or IA64) so that byte sized index doesn't fit to them. In this case, we will use two bytes sized index. Below is some number for this patch. * Before * kmalloc-512 525 640 512 8 1 : tunables 54 27 0 : slabdata 80 80 0 kmalloc-256 210 210 256 15 1 : tunables 120 60 0 : slabdata 14 14 0 kmalloc-192 1016 1040 192 20 1 : tunables 120 60 0 : slabdata 52 52 0 kmalloc-96 560 620 128 31 1 : tunables 120 60 0 : slabdata 20 20 0 kmalloc-64 2148 2280 64 60 1 : tunables 120 60 0 : slabdata 38 38 0 kmalloc-128 647 682 128 31 1 : tunables 120 60 0 : slabdata 22 22 0 kmalloc-32 11360 11413 32 113 1 : tunables 120 60 0 : slabdata 101 101 0 kmem_cache 197 200 192 20 1 : tunables 120 60 0 : slabdata 10 10 0 * After * kmalloc-512 521 648 512 8 1 : tunables 54 27 0 : slabdata 81 81 0 kmalloc-256 208 208 256 16 1 : tunables 120 60 0 : slabdata 13 13 0 kmalloc-192 1029 1029 192 21 1 : tunables 120 60 0 : slabdata 49 49 0 kmalloc-96 529 589 128 31 1 : tunables 120 60 0 : slabdata 19 19 0 kmalloc-64 2142 2142 64 63 1 : tunables 120 60 0 : slabdata 34 34 0 kmalloc-128 660 682 128 31 1 : tunables 120 60 0 : slabdata 22 22 0 kmalloc-32 11716 11780 32 124 1 : tunables 120 60 0 : slabdata 95 95 0 kmem_cache 197 210 192 21 1 : tunables 120 60 0 : slabdata 10 10 0 kmem_caches consisting of objects less than or equal to 256 byte have one or more objects than before. In the case of kmalloc-32, we have 11 more objects, so 352 bytes (11 * 32) are saved and this is roughly 9% saving of memory. Of couse, this percentage decreases as the number of objects in a slab decreases. Here are the performance results on my 4 cpus machine. * Before * Performance counter stats for 'perf bench sched messaging -g 50 -l 1000' (10 runs): 229,945,138 cache-misses ( +- 0.23% ) 11.627897174 seconds time elapsed ( +- 0.14% ) * After * Performance counter stats for 'perf bench sched messaging -g 50 -l 1000' (10 runs): 218,640,472 cache-misses ( +- 0.42% ) 11.504999837 seconds time elapsed ( +- 0.21% ) cache-misses are reduced by this patchset, roughly 5%. And elapsed times are improved by 1%. Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2014-02-08slab: restrict the number of objects in a slabJoonsoo Kim1-0/+21
To prepare to implement byte sized index for managing the freelist of a slab, we should restrict the number of objects in a slab to be less or equal to 256, since byte only represent 256 different values. Setting the size of object to value equal or more than newly introduced SLAB_OBJ_MIN_SIZE ensures that the number of objects in a slab is less or equal to 256 for a slab with 1 page. If page size is rather larger than 4096, above assumption would be wrong. In this case, we would fall back on 2 bytes sized index. If minimum size of kmalloc is less than 16, we use it as minimum object size and give up this optimization. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>