summaryrefslogtreecommitdiffstats
path: root/mm/page_alloc.c
AgeCommit message (Collapse)AuthorFilesLines
2010-10-11Merge branch 'x86/urgent' into core/memblockH. Peter Anvin1-2/+2
Reason for merge: Forward-port urgent change to arch/x86/mm/srat_64.c to the memblock tree. Resolved Conflicts: arch/x86/mm/srat_64.c Originally-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-10-08Merge commit 'v2.6.36-rc7' into core/memblockIngo Molnar1-10/+23
Merge reason: Update from -rc3 to -rc7. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-10-07mm: alloc_large_system_hash() printk overflow on 16TB bootRobin Holt1-2/+2
During boot of a 16TB system, the following is printed: Dentry cache hash table entries: -2147483648 (order: 22, 17179869184 bytes) Signed-off-by: Robin Holt <holt@sgi.com> Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09mm: page allocator: drain per-cpu lists after direct reclaim allocation failsMel Gorman1-4/+16
When under significant memory pressure, a process enters direct reclaim and immediately afterwards tries to allocate a page. If it fails and no further progress is made, it's possible the system will go OOM. However, on systems with large amounts of memory, it's possible that a significant number of pages are on per-cpu lists and inaccessible to the calling process. This leads to a process entering direct reclaim more often than it should increasing the pressure on the system and compounding the problem. This patch notes that if direct reclaim is making progress but allocations are still failing that the system is already under heavy pressure. In this case, it drains the per-cpu lists and tries the allocation a second time before continuing. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09mm: page allocator: calculate a better estimate of NR_FREE_PAGES when memory ↵Christoph Lameter1-2/+2
is low and kswapd is awake Ordinarily watermark checks are based on the vmstat NR_FREE_PAGES as it is cheaper than scanning a number of lists. To avoid synchronization overhead, counter deltas are maintained on a per-cpu basis and drained both periodically and when the delta is above a threshold. On large CPU systems, the difference between the estimated and real value of NR_FREE_PAGES can be very high. If NR_FREE_PAGES is much higher than number of real free page in buddy, the VM can allocate pages below min watermark, at worst reducing the real number of pages to zero. Even if the OOM killer kills some victim for freeing memory, it may not free memory if the exit path requires a new page resulting in livelock. This patch introduces a zone_page_state_snapshot() function (courtesy of Christoph) that takes a slightly more accurate view of an arbitrary vmstat counter. It is used to read NR_FREE_PAGES while kswapd is awake to avoid the watermark being accidentally broken. The estimate is not perfect and may result in cache line bounces but is expected to be lighter than the IPI calls necessary to continually drain the per-cpu counters while kswapd is awake. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09mm: page allocator: update free page counters after pages are placed on the ↵Mel Gorman1-4/+5
free list When allocating a page, the system uses NR_FREE_PAGES counters to determine if watermarks would remain intact after the allocation was made. This check is made without interrupts disabled or the zone lock held and so is race-prone by nature. Unfortunately, when pages are being freed in batch, the counters are updated before the pages are added on the list. During this window, the counters are misleading as the pages do not exist yet. When under significant pressure on systems with large numbers of CPUs, it's possible for processes to make progress even though they should have been stalled. This is particularly problematic if a number of the processes are using GFP_ATOMIC as the min watermark can be accidentally breached and in extreme cases, the system can livelock. This patch updates the counters after the pages have been added to the list. This makes the allocator more cautious with respect to preserving the watermarks and mitigates livelock possibilities. [akpm@linux-foundation.org: avoid modifying incoming args] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-31Merge commit 'v2.6.36-rc3' into x86/memblockIngo Molnar1-12/+21
Conflicts: arch/x86/kernel/trampoline.c mm/memblock.c Merge reason: Resolve the conflicts, update to latest upstream. Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-08-27x86: Use memblock to replace early_resYinghai Lu1-35/+15
1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-27memblock: Add find_memory_core_early()Yinghai Lu1-0/+36
According to node range in early_node_map[] with __memblock_find_in_range to find free range. Will be used by memblock_x86_find_in_range_node() memblock_x86_find_in_range_node will be used to find right buffer for NODE_DATA Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-09vmscan: kill prev_priority completelyKOSAKI Motohiro1-2/+0
Since 2.6.28 zone->prev_priority is unused. Then it can be removed safely. It reduce stack usage slightly. Now I have to say that I'm sorry. 2 years ago, I thought prev_priority can be integrate again, it's useful. but four (or more) times trying haven't got good performance number. Thus I give up such approach. The rest of this changelog is notes on prev_priority and why it existed in the first place and why it might be not necessary any more. This information is based heavily on discussions between Andrew Morton, Rik van Riel and Kosaki Motohiro who is heavily quotes from. Historically prev_priority was important because it determined when the VM would start unmapping PTE pages. i.e. there are no balances of note within the VM, Anon vs File and Mapped vs Unmapped. Without prev_priority, there is a potential risk of unnecessarily increasing minor faults as a large amount of read activity of use-once pages could push mapped pages to the end of the LRU and get unmapped. There is no proof this is still a problem but currently it is not considered to be. Active files are not deactivated if the active file list is smaller than the inactive list reducing the liklihood that file-mapped pages are being pushed off the LRU and referenced executable pages are kept on the active list to avoid them getting pushed out by read activity. Even if it is a problem, prev_priority prev_priority wouldn't works nowadays. First of all, current vmscan still a lot of UP centric code. it expose some weakness on some dozens CPUs machine. I think we need more and more improvement. The problem is, current vmscan mix up per-system-pressure, per-zone-pressure and per-task-pressure a bit. example, prev_priority try to boost priority to other concurrent priority. but if the another task have mempolicy restriction, it is unnecessary, but also makes wrong big latency and exceeding reclaim. per-task based priority + prev_priority adjustment make the emulation of per-system pressure. but it have two issue 1) too rough and brutal emulation 2) we need per-zone pressure, not per-system. Another example, currently DEF_PRIORITY is 12. it mean the lru rotate about 2 cycle (1/4096 + 1/2048 + 1/1024 + .. + 1) before invoking OOM-Killer. but if 10,0000 thrreads enter DEF_PRIORITY reclaim at the same time, the system have higher memory pressure than priority==0 (1/4096*10,000 > 2). prev_priority can't solve such multithreads workload issue. In other word, prev_priority concept assume the sysmtem don't have lots threads." Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Chris Mason <chris.mason@oracle.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michael Rubin <mrubin@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09mm: rename try_set_zone_oom() to try_set_zonelist_oom()Minchan Kim1-1/+1
We have been used naming try_set_zone_oom and clear_zonelist_oom. The role of functions is to lock of zonelist for preventing parallel OOM. So clear_zonelist_oom makes sense but try_set_zone_oome is rather awkward and unmatched with clear_zonelist_oom. Let's change it with try_set_zonelist_oom. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09oom: avoid oom killer for lowmem allocationsDavid Rientjes1-9/+20
If memory has been depleted in lowmem zones even with the protection afforded to it by /proc/sys/vm/lowmem_reserve_ratio, it is unlikely that killing current users will help. The memory is either reclaimable (or migratable) already, in which case we should not invoke the oom killer at all, or it is pinned by an application for I/O. Killing such an application may leave the hardware in an unspecified state and there is no guarantee that it will be able to make a timely exit. Lowmem allocations are now failed in oom conditions when __GFP_NOFAIL is not used so that the task can perhaps recover or try again later. Previously, the heuristic provided some protection for those tasks with CAP_SYS_RAWIO, but this is no longer necessary since we will not be killing tasks for the purposes of ISA allocations. high_zoneidx is gfp_zone(gfp_flags), meaning that ZONE_NORMAL will be the default for all allocations that are not __GFP_DMA, __GFP_DMA32, __GFP_HIGHMEM, and __GFP_MOVABLE on kernels configured to support those flags. Testing for high_zoneidx being less than ZONE_NORMAL will only return true for allocations that have either __GFP_DMA or __GFP_DMA32. Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit ↵Yinghai Lu1-0/+3
numa is used Borislav Petkov reported his 32bit numa system has problem: [ 0.000000] Reserving total of 4c00 pages for numa KVA remap [ 0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe [ 0.000000] max_pfn = 238000 [ 0.000000] 8202MB HIGHMEM available. [ 0.000000] 885MB LOWMEM available. [ 0.000000] mapped low ram: 0 - 375fe000 [ 0.000000] low ram: 0 - 375fe000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80 [ 0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140 [ 0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000 [ 0.000000] BUG: unable to handle kernel paging request at 40000000 [ 0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6 [ 0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00 ... [ 0.000000] Call Trace: [ 0.000000] [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f [ 0.000000] [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b [ 0.000000] [<c2c9149e>] ? sparse_init+0x1dc/0x499 [ 0.000000] [<c2c79118>] ? paging_init+0x168/0x1df [ 0.000000] [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb looks like it allocates too much high address for bootmem. Try to cut limit with get_max_mapped() Reported-by: Borislav Petkov <borislav.petkov@amd.com> Tested-by: Conny Seidel <conny.seidel@amd.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@kernel.org> [2.6.34.x] Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-19kmemleak: Add support for NO_BOOTMEM configurationsCatalin Marinas1-0/+5
With commits 08677214 and 59be5a8e, alloc_bootmem()/free_bootmem() and friends use the early_res functions for memory management when NO_BOOTMEM is enabled. This patch adds the kmemleak calls in the corresponding code paths for bootmem allocations. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Acked-by: Yinghai Lu <yinghai@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: stable@kernel.org
2010-05-27numa: introduce numa_mem_id()- effective local memory node idLee Schermerhorn1-1/+44
Introduce numa_mem_id(), based on generic percpu variable infrastructure to track "nearest node with memory" for archs that support memoryless nodes. Define API in <linux/topology.h> when CONFIG_HAVE_MEMORYLESS_NODES defined, else stubs. Architectures will define HAVE_MEMORYLESS_NODES if/when they support them. Archs can override definitions of: numa_mem_id() - returns node number of "local memory" node set_numa_mem() - initialize [this cpus'] per cpu variable 'numa_mem' cpu_to_mem() - return numa_mem for specified cpu; may be used as lvalue Generic initialization of 'numa_mem' occurs in __build_all_zonelists(). This will initialize the boot cpu at boot time, and all cpus on change of numa_zonelist_order, or when node or memory hot-plug requires zonelist rebuild. Archs that support memoryless nodes will need to initialize 'numa_mem' for secondary cpus as they're brought on-line. [akpm@linux-foundation.org: fix build] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27numa: add generic percpu var numa_node_id() implementationLee Schermerhorn1-0/+5
Rework the generic version of the numa_node_id() function to use the new generic percpu variable infrastructure. Guard the new implementation with a new config option: CONFIG_USE_PERCPU_NUMA_NODE_ID. Archs which support this new implemention will default this option to 'y' when NUMA is configured. This config option could be removed if/when all archs switch over to the generic percpu implementation of numa_node_id(). Arch support involves: 1) converting any existing per cpu variable implementations to use this implementation. x86_64 is an instance of such an arch. 2) archs that don't use a per cpu variable for numa_node_id() will need to initialize the new per cpu variable "numa_node" as cpus are brought on-line. ia64 is an example. 3) Defining USE_PERCPU_NUMA_NODE_ID in arch dependent Kconfig--e.g., when NUMA is configured. This is required because I have retained the old implementation by default to allow archs to be modified incrementally, as desired. Subsequent patches will convert x86_64 and ia64 to use this implemenation. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25mem-hotplug: fix potential race while building zonelist for new populated zoneHaicheng Li1-1/+14
Add global mutex zonelists_mutex to fix the possible race: CPU0 CPU1 CPU2 (1) zone->present_pages += online_pages; (2) build_all_zonelists(); (3) alloc_page(); (4) free_page(); (5) build_all_zonelists(); (6) __build_all_zonelists(); (7) zone->pageset = alloc_percpu(); In step (3,4), zone->pageset still points to boot_pageset, so bad things may happen if 2+ nodes are in this state. Even if only 1 node is accessing the boot_pageset, (3) may still consume too much memory to fail the memory allocations in step (7). Besides, atomic operation ensures alloc_percpu() in step (7) will never fail since there is a new fresh memory block added in step(6). [haicheng.li@linux.intel.com: hold zonelists_mutex when build_all_zonelists] Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: Andi Kleen <andi.kleen@intel.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25mem-hotplug: avoid multiple zones sharing same boot strapping boot_pagesetHaicheng Li1-4/+13
For each new populated zone of hotadded node, need to update its pagesets with dynamically allocated per_cpu_pageset struct for all possible CPUs: 1) Detach zone->pageset from the shared boot_pageset at end of __build_all_zonelists(). 2) Use mutex to protect zone->pageset when it's still shared in onlined_pages() Otherwises, multiple zones of different nodes would share same boot strapping boot_pageset for same CPU, which will finally cause below kernel panic: ------------[ cut here ]------------ kernel BUG at mm/page_alloc.c:1239! invalid opcode: 0000 [#1] SMP ... Call Trace: [<ffffffff811300c1>] __alloc_pages_nodemask+0x131/0x7b0 [<ffffffff81162e67>] alloc_pages_current+0x87/0xd0 [<ffffffff81128407>] __page_cache_alloc+0x67/0x70 [<ffffffff811325f0>] __do_page_cache_readahead+0x120/0x260 [<ffffffff81132751>] ra_submit+0x21/0x30 [<ffffffff811329c6>] ondemand_readahead+0x166/0x2c0 [<ffffffff81132ba0>] page_cache_async_readahead+0x80/0xa0 [<ffffffff8112a0e4>] generic_file_aio_read+0x364/0x670 [<ffffffff81266cfa>] nfs_file_read+0xca/0x130 [<ffffffff8117b20a>] do_sync_read+0xfa/0x140 [<ffffffff8117bf75>] vfs_read+0xb5/0x1a0 [<ffffffff8117c151>] sys_read+0x51/0x80 [<ffffffff8103c032>] system_call_fastpath+0x16/0x1b RIP [<ffffffff8112ff13>] get_page_from_freelist+0x883/0x900 RSP <ffff88000d1e78a8> ---[ end trace 4bda28328b9990db ] [akpm@linux-foundation.org: merge fix] Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: Andi Kleen <andi.kleen@intel.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25mem-hotplug: separate setup_per_cpu_pageset() into separate functionsWu Fengguang1-17/+20
No behavior change here. Move some of setup_per_cpu_pageset() code into a new function setup_zone_pageset() that will be useful for memory hotplug. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com> Reviewed-by: Andi Kleen <andi.kleen@intel.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25mm: introduce free_pages_prepare()KOSAKI Motohiro1-19/+21
free_hot_cold_page() and __free_pages_ok() have very similar freeing preparation. Consolidate them. [akpm@linux-foundation.org: fix busted coding style] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25mm: compaction: defer compaction using an exponential backoff when ↵Mel Gorman1-1/+4
compaction fails The fragmentation index may indicate that a failure is due to external fragmentation but after a compaction run completes, it is still possible for an allocation to fail. There are two obvious reasons as to why o Page migration cannot move all pages so fragmentation remains o A suitable page may exist but watermarks are not met In the event of compaction followed by an allocation failure, this patch defers further compaction in the zone (1 << compact_defer_shift) times. If the next compaction attempt also fails, compact_defer_shift is increased up to a maximum of 6. If compaction succeeds, the defer counters are reset again. The zone that is deferred is the first zone in the zonelist - i.e. the preferred zone. To defer compaction in the other zones, the information would need to be stored in the zonelist or implemented similar to the zonelist_cache. This would impact the fast-paths and is not justified at this time. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25mm: compaction: direct compact when a high-order allocation failsMel Gorman1-0/+63
Ordinarily when a high-order allocation fails, direct reclaim is entered to free pages to satisfy the allocation. With this patch, it is determined if an allocation failed due to external fragmentation instead of low memory and if so, the calling process will compact until a suitable page is freed. Compaction by moving pages in memory is considerably cheaper than paging out to disk and works where there are locked pages or no swap. If compaction fails to free a page of a suitable size, then reclaim will still occur. Direct compaction returns as soon as possible. As each block is compacted, it is checked if a suitable page has been freed and if so, it returns. [akpm@linux-foundation.org: Fix build errors] [aarcange@redhat.com: fix count_vm_event preempt in memory compaction direct reclaim] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25mm: compaction: memory compaction coreMel Gorman1-0/+45
This patch is the core of a mechanism which compacts memory in a zone by relocating movable pages towards the end of the zone. A single compaction run involves a migration scanner and a free scanner. Both scanners operate on pageblock-sized areas in the zone. The migration scanner starts at the bottom of the zone and searches for all movable pages within each area, isolating them onto a private list called migratelist. The free scanner starts at the top of the zone and searches for suitable areas and consumes the free pages within making them available for the migration scanner. The pages isolated for migration are then migrated to the newly isolated free pages. [aarcange@redhat.com: Fix unsafe optimisation] [mel@csn.ul.ie: do not schedule work on other CPUs for compaction] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25mm: default to node zonelist ordering when nodes have only lowmemDavid Rientjes1-1/+10
There are two types of zonelist ordering methodologies: - node order, preferring allocations on a node to stay local to and - zone order, preferring allocations come from a higher zone to avoid allocating in lowmem zones even though they may not be local. The ordering technique used by the kernel is configurable on the command line, but also has some logic to determine what the default should be. This logic currently lacks knowledge of systems where a node may only have lowmem. For such systems, it is necessary to use node order so that GFP_KERNEL allocations may be satisfied by nodes consisting of only lowmem. If zone order is used, GFP_KERNEL allocations to such nodes are actually allocated on a node with local affinity that includes ZONE_NORMAL. This change defaults to node zonelist ordering if any node lacks ZONE_NORMAL. To force zone order, append 'numa_zonelist_order=zone' to the kernel command line. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25cpuset,mm: fix no node to alloc memory when changing cpuset's memsMiao Xie1-1/+5
Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25page allocator: reduce fragmentation in buddy allocator by adding buddies ↵Corrado Zoccolo1-5/+25
that are merging to the tail of the free lists In order to reduce fragmentation, this patch classifies freed pages in two groups according to their probability of being part of a high order merge. Pages belonging to a compound whose next-highest buddy is free are more likely to be part of a high order merge in the near future, so they will be added at the tail of the freelist. The remaining pages are put at the front of the freelist. In this way, the pages that are more likely to cause a big merge are kept free longer. Consequently there is a tendency to aggregate the long-living allocations on a subset of the compounds, reducing the fragmentation. This heuristic was tested on three machines, x86, x86-64 and ppc64 with 3GB of RAM in each machine. The tests were kernbench, netperf, sysbench and STREAM for performance and a high-order stress test for huge page allocations. KernBench X86 Elapsed mean 374.77 ( 0.00%) 375.10 (-0.09%) User mean 649.53 ( 0.00%) 650.44 (-0.14%) System mean 54.75 ( 0.00%) 54.18 ( 1.05%) CPU mean 187.75 ( 0.00%) 187.25 ( 0.27%) KernBench X86-64 Elapsed mean 94.45 ( 0.00%) 94.01 ( 0.47%) User mean 323.27 ( 0.00%) 322.66 ( 0.19%) System mean 36.71 ( 0.00%) 36.50 ( 0.57%) CPU mean 380.75 ( 0.00%) 381.75 (-0.26%) KernBench PPC64 Elapsed mean 173.45 ( 0.00%) 173.74 (-0.17%) User mean 587.99 ( 0.00%) 587.95 ( 0.01%) System mean 60.60 ( 0.00%) 60.57 ( 0.05%) CPU mean 373.50 ( 0.00%) 372.75 ( 0.20%) Nothing notable for kernbench. NetPerf UDP X86 64 42.68 ( 0.00%) 42.77 ( 0.21%) 128 85.62 ( 0.00%) 85.32 (-0.35%) 256 170.01 ( 0.00%) 168.76 (-0.74%) 1024 655.68 ( 0.00%) 652.33 (-0.51%) 2048 1262.39 ( 0.00%) 1248.61 (-1.10%) 3312 1958.41 ( 0.00%) 1944.61 (-0.71%) 4096 2345.63 ( 0.00%) 2318.83 (-1.16%) 8192 4132.90 ( 0.00%) 4089.50 (-1.06%) 16384 6770.88 ( 0.00%) 6642.05 (-1.94%)* NetPerf UDP X86-64 64 148.82 ( 0.00%) 154.92 ( 3.94%) 128 298.96 ( 0.00%) 312.95 ( 4.47%) 256 583.67 ( 0.00%) 626.39 ( 6.82%) 1024 2293.18 ( 0.00%) 2371.10 ( 3.29%) 2048 4274.16 ( 0.00%) 4396.83 ( 2.79%) 3312 6356.94 ( 0.00%) 6571.35 ( 3.26%) 4096 7422.68 ( 0.00%) 7635.42 ( 2.79%)* 8192 12114.81 ( 0.00%)* 12346.88 ( 1.88%) 16384 17022.28 ( 0.00%)* 17033.19 ( 0.06%)* 1.64% 2.73% NetPerf UDP PPC64 64 49.98 ( 0.00%) 50.25 ( 0.54%) 128 98.66 ( 0.00%) 100.95 ( 2.27%) 256 197.33 ( 0.00%) 191.03 (-3.30%) 1024 761.98 ( 0.00%) 785.07 ( 2.94%) 2048 1493.50 ( 0.00%) 1510.85 ( 1.15%) 3312 2303.95 ( 0.00%) 2271.72 (-1.42%) 4096 2774.56 ( 0.00%) 2773.06 (-0.05%) 8192 4918.31 ( 0.00%) 4793.59 (-2.60%) 16384 7497.98 ( 0.00%) 7749.52 ( 3.25%) The tests are run to have confidence limits within 1%. Results marked with a * were not confident although in this case, it's only outside by small amounts. Even with some results that were not confident, the netperf UDP results were generally positive. NetPerf TCP X86 64 652.25 ( 0.00%)* 648.12 (-0.64%)* 23.80% 22.82% 128 1229.98 ( 0.00%)* 1220.56 (-0.77%)* 21.03% 18.90% 256 2105.88 ( 0.00%) 1872.03 (-12.49%)* 1.00% 16.46% 1024 3476.46 ( 0.00%)* 3548.28 ( 2.02%)* 13.37% 11.39% 2048 4023.44 ( 0.00%)* 4231.45 ( 4.92%)* 9.76% 12.48% 3312 4348.88 ( 0.00%)* 4396.96 ( 1.09%)* 6.49% 8.75% 4096 4726.56 ( 0.00%)* 4877.71 ( 3.10%)* 9.85% 8.50% 8192 4732.28 ( 0.00%)* 5777.77 (18.10%)* 9.13% 13.04% 16384 5543.05 ( 0.00%)* 5906.24 ( 6.15%)* 7.73% 8.68% NETPERF TCP X86-64 netperf-tcp-vanilla-netperf netperf-tcp tcp-vanilla pgalloc-delay 64 1895.87 ( 0.00%)* 1775.07 (-6.81%)* 5.79% 4.78% 128 3571.03 ( 0.00%)* 3342.20 (-6.85%)* 3.68% 6.06% 256 5097.21 ( 0.00%)* 4859.43 (-4.89%)* 3.02% 2.10% 1024 8919.10 ( 0.00%)* 8892.49 (-0.30%)* 5.89% 6.55% 2048 10255.46 ( 0.00%)* 10449.39 ( 1.86%)* 7.08% 7.44% 3312 10839.90 ( 0.00%)* 10740.15 (-0.93%)* 6.87% 7.33% 4096 10814.84 ( 0.00%)* 10766.97 (-0.44%)* 6.86% 8.18% 8192 11606.89 ( 0.00%)* 11189.28 (-3.73%)* 7.49% 5.55% 16384 12554.88 ( 0.00%)* 12361.22 (-1.57%)* 7.36% 6.49% NETPERF TCP PPC64 netperf-tcp-vanilla-netperf netperf-tcp tcp-vanilla pgalloc-delay 64 594.17 ( 0.00%) 596.04 ( 0.31%)* 1.00% 2.29% 128 1064.87 ( 0.00%)* 1074.77 ( 0.92%)* 1.30% 1.40% 256 1852.46 ( 0.00%)* 1856.95 ( 0.24%) 1.25% 1.00% 1024 3839.46 ( 0.00%)* 3813.05 (-0.69%) 1.02% 1.00% 2048 4885.04 ( 0.00%)* 4881.97 (-0.06%)* 1.15% 1.04% 3312 5506.90 ( 0.00%) 5459.72 (-0.86%) 4096 6449.19 ( 0.00%) 6345.46 (-1.63%) 8192 7501.17 ( 0.00%) 7508.79 ( 0.10%) 16384 9618.65 ( 0.00%) 9490.10 (-1.35%) There was a distinct lack of confidence in the X86* figures so I included what the devation was where the results were not confident. Many of the results, whether gains or losses were within the standard deviation so no solid conclusion can be reached on performance impact. Looking at the figures, only the X86-64 ones look suspicious with a few losses that were outside the noise. However, the results were so unstable that without knowing why they vary so much, a solid conclusion cannot be reached. SYSBENCH X86 sysbench-vanilla pgalloc-delay 1 7722.85 ( 0.00%) 7756.79 ( 0.44%) 2 14901.11 ( 0.00%) 13683.44 (-8.90%) 3 15171.71 ( 0.00%) 14888.25 (-1.90%) 4 14966.98 ( 0.00%) 15029.67 ( 0.42%) 5 14370.47 ( 0.00%) 14865.00 ( 3.33%) 6 14870.33 ( 0.00%) 14845.57 (-0.17%) 7 14429.45 ( 0.00%) 14520.85 ( 0.63%) 8 14354.35 ( 0.00%) 14362.31 ( 0.06%) SYSBENCH X86-64 1 17448.70 ( 0.00%) 17484.41 ( 0.20%) 2 34276.39 ( 0.00%) 34251.00 (-0.07%) 3 50805.25 ( 0.00%) 50854.80 ( 0.10%) 4 66667.10 ( 0.00%) 66174.69 (-0.74%) 5 66003.91 ( 0.00%) 65685.25 (-0.49%) 6 64981.90 ( 0.00%) 65125.60 ( 0.22%) 7 64933.16 ( 0.00%) 64379.23 (-0.86%) 8 63353.30 ( 0.00%) 63281.22 (-0.11%) 9 63511.84 ( 0.00%) 63570.37 ( 0.09%) 10 62708.27 ( 0.00%) 63166.25 ( 0.73%) 11 62092.81 ( 0.00%) 61787.75 (-0.49%) 12 61330.11 ( 0.00%) 61036.34 (-0.48%) 13 61438.37 ( 0.00%) 61994.47 ( 0.90%) 14 62304.48 ( 0.00%) 62064.90 (-0.39%) 15 63296.48 ( 0.00%) 62875.16 (-0.67%) 16 63951.76 ( 0.00%) 63769.09 (-0.29%) SYSBENCH PPC64 -sysbench-pgalloc-delay-sysbench sysbench-vanilla pgalloc-delay 1 7645.08 ( 0.00%) 7467.43 (-2.38%) 2 14856.67 ( 0.00%) 14558.73 (-2.05%) 3 21952.31 ( 0.00%) 21683.64 (-1.24%) 4 27946.09 ( 0.00%) 28623.29 ( 2.37%) 5 28045.11 ( 0.00%) 28143.69 ( 0.35%) 6 27477.10 ( 0.00%) 27337.45 (-0.51%) 7 26489.17 ( 0.00%) 26590.06 ( 0.38%) 8 26642.91 ( 0.00%) 25274.33 (-5.41%) 9 25137.27 ( 0.00%) 24810.06 (-1.32%) 10 24451.99 ( 0.00%) 24275.85 (-0.73%) 11 23262.20 ( 0.00%) 23674.88 ( 1.74%) 12 24234.81 ( 0.00%) 23640.89 (-2.51%) 13 24577.75 ( 0.00%) 24433.50 (-0.59%) 14 25640.19 ( 0.00%) 25116.52 (-2.08%) 15 26188.84 ( 0.00%) 26181.36 (-0.03%) 16 26782.37 ( 0.00%) 26255.99 (-2.00%) Again, there is little to conclude here. While there are a few losses, the results vary by +/- 8% in some cases. They are the results of most concern as there are some large losses but it's also within the variance typically seen between kernel releases. The STREAM results varied so little and are so verbose that I didn't include them here. The final test stressed how many huge pages can be allocated. The absolute number of huge pages allocated are the same with or without the page. However, the "unusability free space index" which is a measure of external fragmentation was slightly lower (lower is better) throughout the lifetime of the system. I also measured the latency of how long it took to successfully allocate a huge page. The latency was slightly lower and on X86 and PPC64, more huge pages were allocated almost immediately from the free lists. The improvement is slight but there. [mel@csn.ul.ie: Tested, reworked for less branches] [czoccolo@gmail.com: fix oops by checking pfn_valid_within()] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Corrado Zoccolo <czoccolo@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-16Fix typos in commentsThomas Weber1-1/+1
[Ss]ytem => [Ss]ystem udpate => update paramters => parameters orginal => original Signed-off-by: Thomas Weber <swirl@gmx.li> Acked-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-03-12mm: introduce dump_page() and print symbolic flag namesWu Fengguang1-4/+79
- introduce dump_page() to print the page info for debugging some error condition. - convert three mm users: bad_page(), print_bad_pte() and memory offline failure. - print an extra field: the symbolic names of page->flags Example dump_page() output: [ 157.521694] page:ffffea0000a7cba8 count:2 mapcount:1 mapping:ffff88001c901791 index:0x147 [ 157.525570] page flags: 0x100000000100068(uptodate|lru|active|swapbacked) Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Alex Chiang <achiang@hp.com> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Mel Gorman <mel@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-12mm: do not iterate over NR_CPUS in __zone_pcp_update()Thomas Gleixner1-1/+1
__zone_pcp_update() iterates over NR_CPUS instead of limiting the access to the possible cpus. This might result in access to uninitialized areas as the per cpu allocator only populates the per cpu memory for possible cpus. This problem was created as a result of the dynamic allocation of pagesets from percpu memory that went in during the merge window - commit 99dcc3e5a94ed491fbef402831d8c0bbb267f995 ("this_cpu: Page allocator conversion"). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Christoph Lameter <cl@linux-foundation.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06mm: suppress pfn range output for zones without pagesDavid Rientjes1-2/+6
free_area_init_nodes() emits pfn ranges for all zones on the system. There may be no pages on a higher zone, however, due to memory limitations or the use of the mem= kernel parameter. For example: Zone PFN ranges: DMA 0x00000001 -> 0x00001000 DMA32 0x00001000 -> 0x00100000 Normal 0x00100000 -> 0x00100000 The implementation copies the previous zone's highest pfn, if any, as the next zone's lowest pfn. If its highest pfn is then greater than the amount of addressable memory, the upper memory limit is used instead. Thus, both the lowest and highest possible pfn for higher zones without memory may be the same. The pfn range for zones without memory is now shown as "empty" instead. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06mm/pm: force GFP_NOIO during suspend/hibernation and resumeRafael J. Wysocki1-0/+25
There are quite a few GFP_KERNEL memory allocations made during suspend/hibernation and resume that may cause the system to hang, because the I/O operations they depend on cannot be completed due to the underlying devices being suspended. Avoid this problem by clearing the __GFP_IO and __GFP_FS bits in gfp_allowed_mask before suspend/hibernation and restoring the original values of these bits in gfp_allowed_mask durig the subsequent resume. [akpm@linux-foundation.org: fix CONFIG_PM=n linkage] Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Reported-by: Maxim Levitsky <maximlevitsky@gmail.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06mm: restore zone->all_unreclaimable to independence wordKOSAKI Motohiro1-3/+3
commit e815af95 ("change all_unreclaimable zone member to flags") changed all_unreclaimable member to bit flag. But it had an undesireble side effect. free_one_page() is one of most hot path in linux kernel and increasing atomic ops in it can reduce kernel performance a bit. Thus, this patch revert such commit partially. at least all_unreclaimable shouldn't share memory word with other zone flags. [akpm@linux-foundation.org: fix patch interaction] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06mm: remove free_hot_page()Li Hong1-7/+3
free_hot_page() is just a wrapper around free_hot_cold_page() with parameter 'cold = 0'. After adding a clear comment for free_hot_cold_page(), it is reasonable to remove a level of call. [akpm@linux-foundation.org: fix build] Signed-off-by: Li Hong <lihong.hi@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Li Ming Chun <macli@brc.ubc.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Americo Wang <xiyou.wangcong@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06mm/page_alloc.c: adjust a call site to trace_mm_page_free_directLi Hong1-1/+1
Move a call of trace_mm_page_free_direct() from free_hot_page() to free_hot_cold_page(). It is clearer and close to kmemcheck_free_shadow(), as it is done in function __free_pages_ok(). Signed-off-by: Li Hong <lihong.hi@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Li Ming Chun <macli@brc.ubc.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06mm/page_alloc.c: remove duplicate call to trace_mm_page_free_directLi Hong1-1/+1
trace_mm_page_free_direct() is called in function __free_pages(). But it is called again in free_hot_page() if order == 0 and produce duplicate records in trace file for mm_page_free_direct event. As below: K-PID CPU# TIMESTAMP FUNCTION gnome-terminal-1567 [000] 4415.246466: mm_page_free_direct: page=ffffea0003db9f40 pfn=1155800 order=0 gnome-terminal-1567 [000] 4415.246468: mm_page_free_direct: page=ffffea0003db9f40 pfn=1155800 order=0 gnome-terminal-1567 [000] 4415.246506: mm_page_alloc: page=ffffea0003db9f40 pfn=1155800 order=0 migratetype=0 gfp_flags=GFP_KERNEL gnome-terminal-1567 [000] 4415.255557: mm_page_free_direct: page=ffffea0003db9f40 pfn=1155800 order=0 gnome-terminal-1567 [000] 4415.255557: mm_page_free_direct: page=ffffea0003db9f40 pfn=1155800 order=0 This patch removes the first call and adds a call to trace_mm_page_free_direct() in __free_pages_ok(). Signed-off-by: Li Hong <lihong.hi@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Li Ming Chun <macli@brc.ubc.ca> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-03Merge branch 'x86-bootmem-for-linus' of ↵Linus Torvalds1-1/+60
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'x86-bootmem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits) early_res: Need to save the allocation name in drop_range_partial() sparsemem: Fix compilation on PowerPC early_res: Add free_early_partial() x86: Fix non-bootmem compilation on PowerPC core: Move early_res from arch/x86 to kernel/ x86: Add find_fw_memmap_area Move round_up/down to kernel.h x86: Make 32bit support NO_BOOTMEM early_res: Enhance check_and_double_early_res x86: Move back find_e820_area to e820.c x86: Add find_early_area_size x86: Separate early_res related code from e820.c x86: Move bios page reserve early to head32/64.c sparsemem: Put mem map for one node together. sparsemem: Put usemap for one node together x86: Make 64 bit use early_res instead of bootmem before slab x86: Only call dma32_reserve_bootmem 64bit !CONFIG_NUMA x86: Make early_node_mem get mem > 4 GB if possible x86: Dynamically increase early_res array size x86: Introduce max_early_res and early_res_count ...
2010-02-22x86: Fix non-bootmem compilation on PowerPCYinghai Lu1-0/+2
These build errors on some non-x86 platforms (PowerPC for example): mm/page_alloc.c: In function '__alloc_memory_core_early': mm/page_alloc.c:3468: error: implicit declaration of function 'find_early_area' mm/page_alloc.c:3483: error: implicit declaration of function 'reserve_early_without_check' The function is only needed on CONFIG_NO_BOOTMEM. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Mel Gorman <mel@csn.ul.ie> LKML-Reference: <4B747239.4070907@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-12x86: Make 64 bit use early_res instead of bootmem before slabYinghai Lu1-1/+58
Finally we can use early_res to replace bootmem for x86_64 now. Still can use CONFIG_NO_BOOTMEM to enable it or not. -v2: fix 32bit compiling about MAX_DMA32_PFN -v3: folded bug fix from LKML message below Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <4B747239.4070907@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-02-02Merge branch 'master' into percpuTejun Heo1-4/+5
2010-01-29mm: fix migratetype bug which slowed swappingHugh Dickins1-2/+3
After memory pressure has forced it to dip into the reserves, 2.6.32's 5f8dcc21211a3d4e3a7a5ca366b469fb88117f61 "page-allocator: split per-cpu list into one-list-per-migrate-type" has been returning MIGRATE_RESERVE pages to the MIGRATE_MOVABLE free_list: in some sense depleting reserves. Fix that in the most straightforward way (which, considering the overheads of alternative approaches, is Mel's preference): the right migratetype is already in page_private(page), but free_pcppages_bulk() wasn't using it. How did this bug show up? As a 20% slowdown in my tmpfs loop kbuild swapping tests, on PowerMac G5 with SLUB allocator. Bisecting to that commit was easy, but explaining the magnitude of the slowdown not easy. The same effect appears, but much less markedly, with SLAB, and even less markedly on other machines (the PowerMac divides into fewer zones than x86, I think that may be a factor). We guess that lumpy reclaim of short-lived high-order pages is implicated in some way, and probably this bug has been tickling a poor decision somewhere in page reclaim. But instrumentation hasn't told me much, I've run out of time and imagination to determine exactly what's going on, and shouldn't hold up the fix any longer: it's valid, and might even fix other misbehaviours. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-16page allocator: update NR_FREE_PAGES only when necessaryKOSAKI Motohiro1-1/+1
commit f2260e6b (page allocator: update NR_FREE_PAGES only as necessary) made one minor regression. if __rmqueue() was failed, NR_FREE_PAGES stat go wrong. this patch fixes it. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reported-by: Huang Shijie <shijie8@gmail.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-16mm/page_alloc: fix the range check for backward mergingKazuhisa Ichikawa1-1/+1
The current check for 'backward merging' within add_active_range() does not seem correct. start_pfn must be compared against early_node_map[i].start_pfn (and NOT against .end_pfn) to find out whether the new region is backward-mergeable with the existing range. Signed-off-by: Kazuhisa Ichikawa <ki@epsilou.com> Acked-by: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-05this_cpu: Page allocator conversionChristoph Lameter1-131/+71
Use the per cpu allocator functionality to avoid per cpu arrays in struct zone. This drastically reduces the size of struct zone for systems with large amounts of processors and allows placement of critical variables of struct zone in one cacheline even on very large systems. Another effect is that the pagesets of one processor are placed near one another. If multiple pagesets from different zones fit into one cacheline then additional cacheline fetches can be avoided on the hot paths when allocating memory from multiple zones. Bootstrap becomes simpler if we use the same scheme for UP, SMP, NUMA. #ifdefs are reduced and we can drop the zone_pcp macro. Hotplug handling is also simplified since cpu alloc can bring up and shut down cpu areas for a specific cpu as a whole. So there is no need to allocate or free individual pagesets. V7-V8: - Explain chicken egg dilemmna with percpu allocator. V4-V5: - Fix up cases where per_cpu_ptr is called before irq disable - Integrate the bootstrap logic that was separate before. tj: Build failure in pageset_cpuup_callback() due to missing ret variable fixed. Reviewed-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2009-12-23SYSCTL: Add a mutex to the page_alloc zone order sysctlAndi Kleen1-4/+7
The zone list code clearly cannot tolerate concurrent writers (I couldn't find any locks for that), so simply add a global mutex. No need for RCU in this case. Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-22Merge branch 'merge' of ↵Linus Torvalds1-7/+50
git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc * 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (36 commits) powerpc/gc/wii: Remove get_irq_desc() powerpc/gc/wii: hlwd-pic: convert irq_desc.lock to raw_spinlock powerpc/gamecube/wii: Fix off-by-one error in ugecon/usbgecko_udbg powerpc/mpic: Fix problem that affinity is not updated powerpc/mm: Fix stupid bug in subpge protection handling powerpc/iseries: use DECLARE_COMPLETION_ONSTACK for non-constant completion powerpc: Fix MSI support on U4 bridge PCIe slot powerpc: Handle VSX alignment faults correctly in little-endian mode powerpc/mm: Fix typo of cpumask_clear_cpu() powerpc/mm: Fix hash_utils_64.c compile errors with DEBUG enabled. powerpc: Convert BUG() to use unreachable() powerpc/pseries: Make declarations of cpu_hotplug_driver_lock() ANSI compatible. powerpc/pseries: Don't panic when H_PROD fails during cpu-online. powerpc/mm: Fix a WARN_ON() with CONFIG_DEBUG_PAGEALLOC and CONFIG_DEBUG_VM powerpc/defconfigs: Set HZ=100 on pseries and ppc64 defconfigs powerpc/defconfigs: Disable token ring in powerpc defconfigs powerpc/defconfigs: Reduce 64bit vmlinux by making acenic and cramfs modules powerpc/pseries: Select XICS and PCI_MSI PSERIES powerpc/85xx: Wrong variable returned on error powerpc/iseries: Convert to proc_fops ...
2009-12-19Merge branch 'x86-fixes-for-linus' of ↵Linus Torvalds1-2/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86, irq: Allow 0xff for /proc/irq/[n]/smp_affinity on an 8-cpu system Makefile: Unexport LC_ALL instead of clearing it x86: Fix objdump version check in arch/x86/tools/chkobjdump.awk x86: Reenable TSC sync check at boot, even with NONSTOP_TSC x86: Don't use POSIX character classes in gen-insn-attr-x86.awk Makefile: set LC_CTYPE, LC_COLLATE, LC_NUMERIC to C x86: Increase MAX_EARLY_RES; insufficient on 32-bit NUMA x86: Fix checking of SRAT when node 0 ram is not from 0 x86, cpuid: Add "volatile" to asm in native_cpuid() x86, msr: msrs_alloc/free for CONFIG_SMP=n x86, amd: Get multi-node CPU info from NodeId MSR instead of PCI config space x86: Add IA32_TSC_AUX MSR and use it x86, msr/cpuid: Register enough minors for the MSR and CPUID drivers initramfs: add missing decompressor error check bzip2: Add missing checks for malloc returning NULL bzip2/lzma/gzip: pre-boot malloc doesn't return NULL on failure
2009-12-18mm: Add notifier in pageblock isolation for balloon driversRobert Jennings1-7/+50
Memory balloon drivers can allocate a large amount of memory which is not movable but could be freed to accomodate memory hotplug remove. Prior to calling the memory hotplug notifier chain the memory in the pageblock is isolated. Currently, if the migrate type is not MIGRATE_MOVABLE the isolation will not proceed, causing the memory removal for that page range to fail. Rather than failing pageblock isolation if the migrateteype is not MIGRATE_MOVABLE, this patch checks if all of the pages in the pageblock, and not on the LRU, are owned by a registered balloon driver (or other entity) using a notifier chain. If all of the non-movable pages are owned by a balloon, they can be freed later through the memory notifier chain and the range can still be isolated in set_migratetype_isolate(). Signed-off-by: Robert Jennings <rcj@linux.vnet.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Ingo Molnar <mingo@elte.hu> Cc: Brian King <brking@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Gerald Schaefer <geralds@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-12-16x86: Fix checking of SRAT when node 0 ram is not from 0Yinghai Lu1-2/+2
Found one system that boot from socket1 instead of socket0, SRAT get rejected... [ 0.000000] SRAT: Node 1 PXM 0 0-a0000 [ 0.000000] SRAT: Node 1 PXM 0 100000-80000000 [ 0.000000] SRAT: Node 1 PXM 0 100000000-2080000000 [ 0.000000] SRAT: Node 0 PXM 1 2080000000-4080000000 [ 0.000000] SRAT: Node 2 PXM 2 4080000000-6080000000 [ 0.000000] SRAT: Node 3 PXM 3 6080000000-8080000000 [ 0.000000] SRAT: Node 4 PXM 4 8080000000-a080000000 [ 0.000000] SRAT: Node 5 PXM 5 a080000000-c080000000 [ 0.000000] SRAT: Node 6 PXM 6 c080000000-e080000000 [ 0.000000] SRAT: Node 7 PXM 7 e080000000-10080000000 ... [ 0.000000] NUMA: Allocated memnodemap from 500000 - 701040 [ 0.000000] NUMA: Using 20 for the hash shift. [ 0.000000] Adding active range (0, 0x2080000, 0x4080000) 0 entries of 3200 used [ 0.000000] Adding active range (1, 0x0, 0x96) 1 entries of 3200 used [ 0.000000] Adding active range (1, 0x100, 0x7f750) 2 entries of 3200 used [ 0.000000] Adding active range (1, 0x100000, 0x2080000) 3 entries of 3200 used [ 0.000000] Adding active range (2, 0x4080000, 0x6080000) 4 entries of 3200 used [ 0.000000] Adding active range (3, 0x6080000, 0x8080000) 5 entries of 3200 used [ 0.000000] Adding active range (4, 0x8080000, 0xa080000) 6 entries of 3200 used [ 0.000000] Adding active range (5, 0xa080000, 0xc080000) 7 entries of 3200 used [ 0.000000] Adding active range (6, 0xc080000, 0xe080000) 8 entries of 3200 used [ 0.000000] Adding active range (7, 0xe080000, 0x10080000) 9 entries of 3200 used [ 0.000000] SRAT: PXMs only cover 917504MB of your 1048566MB e820 RAM. Not used. [ 0.000000] SRAT: SRAT not used. the early_node_map is not sorted because node0 with non zero start come first. so try to sort it right away after all regions are registered. also fixs refression by 8716273c (x86: Export srat physical topology) -v2: make it more solid to handle cross node case like node0 [0,4g), [8,12g) and node1 [4g, 8g), [12g, 16g) -v3: update comments. Reported-and-tested-by: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <4B2579D2.3010201@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-12-16Merge branch 'hwpoison' of ↵Linus Torvalds1-0/+21
git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6 * 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (34 commits) HWPOISON: Remove stray phrase in a comment HWPOISON: Try to allocate migration page on the same node HWPOISON: Don't do early filtering if filter is disabled HWPOISON: Add a madvise() injector for soft page offlining HWPOISON: Add soft page offline support HWPOISON: Undefine short-hand macros after use to avoid namespace conflict HWPOISON: Use new shake_page in memory_failure HWPOISON: Use correct name for MADV_HWPOISON in documentation HWPOISON: mention HWPoison in Kconfig entry HWPOISON: Use get_user_page_fast in hwpoison madvise HWPOISON: add an interface to switch off/on all the page filters HWPOISON: add memory cgroup filter memcg: add accessor to mem_cgroup.css memcg: rename and export try_get_mem_cgroup_from_page() HWPOISON: add page flags filter mm: export stable page flags HWPOISON: limit hwpoison injector to known page types HWPOISON: add fs/device filters HWPOISON: return 0 to indicate success reliably HWPOISON: make semantics of IGNORED/DELAYED clear ...
2009-12-16oom-kill: fix NUMA constraint check with nodemaskKAMEZAWA Hiroyuki1-6/+16
Fix node-oriented allocation handling in oom-kill.c I myself think of this as a bugfix not as an ehnancement. In these days, things are changed as - alloc_pages() eats nodemask as its arguments, __alloc_pages_nodemask(). - mempolicy don't maintain its own private zonelists. (And cpuset doesn't use nodemask for __alloc_pages_nodemask()) So, current oom-killer's check function is wrong. This patch does - check nodemask, if nodemask && nodemask doesn't cover all node_states[N_HIGH_MEMORY], this is CONSTRAINT_MEMORY_POLICY. - Scan all zonelist under nodemask, if it hits cpuset's wall this faiulre is from cpuset. And - modifies the caller of out_of_memory not to call oom if __GFP_THISNODE. This doesn't change "current" behavior. If callers use __GFP_THISNODE it should handle "page allocation failure" by itself. - handle __GFP_NOFAIL+__GFP_THISNODE path. This is something like a FIXME but this gfpmask is not used now. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hioryu@jp.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>