Age | Commit message (Collapse) | Author | Files | Lines |
|
This is the second step which introduces a tunable interface that allow
numa stats configurable for optimizing zone_statistics(), as suggested
by Dave Hansen and Ying Huang.
=========================================================================
When page allocation performance becomes a bottleneck and you can
tolerate some possible tool breakage and decreased numa counter
precision, you can do:
echo 0 > /proc/sys/vm/numa_stat
In this case, numa counter update is ignored. We can see about
*4.8%*(185->176) drop of cpu cycles per single page allocation and
reclaim on Jesper's page_bench01 (single thread) and *8.1%*(343->315)
drop of cpu cycles per single page allocation and reclaim on Jesper's
page_bench03 (88 threads) running on a 2-Socket Broadwell-based server
(88 threads, 126G memory).
Benchmark link provided by Jesper D Brouer (increase loop times to
10000000):
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench
=========================================================================
When page allocation performance is not a bottleneck and you want all
tooling to work, you can do:
echo 1 > /proc/sys/vm/numa_stat
This is system default setting.
Many thanks to Michal Hocko, Dave Hansen, Ying Huang and Vlastimil Babka
for comments to help improve the original patch.
[keescook@chromium.org: make sure mutex is a global static]
Link: http://lkml.kernel.org/r/20171107213809.GA4314@beast
Link: http://lkml.kernel.org/r/1508290927-8518-1-git-send-email-kemi.wang@intel.com
Signed-off-by: Kemi Wang <kemi.wang@intel.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Jesper Dangaard Brouer <brouer@redhat.com>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Suggested-by: Ying Huang <ying.huang@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Luis R . Rodriguez" <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 197e7e521384 ("Sanitize 'move_pages()' permission checks") fixed
a security issue I reported in the move_pages syscall, and made it so
that you can't act on set-uid processes unless you have the
CAP_SYS_PTRACE capability.
Unify the access check logic of migrate_pages to match the new behavior
of move_pages. We discussed this a bit in the security@ list and
thought it'd be good for consistency even though there's no evident
security impact. The NUMA node access checks are left intact and
require CAP_SYS_NICE as before.
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1710011830320.6333@lakka.kapsi.fi
Signed-off-by: Otto Ebeling <otto.ebeling@iki.fi>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 3a321d2a3dde ("mm: change the call sites of numa statistics
items") separated NUMA counters from zone counters, but the
NUMA_INTERLEAVE_HIT call site wasn't updated to use the new interface.
So alloc_page_interleave() actually increments NR_ZONE_INACTIVE_FILE
instead of NUMA_INTERLEAVE_HIT.
Fix this by using __inc_numa_state() interface to increment
NUMA_INTERLEAVE_HIT.
Link: http://lkml.kernel.org/r/20171003191003.8573-1-aryabinin@virtuozzo.com
Fixes: 3a321d2a3dde ("mm: change the call sites of numa statistics items")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Kemi Wang <kemi.wang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
VMA and its address bounds checks are too late in this function. They
must have been verified earlier in the page fault sequence. Hence just
remove them.
Link: http://lkml.kernel.org/r/20170901130137.7617-1-khandual@linux.vnet.ibm.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
While reading the code I found that offset_il_node() has a vm_area_struct
pointer parameter which is unused.
Link: http://lkml.kernel.org/r/1502899755-23146-1-git-send-email-ldufour@linux.vnet.ibm.com
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch enables thp migration for mbind(2) and migrate_pages(2).
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm: page migration enhancement for thp", v9.
Motivations:
1. THP migration becomes important in the upcoming heterogeneous memory
systems. As David Nellans from NVIDIA pointed out from other threads
(http://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1349227.html),
future GPUs or other accelerators will have their memory managed by
operating systems. Moving data into and out of these memory nodes
efficiently is critical to applications that use GPUs or other
accelerators. Existing page migration only supports base pages, which
has a very low memory bandwidth utilization. My experiments (see
below) show THP migration can migrate pages more efficiently.
2. Base page migration vs THP migration throughput.
Here are cross-socket page migration results from calling
move_pages() syscall:
In x86_64, a Intel two-socket E5-2640v3 box,
- single 4KB base page migration takes 62.47 us, using 0.06 GB/s BW,
- single 2MB THP migration takes 658.54 us, using 2.97 GB/s BW,
- 512 4KB base page migration takes 1987.38 us, using 0.98 GB/s BW.
In ppc64, a two-socket Power8 box,
- single 64KB base page migration takes 49.3 us, using 1.24 GB/s BW,
- single 16MB THP migration takes 2202.17 us, using 7.10 GB/s BW,
- 256 64KB base page migration takes 2543.65 us, using 6.14 GB/s BW.
THP migration can give us 3x and 1.15x throughput over base page
migration in x86_64 and ppc64 respectivley.
You can test it out by using the code here:
https://github.com/x-y-z/thp-migration-bench
3. Existing page migration splits THP before migration and cannot
guarantee the migrated pages are still contiguous. Contiguity is
always what GPUs and accelerators look for. Without THP migration,
khugepaged needs to do extra work to reassemble the migrated pages
back to THPs.
This patch (of 10):
Introduce a separate check routine related to MPOL_MF_INVERT flag. This
patch just does cleanup, no behavioral change.
Link: http://lkml.kernel.org/r/20170717193955.20207-2-zi.yan@sent.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I hit a use after free issue when executing trinity and repoduced it
with KASAN enabled. The related call trace is as follows.
BUG: KASan: use after free in SyS_get_mempolicy+0x3c8/0x960 at addr ffff8801f582d766
Read of size 2 by task syz-executor1/798
INFO: Allocated in mpol_new.part.2+0x74/0x160 age=3 cpu=1 pid=799
__slab_alloc+0x768/0x970
kmem_cache_alloc+0x2e7/0x450
mpol_new.part.2+0x74/0x160
mpol_new+0x66/0x80
SyS_mbind+0x267/0x9f0
system_call_fastpath+0x16/0x1b
INFO: Freed in __mpol_put+0x2b/0x40 age=4 cpu=1 pid=799
__slab_free+0x495/0x8e0
kmem_cache_free+0x2f3/0x4c0
__mpol_put+0x2b/0x40
SyS_mbind+0x383/0x9f0
system_call_fastpath+0x16/0x1b
INFO: Slab 0xffffea0009cb8dc0 objects=23 used=8 fp=0xffff8801f582de40 flags=0x200000000004080
INFO: Object 0xffff8801f582d760 @offset=5984 fp=0xffff8801f582d600
Bytes b4 ffff8801f582d750: ae 01 ff ff 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
Object ffff8801f582d760: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
Object ffff8801f582d770: 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkk.
Redzone ffff8801f582d778: bb bb bb bb bb bb bb bb ........
Padding ffff8801f582d8b8: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
Memory state around the buggy address:
ffff8801f582d600: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff8801f582d680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff8801f582d700: fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb fc
!shared memory policy is not protected against parallel removal by other
thread which is normally protected by the mmap_sem. do_get_mempolicy,
however, drops the lock midway while we can still access it later.
Early premature up_read is a historical artifact from times when
put_user was called in this path see https://lwn.net/Articles/124754/
but that is gone since 8bccd85ffbaf ("[PATCH] Implement sys_* do_*
layering in the memory policy layer."). but when we have the the
current mempolicy ref count model. The issue was introduced
accordingly.
Fix the issue by removing the premature release.
Link: http://lkml.kernel.org/r/1502950924-27521-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org> [2.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Page migration (for memory hotplug, soft_offline_page or mbind) needs to
allocate a new memory. This can trigger an oom killer if the target
memory is depleated. Although quite unlikely, still possible,
especially for the memory hotplug (offlining of memoery).
Up to now we didn't really have reasonable means to back off.
__GFP_NORETRY can fail just too easily and __GFP_THISNODE sticks to a
single node and that is not suitable for all callers.
But now that we have __GFP_RETRY_MAYFAIL we should use it. It is
preferable to fail the migration than disrupt the system by killing some
processes.
Link: http://lkml.kernel.org/r/20170623085345.11304-7-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Two wrappers of __alloc_pages_nodemask() are checking
task->mems_allowed_seq themselves to retry allocation that has raced
with a cpuset update.
This has been shown to be ineffective in preventing premature OOM's
which can happen in __alloc_pages_slowpath() long before it returns back
to the wrappers to detect the race at that level.
Previous patches have made __alloc_pages_slowpath() more robust, so we
can now simply remove the seqlock checking in the wrappers to prevent
further wrong impression that it can actually help.
Link: http://lkml.kernel.org/r/20170517081140.30654-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") has introduced a two-step protocol when
rebinding task's mempolicy due to cpuset update, in order to avoid a
parallel allocation seeing an empty effective nodemask and failing.
Later, commit cc9a6c877661 ("cpuset: mm: reduce large amounts of memory
barrier related damage v3") introduced a seqlock protection and removed
the synchronization point between the two update steps. At that point
(or perhaps later), the two-step rebinding became unnecessary.
Currently it only makes sure that the update first adds new nodes in
step 1 and then removes nodes in step 2. Without memory barriers the
effects are questionable, and even then this cannot prevent a parallel
zonelist iteration checking the nodemask at each step to observe all
nodes as unusable for allocation. We now fully rely on the seqlock to
prevent premature OOMs and allocation failures.
We can thus remove the two-step update parts and simplify the code.
Link: http://lkml.kernel.org/r/20170517081140.30654-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The main allocator function __alloc_pages_nodemask() takes a zonelist
pointer as one of its parameters. All of its callers directly or
indirectly obtain the zonelist via node_zonelist() using a preferred
node id and gfp_mask. We can make the code a bit simpler by doing the
zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node
id instead (gfp_mask is already another parameter).
There are some code size benefits thanks to removal of inlined
node_zonelist():
bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952)
This will also make things simpler if we proceed with converting cpusets
to zonelists.
Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The task->il_next variable stores the next allocation node id for task's
MPOL_INTERLEAVE policy. mpol_rebind_nodemask() updates interleave and
bind mempolicies due to changing cpuset mems. Currently it also tries
to make sure that current->il_next is valid within the updated nodemask.
This is bogus, because 1) we are updating potentially any task's
mempolicy, not just current, and 2) we might be updating a per-vma
mempolicy, not task one.
The interleave_nodes() function that uses il_next can cope fine with the
value not being within the currently allowed nodes, so this hasn't
manifested as an actual issue.
We can remove the need for updating il_next completely by changing it to
il_prev and store the node id of the previous interleave allocation
instead of the next id. Then interleave_nodes() can calculate the next
id using the current nodemask and also store it as il_prev, except when
querying the next node via do_get_mempolicy().
Link: http://lkml.kernel.org/r/20170517081140.30654-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In the case that compat_get_bitmap fails we do not want to copy the
bitmap to the user as it will contain uninitialized stack data and leak
sensitive data.
Signed-off-by: Chris Salls <salls@cs.ucsb.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
<linux/sched/task.h>
But first update the code that uses these facilities with the
new header.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
<linux/sched/numa_balancing.h>
We are going to split <linux/sched/numa_balancing.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/numa_balancing.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
<linux/sched/mm.h>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
The APIs that are going to be moved first are:
mm_alloc()
__mmdrop()
mmdrop()
mmdrop_async_fn()
mmdrop_async()
mmget_not_zero()
mmput()
mmput_async()
get_task_mm()
mm_access()
mm_release()
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Since commit be97a41b291e ("mm/mempolicy.c: merge alloc_hugepage_vma to
alloc_pages_vma") alloc_pages_vma() can potentially free a mempolicy by
mpol_cond_put() before accessing the embedded nodemask by
__alloc_pages_nodemask(). The commit log says it's so "we can use a
single exit path within the function" but that's clearly wrong. We can
still do that when doing mpol_cond_put() after the allocation attempt.
Make sure the mempolicy is not freed prematurely, otherwise
__alloc_pages_nodemask() can end up using a bogus nodemask, which could
lead e.g. to premature OOM.
Fixes: be97a41b291e ("mm/mempolicy.c: merge alloc_hugepage_vma to alloc_pages_vma")
Link: http://lkml.kernel.org/r/20170118141124.8345-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The MPOL_F_STATIC_NODES and MPOL_F_RELATIVE_NODES flags are irrelevant
when setting them for MPOL_LOCAL NUMA memory policy via set_mempolicy or
mbind.
Return the "invalid argument" from set_mempolicy and mbind whenever any
of these flags is passed along with MPOL_LOCAL.
It is consistent with MPOL_PREFERRED passed with empty nodemask.
It slightly shortens the execution time in paths where these flags are
used e.g. when trying to rebind the NUMA nodes for changes in cgroups
cpuset mems (mpol_rebind_preferred()) or when just printing the mempolicy
structure (/proc/PID/numa_maps). Isolated tests done.
Link: http://lkml.kernel.org/r/20161027163037.4089-1-kwapulinski.piotr@gmail.com
Signed-off-by: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Liang Chen <liangchen.linux@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Nathan Zimmer <nzimmer@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__GFP_THISNODE is documented to enforce the allocation to be satisified
from the requested node with no fallbacks or placement policy
enforcements. policy_zonelist seemingly breaks this semantic if the
current policy is MPOL_MBIND and instead of taking the node it will
fallback to the first node in the mask if the requested one is not in
the mask. This is confusing to say the least because it fact we
shouldn't ever go that path. First tasks shouldn't be scheduled on CPUs
with nodes outside of their mempolicy binding. And secondly
policy_zonelist is called only from 3 places:
- huge_zonelist - never should do __GFP_THISNODE when going this path
- alloc_pages_vma - which shouldn't depend on __GFP_THISNODE either
- alloc_pages_current - which uses default_policy id __GFP_THISNODE is
used
So we shouldn't even need to care about this possibility and can drop
the confusing code. Let's keep a WARN_ON_ONCE in place to catch
potential users and fix them up properly (aka use a different allocation
function which ignores mempolicy).
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20161013125958.32155-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
While doing MADV_DONTNEED on a large area of thp memory, I noticed we
encountered many unlikely() branches in profiles for each backing
hugepage. This is because zap_pmd_range() would call split_huge_pmd(),
which rechecked the conditions that were already validated, but as part
of an unlikely() branch.
Avoid the unlikely() branch when in a context where pmd is known to be
good for __split_huge_pmd() directly.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1610181600300.84525@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This removes the 'write' and 'force' from get_user_pages() and replaces
them with 'gup_flags' to make the use of FOLL_FORCE explicit in callers
as use of this flag can result in surprising behaviour (and hence bugs)
within the mm subsystem.
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use the existing enums instead of hardcoded index when looking at the
zonelist. This makes it more readable. No functionality change by this
patch.
Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
KASAN allocates memory from the page allocator as part of
kmem_cache_free(), and that can reference current->mempolicy through any
number of allocation functions. It needs to be NULL'd out before the
final reference is dropped to prevent a use-after-free bug:
BUG: KASAN: use-after-free in alloc_pages_current+0x363/0x370 at addr ffff88010b48102c
CPU: 0 PID: 15425 Comm: trinity-c2 Not tainted 4.8.0-rc2+ #140
...
Call Trace:
dump_stack
kasan_object_err
kasan_report_error
__asan_report_load2_noabort
alloc_pages_current <-- use after free
depot_save_stack
save_stack
kasan_slab_free
kmem_cache_free
__mpol_put <-- free
do_exit
This patch sets current->mempolicy to NULL before dropping the final
reference.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1608301442180.63329@chino.kir.corp.google.com
Fixes: cd11016e5f52 ("mm, kasan: stackdepot implementation. Enable stackdepot for SLAB")
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org> [4.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.
Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic. Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes. It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.
Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies. For example, the scans are
per-zone but using per-node counters. We also mark a node as congested
when a zone is congested. This causes weird problems that are fixed
later but is easier to review.
In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions
1. Long-term isolation of highmem pages when reclaim is lowmem
When pages are skipped, they are immediately added back onto the LRU
list. If lowmem reclaim persisted for long periods of time, the same
highmem pages get continually scanned. The idea would be that lowmem
keeps those pages on a separate list until a reclaim for highmem pages
arrives that splices the highmem pages back onto the LRU. It potentially
could be implemented similar to the UNEVICTABLE list.
That would reduce the skip rate with the potential corner case is that
highmem pages have to be scanned and reclaimed to free lowmem slab pages.
2. Linear scan lowmem pages if the initial LRU shrink fails
This will break LRU ordering but may be preferable and faster during
memory pressure than skipping LRU pages.
Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Here's basic implementation of huge pages support for shmem/tmpfs.
It's all pretty streight-forward:
- shmem_getpage() allcoates huge page if it can and try to inserd into
radix tree with shmem_add_to_page_cache();
- shmem_add_to_page_cache() puts the page onto radix-tree if there's
space for it;
- shmem_undo_range() removes huge pages, if it fully within range.
Partial truncate of huge pages zero out this part of THP.
This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE)
behaviour. As we don't really create hole in this case,
lseek(SEEK_HOLE) may have inconsistent results depending what
pages happened to be allocated.
- no need to change shmem_fault: core-mm will map an compound page as
huge if VMA is suitable;
Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
split_huge_pmd() doesn't guarantee that the pmd is normal pmd pointing
to pte entries, which can be checked with pmd_trans_unstable(). Some
callers make this assertion and some do it differently and some not, so
let's do it in a unified manner.
Link: http://lkml.kernel.org/r/1464741400-12143-1-git-send-email-n-horiguchi@ah.jp.nec.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The allocator fast path looks up the first usable zone in a zonelist and
then get_page_from_freelist does the same job in the zonelist iterator.
This patch preserves the necessary information.
4.6.0-rc2 4.6.0-rc2
fastmark-v1r20 initonce-v1r20
Min alloc-odr0-1 364.00 ( 0.00%) 359.00 ( 1.37%)
Min alloc-odr0-2 262.00 ( 0.00%) 260.00 ( 0.76%)
Min alloc-odr0-4 214.00 ( 0.00%) 214.00 ( 0.00%)
Min alloc-odr0-8 186.00 ( 0.00%) 186.00 ( 0.00%)
Min alloc-odr0-16 173.00 ( 0.00%) 173.00 ( 0.00%)
Min alloc-odr0-32 165.00 ( 0.00%) 165.00 ( 0.00%)
Min alloc-odr0-64 161.00 ( 0.00%) 162.00 ( -0.62%)
Min alloc-odr0-128 159.00 ( 0.00%) 161.00 ( -1.26%)
Min alloc-odr0-256 168.00 ( 0.00%) 170.00 ( -1.19%)
Min alloc-odr0-512 180.00 ( 0.00%) 181.00 ( -0.56%)
Min alloc-odr0-1024 190.00 ( 0.00%) 190.00 ( 0.00%)
Min alloc-odr0-2048 196.00 ( 0.00%) 196.00 ( 0.00%)
Min alloc-odr0-4096 202.00 ( 0.00%) 202.00 ( 0.00%)
Min alloc-odr0-8192 206.00 ( 0.00%) 205.00 ( 0.49%)
Min alloc-odr0-16384 206.00 ( 0.00%) 205.00 ( 0.49%)
The benefit is negligible and the results are within the noise but each
cycle counts.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This code was pretty obscure and was relying upon obscure side-effects
of next_node(-1, ...) and was relying upon NUMA_NO_NODE being equal to
-1.
Clean that all up and document the function's intent.
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Lots of code does
node = next_node(node, XXX);
if (node == MAX_NUMNODES)
node = first_node(XXX);
so create next_node_in() to do this and use it in various places.
[mhocko@suse.com: use next_node_in() helper]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Hui Zhu <zhuhui@xiaomi.com>
Cc: Wang Xiaoqiang <wangxq10@lzu.edu.cn>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 protection key support from Ingo Molnar:
"This tree adds support for a new memory protection hardware feature
that is available in upcoming Intel CPUs: 'protection keys' (pkeys).
There's a background article at LWN.net:
https://lwn.net/Articles/643797/
The gist is that protection keys allow the encoding of
user-controllable permission masks in the pte. So instead of having a
fixed protection mask in the pte (which needs a system call to change
and works on a per page basis), the user can map a (handful of)
protection mask variants and can change the masks runtime relatively
cheaply, without having to change every single page in the affected
virtual memory range.
This allows the dynamic switching of the protection bits of large
amounts of virtual memory, via user-space instructions. It also
allows more precise control of MMU permission bits: for example the
executable bit is separate from the read bit (see more about that
below).
This tree adds the MM infrastructure and low level x86 glue needed for
that, plus it adds a high level API to make use of protection keys -
if a user-space application calls:
mmap(..., PROT_EXEC);
or
mprotect(ptr, sz, PROT_EXEC);
(note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice
this special case, and will set a special protection key on this
memory range. It also sets the appropriate bits in the Protection
Keys User Rights (PKRU) register so that the memory becomes unreadable
and unwritable.
So using protection keys the kernel is able to implement 'true'
PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies
PROT_READ as well. Unreadable executable mappings have security
advantages: they cannot be read via information leaks to figure out
ASLR details, nor can they be scanned for ROP gadgets - and they
cannot be used by exploits for data purposes either.
We know about no user-space code that relies on pure PROT_EXEC
mappings today, but binary loaders could start making use of this new
feature to map binaries and libraries in a more secure fashion.
There is other pending pkeys work that offers more high level system
call APIs to manage protection keys - but those are not part of this
pull request.
Right now there's a Kconfig that controls this feature
(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled
(like most x86 CPU feature enablement code that has no runtime
overhead), but it's not user-configurable at the moment. If there's
any serious problem with this then we can make it configurable and/or
flip the default"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/mm/pkeys: Fix mismerge of protection keys CPUID bits
mm/pkeys: Fix siginfo ABI breakage caused by new u64 field
x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA
mm/core, x86/mm/pkeys: Add execute-only protection keys support
x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags
x86/mm/pkeys: Allow kernel to modify user pkey rights register
x86/fpu: Allow setting of XSAVE state
x86/mm: Factor out LDT init from context init
mm/core, x86/mm/pkeys: Add arch_validate_pkey()
mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits()
x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU
x86/mm/pkeys: Add Kconfig prompt to existing config option
x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps
x86/mm/pkeys: Dump PKRU with other kernel registers
mm/core, x86/mm/pkeys: Differentiate instruction fetches
x86/mm/pkeys: Optimize fault handling in access_error()
mm/core: Do not enforce PKEY permissions on remote mm access
um, pkeys: Add UML arch_*_access_permitted() methods
mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
x86/mm/gup: Simplify get_user_pages() PTE bit handling
...
|
|
Kernel style prefers a single string over split strings when the string is
'user-visible'.
Miscellanea:
- Add a missing newline
- Realign arguments
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org> [percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
VM_HUGETLB and VM_MIXEDMAP vma needs to be excluded to avoid compound
pages being marked for migration and unexpected COWs when handling
hugetlb fault.
Thanks to Naoya Horiguchi for reminding me on these checks.
Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: SeongJae Park <sj38.park@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We don't have native support of THP migration, so we have to split huge
page into small pages in order to migrate it to different node. This
includes PTE-mapped huge pages.
I made mistake in refcounting patchset: we don't actually split
PTE-mapped huge page in queue_pages_pte_range(), if we step on head
page.
The result is that the head page is queued for migration, but none of
tail pages: putting head page on queue takes pin on the page and any
subsequent attempts of split_huge_pages() would fail and we skip queuing
tail pages.
unmap_and_move_huge_page() will eventually split the huge pages, but
only one of 512 pages would get migrated.
Let's fix the situation.
Fixes: 248db92da13f2507 ("migrate_pages: try to split pages on queuing")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We will soon modify the vanilla get_user_pages() so it can no
longer be used on mm/tasks other than 'current/current->mm',
which is by far the most common way it is called. For now,
we allow the old-style calls, but warn when they are used.
(implemented in previous patch)
This patch switches all callers of:
get_user_pages()
get_user_pages_unlocked()
get_user_pages_locked()
to stop passing tsk/mm so they will no longer see the warnings.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: jack@suse.cz
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210156.113E9407@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Maybe I miss some point, but I don't see a reason why we try to queue
pages from non migratable VMAs.
This testcase steps on VM_BUG_ON_PAGE() in isolate_lru_page():
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/mman.h>
#include <numaif.h>
#define SIZE 0x2000
int foo;
int main()
{
int fd;
char *p;
unsigned long mask = 2;
fd = open("/dev/sg0", O_RDWR);
p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
/* Faultin pages */
foo = p[0] + p[0x1000];
mbind(p, SIZE, MPOL_BIND, &mask, 4, MPOL_MF_MOVE | MPOL_MF_STRICT);
return 0;
}
The only case when we can queue pages from such VMA is MPOL_MF_STRICT
plus MPOL_MF_MOVE or MPOL_MF_MOVE_ALL for VMA which has pages on LRU,
but gfp mask is not sutable for migaration (see mapping_gfp_mask() check
in vma_migratable()). That's looks like a bug to me.
Let's filter out non-migratable vma at start of queue_pages_test_walk()
and go to queue_pages_pte_range() only if MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL flag is set.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
MPOL_MF_LAZY is not visible from userspace since a720094ded8c ("mm:
mempolicy: Hide MPOL_NOOP and MPOL_MF_LAZY from userspace for now"), but
it should still skip non-migratable VMAs such as VM_IO, VM_PFNMAP, and
VM_HUGETLB VMAs, and avoid useless overhead of minor faults.
Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We are not able to migrate THPs. It means it's not enough to split only
PMD on migration -- we need to split compound page under it too.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We are going to decouple splitting THP PMD from splitting underlying
compound page.
This patch renames split_huge_page_pmd*() functions to split_huge_pmd*()
to reflect the fact that it doesn't imply page splitting, only PMD.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When running the SPECint_rate gcc on some very large boxes it was
noticed that the system was spending lots of time in
mpol_shared_policy_lookup(). The gamess benchmark can also show it and
is what I mostly used to chase down the issue since the setup for that I
found to be easier.
To be clear the binaries were on tmpfs because of disk I/O requirements.
We then used text replication to avoid icache misses and having all the
copies banging on the memory where the instruction code resides. This
results in us hitting a bottleneck in mpol_shared_policy_lookup() since
lookup is serialised by the shared_policy lock.
I have only reproduced this on very large (3k+ cores) boxes. The
problem starts showing up at just a few hundred ranks getting worse
until it threatens to livelock once it gets large enough. For example
on the gamess benchmark at 128 ranks this area consumes only ~1% of
time, at 512 ranks it consumes nearly 13%, and at 2k ranks it is over
90%.
To alleviate the contention in this area I converted the spinlock to an
rwlock. This allows a large number of lookups to happen simultaneously.
The results were quite good reducing this consumtion at max ranks to
around 2%.
[akpm@linux-foundation.org: tidy up code comments]
Signed-off-by: Nathan Zimmer <nzimmer@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Nadia Yvette Chambers <nyc@holomorphy.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
alloc_pages_exact_node() was introduced in commit 6484eb3e2a81 ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE. Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise. In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.
The misleading name has lead to mistakes in the past, see for example
commits 5265047ac301 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f8e ("mm, mempolicy:
migrate_to_node should only migrate to node").
Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.
To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage. Both functions get described in comments.
It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly. The number of users would be small
anyway.
Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead. This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.
Both differences will be rectified by the next patch.
To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers. Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
queue_pages_range()
This check was introduced as part of
6f4576e3687 ("mempolicy: apply page table walker on queue_pages_range()")
which got duplicated by
48684a65b4e ("mm: pagewalk: fix misbehavior of walk_page_range for vma(VM_PFNMAP)")
by reintroducing it earlier on queue_page_test_walk()
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
vma->vm_userfaultfd_ctx is yet another vma parameter that vma_merge
must be aware about so that we can merge vmas back like they were
originally before arming the userfaultfd on some memory range.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since commit 077fcf116c8c ("mm/thp: allocate transparent hugepages on
local node"), we handle THP allocations on page fault in a special way -
for non-interleave memory policies, the allocation is only attempted on
the node local to the current CPU, if the policy's nodemask allows the
node.
This is motivated by the assumption that THP benefits cannot offset the
cost of remote accesses, so it's better to fallback to base pages on the
local node (which might still be available, while huge pages are not due
to fragmentation) than to allocate huge pages on a remote node.
The nodemask check prevents us from violating e.g. MPOL_BIND policies
where the local node is not among the allowed nodes. However, the
current implementation can still give surprising results for the
MPOL_PREFERRED policy when the preferred node is different than the
current CPU's local node.
In such case we should honor the preferred node and not use the local
node, which is what this patch does. If hugepage allocation on the
preferred node fails, we fall back to base pages and don't try other
nodes, with the same motivation as is done for the local node hugepage
allocations. The patch also moves the MPOL_INTERLEAVE check around to
simplify the hugepage specific test.
The difference can be demonstrated using in-tree transhuge-stress test
on the following 2-node machine where half memory on one node was
occupied to show the difference.
> numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 30 31 32 33 34 35
node 0 size: 7878 MB
node 0 free: 3623 MB
node 1 cpus: 12 13 14 15 16 17 18 19 20 21 22 23 36 37 38 39 40 41 42 43 44 45 46 47
node 1 size: 8045 MB
node 1 free: 7818 MB
node distances:
node 0 1
0: 10 21
1: 21 10
Before the patch:
> numactl -p0 -C0 ./transhuge-stress
transhuge-stress: 2.197 s/loop, 0.276 ms/page, 7249.168 MiB/s 7962 succeed, 0 failed, 1786 different pages
> numactl -p0 -C12 ./transhuge-stress
transhuge-stress: 2.962 s/loop, 0.372 ms/page, 5376.172 MiB/s 7962 succeed, 0 failed, 3873 different pages
Number of successful THP allocations corresponds to free memory on node 0 in
the first case and node 1 in the second case, i.e. -p parameter is ignored and
cpu binding "wins".
After the patch:
> numactl -p0 -C0 ./transhuge-stress
transhuge-stress: 2.183 s/loop, 0.274 ms/page, 7295.516 MiB/s 7962 succeed, 0 failed, 1760 different pages
> numactl -p0 -C12 ./transhuge-stress
transhuge-stress: 2.878 s/loop, 0.361 ms/page, 5533.638 MiB/s 7962 succeed, 0 failed, 1750 different pages
> numactl -p1 -C0 ./transhuge-stress
transhuge-stress: 4.628 s/loop, 0.581 ms/page, 3440.893 MiB/s 7962 succeed, 0 failed, 3918 different pages
The -p parameter is respected regardless of cpu binding.
> numactl -C0 ./transhuge-stress
transhuge-stress: 2.202 s/loop, 0.277 ms/page, 7230.003 MiB/s 7962 succeed, 0 failed, 1750 different pages
> numactl -C12 ./transhuge-stress
transhuge-stress: 3.020 s/loop, 0.379 ms/page, 5273.324 MiB/s 7962 succeed, 0 failed, 3916 different pages
Without -p parameter, hugepage restriction to CPU-local node works as before.
Fixes: 077fcf116c8c ("mm/thp: allocate transparent hugepages on local node")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
NUMA balancing is meant to be disabled by default on UMA machines but
the check is using nr_node_ids (highest node) instead of
num_online_nodes (online nodes).
The consequences are that a UMA machine with a node ID of 1 or higher
will enable NUMA balancing. This will incur useless overhead due to
minor faults with the impact depending on the workload. These are the
impact on the stats when running a kernel build on a single node machine
whose node ID happened to be 1:
vanilla patched
NUMA base PTE updates 5113158 0
NUMA huge PMD updates 643 0
NUMA page range updates 5442374 0
NUMA hint faults 2109622 0
NUMA hint local faults 2109622 0
NUMA hint local percent 100 100
NUMA pages migrated 0 0
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [3.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 077fcf116c8c ("mm/thp: allocate transparent hugepages on local
node") restructured alloc_hugepage_vma() with the intent of only
allocating transparent hugepages locally when there was not an effective
interleave mempolicy.
alloc_pages_exact_node() does not limit the allocation to the single node,
however, but rather prefers it. This is because __GFP_THISNODE is not set
which would cause the node-local nodemask to be passed. Without it, only
a nodemask that prefers the local node is passed.
Fix this by passing __GFP_THISNODE and falling back to small pages when
the allocation fails.
Commit 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target
node") suffers from a similar problem for khugepaged, which is also fixed.
Fixes: 077fcf116c8c ("mm/thp: allocate transparent hugepages on local node")
Fixes: 9f1b868a13ac ("mm: thp: khugepaged: add policy for finding target node")
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Jarno Rajahalme <jrajahalme@nicira.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
migrate_to_node() is intended to migrate a page from one source node to
a target node.
Today, migrate_to_node() could end up migrating to any node, not only
the target node. This is because the page migration allocator,
new_node_page() does not pass __GFP_THISNODE to
alloc_pages_exact_node(). This causes the target node to be preferred
but allows fallback to any other node in order of affinity.
Prevent this by allocating with __GFP_THISNODE. If memory is not
available, -ENOMEM will be returned as appropriate.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With PROT_NONE, the traditional page table manipulation functions are
sufficient.
[andre.przywara@arm.com: fix compiler warning in pmdp_invalidate()]
[akpm@linux-foundation.org: fix build with STRICT_MM_TYPECHECKS]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|