Age | Commit message (Collapse) | Author | Files | Lines |
|
THP migration is hacked into the generic migration with rather
surprising semantic. The migration allocation callback is supposed to
check whether the THP can be migrated at once and if that is not the
case then it allocates a simple page to migrate. unmap_and_move then
fixes that up by spliting the THP into small pages while moving the head
page to the newly allocated order-0 page. Remaning pages are moved to
the LRU list by split_huge_page. The same happens if the THP allocation
fails. This is really ugly and error prone [1].
I also believe that split_huge_page to the LRU lists is inherently wrong
because all tail pages are not migrated. Some callers will just work
around that by retrying (e.g. memory hotplug). There are other pfn
walkers which are simply broken though. e.g. madvise_inject_error will
migrate head and then advances next pfn by the huge page size.
do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind),
will simply split the THP before migration if the THP migration is not
supported then falls back to single page migration but it doesn't handle
tail pages if the THP migration path is not able to allocate a fresh THP
so we end up with ENOMEM and fail the whole migration which is a
questionable behavior. Page compaction doesn't try to migrate large
pages so it should be immune.
This patch tries to unclutter the situation by moving the special THP
handling up to the migrate_pages layer where it actually belongs. We
simply split the THP page into the existing list if unmap_and_move fails
with ENOMEM and retry. So we will _always_ migrate all THP subpages and
specific migrate_pages users do not have to deal with this case in a
special way.
[1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com
Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
No allocation callback is using this argument anymore. new_page_node
used to use this parameter to convey node_id resp. migration error up
to move_pages code (do_move_page_to_node_array). The error status never
made it into the final status field and we have a better way to
communicate node id to the status field now. All other allocation
callbacks simply ignored the argument so we can drop it finally.
[mhocko@suse.com: fix migration callback]
Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz
[akpm@linux-foundation.org: fix alloc_misplaced_dst_page()]
[mhocko@kernel.org: fix build]
Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Link: http://lkml.kernel.org/r/1519585191-10180-4-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
During memory hotplugging we traverse struct pages three times:
1. memset(0) in sparse_add_one_section()
2. loop in __add_section() to set do: set_page_node(page, nid); and
SetPageReserved(page);
3. loop in memmap_init_zone() to call __init_single_pfn()
This patch removes the first two loops, and leaves only loop 3. All
struct pages are initialized in one place, the same as it is done during
boot.
The benefits:
- We improve memory hotplug performance because we are not evicting the
cache several times and also reduce loop branching overhead.
- Remove condition from hotpath in __init_single_pfn(), that was added
in order to fix the problem that was reported by Bharata in the above
email thread, thus also improve performance during normal boot.
- Make memory hotplug more similar to the boot memory initialization
path because we zero and initialize struct pages only in one
function.
- Simplifies memory hotplug struct page initialization code, and thus
enables future improvements, such as multi-threading the
initialization of struct pages in order to improve hotplug
performance even further on larger machines.
[pasha.tatashin@oracle.com: v5]
Link: http://lkml.kernel.org/r/20180228030308.1116-7-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180215165920.8570-7-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
During memory hotplugging the probe routine will leave struct pages
uninitialized, the same as it is currently done during boot. Therefore,
we do not want to access the inside of struct pages before
__init_single_page() is called during onlining.
Because during hotplug we know that pages in one memory block belong to
the same numa node, we can skip the checking. We should keep checking
for the boot case.
[pasha.tatashin@oracle.com: s/register_new_memory()/hotplug_memory_register()]
Link: http://lkml.kernel.org/r/20180228030308.1116-6-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180215165920.8570-6-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "optimize memory hotplug", v3.
This patchset:
- Improves hotplug performance by eliminating a number of struct page
traverses during memory hotplug.
- Fixes some issues with hotplugging, where boundaries were not
properly checked. And on x86 block size was not properly aligned with
end of memory
- Also, potentially improves boot performance by eliminating condition
from __init_single_page().
- Adds robustness by verifying that that struct pages are correctly
poisoned when flags are accessed.
The following experiments were performed on Xeon(R) CPU E7-8895 v3 @
2.60GHz with 1T RAM:
booting in qemu with 960G of memory, time to initialize struct pages:
no-kvm:
TRY1 TRY2
BEFORE: 39.433668 39.39705
AFTER: 36.903781 36.989329
with-kvm:
BEFORE: 10.977447 11.103164
AFTER: 10.929072 10.751885
Hotplug 896G memory:
no-kvm:
TRY1 TRY2
BEFORE: 848.740000 846.910000
AFTER: 783.070000 786.560000
with-kvm:
TRY1 TRY2
BEFORE: 34.410000 33.57
AFTER: 29.810000 29.580000
This patch (of 6):
Start qemu with the following arguments:
-m 64G,slots=2,maxmem=66G -object memory-backend-ram,id=mem1,size=2G
Which: boots machine with 64G, and adds a device mem1 with 2G which can
be hotplugged later.
Also make sure that config has the following turned on:
CONFIG_MEMORY_HOTPLUG
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
CONFIG_ACPI_HOTPLUG_MEMORY
Using the qemu monitor hotplug the memory (make sure config has (qemu)
device_add pc-dimm,id=dimm1,memdev=mem1
The operation will fail with the following trace:
WARNING: CPU: 0 PID: 91 at drivers/base/memory.c:205
pages_correctly_reserved+0xe6/0x110
Modules linked in:
CPU: 0 PID: 91 Comm: systemd-udevd Not tainted 4.16.0-rc1_pt_master #29
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014
RIP: 0010:pages_correctly_reserved+0xe6/0x110
Call Trace:
memory_subsys_online+0x44/0xa0
device_online+0x51/0x80
store_mem_state+0x5e/0xe0
kernfs_fop_write+0xfa/0x170
__vfs_write+0x2e/0x150
vfs_write+0xa8/0x1a0
SyS_write+0x4d/0xb0
do_syscall_64+0x5d/0x110
entry_SYSCALL_64_after_hwframe+0x21/0x86
---[ end trace 6203bc4f1a5d30e8 ]---
The problem is detected in: drivers/base/memory.c
static bool pages_correctly_reserved(unsigned long start_pfn)
205 if (WARN_ON_ONCE(!pfn_valid(pfn)))
This function loops through every section in the newly added memory
block and verifies that the first pfn is valid, meaning section exists,
has mapping (struct page array), and is online.
The block size on x86 is usually 128M, but when machine is booted with
more than 64G of memory, the block size is changed to 2G: $ cat
/sys/devices/system/memory/block_size_bytes 80000000
or
$ dmesg | grep "block size"
[ 0.086469] x86/mm: Memory block size: 2048MB
During memory hotplug, and hotremove we verify that the range is section
size aligned, but we actually must verify that it is block size aligned,
because that is the proper unit for hotplug operations. See:
Documentation/memory-hotplug.txt
So, when the start_pfn of newly added memory is not block size aligned,
we can get a memory block that has only part of it with properly
populated sections.
In our case the start_pfn starts from the last_pfn (end of physical
memory).
$ dmesg | grep last_pfn
[ 0.000000] e820: last_pfn = 0x1040000 max_arch_pfn = 0x400000000
0x1040000 == 65G, and so is not 2G aligned!
The fix is to enforce that memory that is hotplugged and hotremoved is
block size aligned.
With this fix, running the above sequence yield to the following result:
(qemu) device_add pc-dimm,id=dimm1,memdev=mem1
Block size [0x80000000] unaligned hotplug range: start 0x1040000000,
size 0x80000000
acpi PNP0C80:00: add_memory failed
acpi PNP0C80:00: acpi_memory_enable_device() error
acpi PNP0C80:00: Enumeration failure
Link: http://lkml.kernel.org/r/20180213193159.14606-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Ross Zwisler:
- Require struct page by default for filesystem DAX to remove a number
of surprising failure cases. This includes failures with direct I/O,
gdb and fork(2).
- Add support for the new Platform Capabilities Structure added to the
NFIT in ACPI 6.2a. This new table tells us whether the platform
supports flushing of CPU and memory controller caches on unexpected
power loss events.
- Revamp vmem_altmap and dev_pagemap handling to clean up code and
better support future future PCI P2P uses.
- Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has
become out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL
spec, and instead rely on the generic ND_CMD_CALL approach used by
the two other IOCTL families, NVDIMM_FAMILY_{HPE,MSFT}.
- Enhance nfit_test so we can test some of the new things added in
version 1.6 of the DSM specification. This includes testing firmware
download and simulating the Last Shutdown State (LSS) status.
* tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (37 commits)
libnvdimm, namespace: remove redundant initialization of 'nd_mapping'
acpi, nfit: fix register dimm error handling
libnvdimm, namespace: make min namespace size 4K
tools/testing/nvdimm: force nfit_test to depend on instrumented modules
libnvdimm/nfit_test: adding support for unit testing enable LSS status
libnvdimm/nfit_test: add firmware download emulation
nfit-test: Add platform cap support from ACPI 6.2a to test
libnvdimm: expose platform persistence attribute for nd_region
acpi: nfit: add persistent memory control flag for nd_region
acpi: nfit: Add support for detect platform CPU cache flush on power loss
device-dax: Fix trailing semicolon
libnvdimm, btt: fix uninitialized err_lock
dax: require 'struct page' by default for filesystem dax
ext2: auto disable dax instead of failing mount
ext4: auto disable dax instead of failing mount
mm, dax: introduce pfn_t_special()
mm: Fix devm_memremap_pages() collision handling
mm: Fix memory size alignment in devm_memremap_pages_release()
memremap: merge find_dev_pagemap into get_dev_pagemap
memremap: change devm_memremap_pages interface to use struct dev_pagemap
...
|
|
register_page_bootmem_info_section()
In register_page_bootmem_info_section() we call __nr_to_section() in
order to get the mem_section struct at the beginning of the function.
Since we already got it, there is no need for a second call to
__nr_to_section().
Link: http://lkml.kernel.org/r/20171207102914.GA12396@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
register_page_bootmem_info_section()
When we call register_page_bootmem_info_section() having
CONFIG_SPARSEMEM_VMEMMAP enabled, we check if the pfn is valid.
This check is redundant as we already checked this in
register_page_bootmem_info_node() before calling
register_page_bootmem_info_section(), so let's get rid of it.
Link: http://lkml.kernel.org/r/20171205143422.GA31458@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pulling cpu hotplug locks inside the mm core function like
lru_add_drain_all just asks for problems and the recent lockdep splat
[1] just proves this. While the usage in that particular case might be
wrong we should avoid the locking as lru_add_drain_all() is used in many
places. It seems that this is not all that hard to achieve actually.
We have done the same thing for drain_all_pages which is analogous by
commit a459eeb7b852 ("mm, page_alloc: do not depend on cpu hotplug locks
inside the allocator"). All we have to care about is to handle
- the work item might be executed on a different cpu in worker from
unbound pool so it doesn't run on pinned on the cpu
- we have to make sure that we do not race with page_alloc_cpu_dead
calling lru_add_drain_cpu
the first part is already handled because the worker calls lru_add_drain
which disables preemption when calling lru_add_drain_cpu on the local
cpu it is draining. The later is true because page_alloc_cpu_dead is
called on the controlling CPU after the hotplugged CPU vanished
completely.
[1] http://lkml.kernel.org/r/089e0825eec8955c1f055c83d476@google.com
[add a cpu hotplug locking interaction as per tglx]
Link: http://lkml.kernel.org/r/20171116120535.23765-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pass the vmem_altmap two levels down instead of needing a lookup.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
We can just pass this on instead of having to do a radix tree lookup
without proper locking 2 levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
We can just pass this on instead of having to do a radix tree lookup
without proper locking 2 levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
This function isn't used by any modules, and is only to be called
from core MM code. This includes the calls for the add_pages wrapper
that might be inlined.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Here, pfn_to_node should be page_to_nid.
Link: http://lkml.kernel.org/r/1510735205-22540-1-git-send-email-fan.du@intel.com
Signed-off-by: Fan Du <fan.du@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We have a hardcoded 120s timeout after which the memory offline fails
basically since the hot remove has been introduced. This is essentially
a policy implemented in the kernel. Moreover there is no way to adjust
the timeout and so we are sometimes facing memory offline failures if
the system is under a heavy memory pressure or very intensive CPU
workload on large machines.
It is not very clear what purpose the timeout actually serves. The
offline operation is interruptible by a signal so if userspace wants
some timeout based termination this can be done trivially by sending a
signal.
If there is a strong usecase to do this from the kernel then we should
do it properly and have a it tunable from the userspace with the timeout
disabled by default along with the explanation who uses it and for what
purporse.
Link: http://lkml.kernel.org/r/20170918070834.13083-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm, memory_hotplug: redefine memory offline retry logic", v2.
While testing memory hotplug on a large 4TB machine we have noticed that
memory offlining is just too eager to fail. The primary reason is that
the retry logic is just too easy to give up. We have 4 ways out of the
offline
- we have a permanent failure (isolation or memory notifiers fail,
or hugetlb pages cannot be dropped)
- userspace sends a signal
- a hardcoded 120s timeout expires
- page migration fails 5 times
This is way too convoluted and it doesn't scale very well. We have seen
both temporary migration failures as well as 120s being triggered.
After removing those restrictions we were able to pass stress testing
during memory hot remove without any other negative side effects
observed. Therefore I suggest dropping both hard coded policies. I
couldn't have found any specific reason for them in the changelog. I
neither didn't get any response [1] from Kamezawa. If we need some
upper bound - e.g. timeout based - then we should have a proper and
user defined policy for that. In any case there should be a clear use
case when introducing it.
This patch (of 2):
Memory offlining can fail too eagerly under heavy memory pressure.
page:ffffea22a646bd00 count:255 mapcount:252 mapping:ffff88ff926c9f38 index:0x3
flags: 0x9855fe40010048(uptodate|active|mappedtodisk)
page dumped because: isolation failed
page->mem_cgroup:ffff8801cd662000
memory offlining [mem 0x18b580000000-0x18b5ffffffff] failed
Isolation has failed here because the page is not on LRU. Most probably
because it was on the pcp LRU cache or it has been removed from the LRU
already but it hasn't been freed yet. In both cases the page doesn't
look non-migrable so retrying more makes sense.
__offline_pages seems rather cluttered when it comes to the retry logic.
We have 5 retries at maximum and a timeout. We could argue whether the
timeout makes sense but failing just because of a race when somebody
isoltes a page from LRU or puts it on a pcp LRU lists is just wrong. It
only takes it to race with a process which unmaps some pages and remove
them from the LRU list and we can fail the whole offline because of
something that is a temporary condition and actually not harmful for the
offline.
Please note that unmovable pages should be already excluded during
start_isolate_page_range. We could argue that has_unmovable_pages is
racy and MIGRATE_MOVABLE check doesn't provide any hard guarantee either
but kernel zones (aka < ZONE_MOVABLE) will very likely detect unmovable
pages in most cases and movable zone shouldn't contain unmovable pages
at all. Some of those pages might be pinned but not for ever because
that would be a bug on its own. In any case the context is still
interruptible and so the userspace can easily bail out when the
operation takes too long. This is certainly better behavior than a
hardcoded retry loop which is racy.
Fix this by removing the max retry count and only rely on the timeout
resp. interruption by a signal from the userspace. Also retry rather
than fail when check_pages_isolated sees some !free pages because those
could be a result of the race as well.
Link: http://lkml.kernel.org/r/20170918070834.13083-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
find_{smallest|biggest}_section_pfn()s find the smallest/biggest section
and return the pfn of the section. But the functions are defined as int.
So the functions always return 0x00000000 - 0xffffffff. It means if
memory address is over 16TB, the functions does not work correctly.
To handle 64 bit value, the patch defines
find_{smallest|biggest}_section_pfn() as unsigned long.
Fixes: 815121d2b5cd ("memory_hotplug: clear zone when removing the memory")
Link: http://lkml.kernel.org/r/d9d5593a-d0a4-c4be-ab08-493df59a85c6@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
inline function
pfn_to_section_nr() and section_nr_to_pfn() are defined as macro.
pfn_to_section_nr() has no issue even if it is defined as macro. But
section_nr_to_pfn() has overflow issue if sec is defined as int.
section_nr_to_pfn() just shifts sec by PFN_SECTION_SHIFT. If sec is
defined as unsigned long, section_nr_to_pfn() returns pfn as 64 bit value.
But if sec is defined as int, section_nr_to_pfn() returns pfn as 32 bit
value.
__remove_section() calculates start_pfn using section_nr_to_pfn() and
scn_nr defined as int. So if hot-removed memory address is over 16TB,
overflow issue occurs and section_nr_to_pfn() does not calculate correct
pfn.
To make callers use proper arg, the patch changes the macros to inline
functions.
Fixes: 815121d2b5cd ("memory_hotplug: clear zone when removing the memory")
Link: http://lkml.kernel.org/r/e643a387-e573-6bbf-d418-c60c8ee3d15e@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm, memory_hotplug: fix few soft lockups in memory
hotadd".
Johannes has noticed few soft lockups when adding a large nvdimm device.
All of them were caused by a long loop without any explicit cond_resched
which is a problem for !PREEMPT kernels.
The fix is quite straightforward. Just make sure that cond_resched gets
called from time to time.
This patch (of 3):
__add_pages gets a pfn range to add and there is no upper bound for a
single call. This is usually a memory block aligned size for the
regular memory hotplug - smaller sizes are usual for memory balloning
drivers, or the whole NUMA node for physical memory online. There is no
explicit scheduling point in that code path though.
This can lead to long latencies while __add_pages is executed and we
have even seen a soft lockup report during nvdimm initialization with
!PREEMPT kernel
NMI watchdog: BUG: soft lockup - CPU#11 stuck for 23s! [kworker/u641:3:832]
[...]
Workqueue: events_unbound async_run_entry_fn
task: ffff881809270f40 ti: ffff881809274000 task.ti: ffff881809274000
RIP: _raw_spin_unlock_irqrestore+0x11/0x20
RSP: 0018:ffff881809277b10 EFLAGS: 00000286
[...]
Call Trace:
sparse_add_one_section+0x13d/0x18e
__add_pages+0x10a/0x1d0
arch_add_memory+0x4a/0xc0
devm_memremap_pages+0x29d/0x430
pmem_attach_disk+0x2fd/0x3f0 [nd_pmem]
nvdimm_bus_probe+0x64/0x110 [libnvdimm]
driver_probe_device+0x1f7/0x420
bus_for_each_drv+0x52/0x80
__device_attach+0xb0/0x130
bus_probe_device+0x87/0xa0
device_add+0x3fc/0x5f0
nd_async_device_register+0xe/0x40 [libnvdimm]
async_run_entry_fn+0x43/0x150
process_one_work+0x14e/0x410
worker_thread+0x116/0x490
kthread+0xc7/0xe0
ret_from_fork+0x3f/0x70
DWARF2 unwinder stuck at ret_from_fork+0x3f/0x70
Fix this by adding cond_resched once per each memory section in the
given pfn range. Each section is constant amount of work which itself
is not too expensive but many of them will just add up.
Link: http://lkml.kernel.org/r/20170918121410.24466-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Johannes Thumshirn <jthumshirn@suse.de>
Tested-by: Johannes Thumshirn <jthumshirn@suse.de>
Cc: Dan Williams <dan.j.williams@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
HMM (heterogeneous memory management) need struct page to support
migration from system main memory to device memory. Reasons for HMM and
migration to device memory is explained with HMM core patch.
This patch deals with device memory that is un-addressable memory (ie CPU
can not access it). Hence we do not want those struct page to be manage
like regular memory. That is why we extend ZONE_DEVICE to support
different types of memory.
A persistent memory type is define for existing user of ZONE_DEVICE and a
new device un-addressable type is added for the un-addressable memory
type. There is a clear separation between what is expected from each
memory type and existing user of ZONE_DEVICE are un-affected by new
requirement and new use of the un-addressable type. All specific code
path are protect with test against the memory type.
Because memory is un-addressable we use a new special swap type for when a
page is migrated to device memory (this reduces the number of maximum swap
file).
The main two additions beside memory type to ZONE_DEVICE is two callbacks.
First one, page_free() is call whenever page refcount reach 1 (which
means the page is free as ZONE_DEVICE page never reach a refcount of 0).
This allow device driver to manage its memory and associated struct page.
The second callback page_fault() happens when there is a CPU access to an
address that is back by a device page (which are un-addressable by the
CPU). This callback is responsible to migrate the page back to system
main memory. Device driver can not block migration back to system memory,
HMM make sure that such page can not be pin into device memory.
If device is in some error condition and can not migrate memory back then
a CPU page fault to device memory should end with SIGBUS.
[arnd@arndb.de: fix warning]
Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch enables thp migration for memory hotremove.
Link: http://lkml.kernel.org/r/20170717193955.20207-11-zi.yan@sent.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
zonelists_mutex was introduced by commit 4eaf3f64397c ("mem-hotplug: fix
potential race while building zonelist for new populated zone") to
protect zonelist building from races. This is no longer needed though
because both memory online and offline are fully serialized. New users
have grown since then.
Notably setup_per_zone_wmarks wants to prevent from races between memory
hotplug, khugepaged setup and manual min_free_kbytes update via sysctl
(see cfd3da1e49bb ("mm: Serialize access to min_free_kbytes"). Let's
add a private lock for that purpose. This will not prevent from seeing
halfway through memory hotplug operation but that shouldn't be a big
deal becuse memory hotplug will update watermarks explicitly so we will
eventually get a full picture. The lock just makes sure we won't race
when updating watermarks leading to weird results.
Also __build_all_zonelists manipulates global data so add a private lock
for it as well. This doesn't seem to be necessary today but it is more
robust to have a lock there.
While we are at it make sure we document that memory online/offline
depends on a full serialization either via mem_hotplug_begin() or
device_lock.
Link: http://lkml.kernel.org/r/20170721143915.14161-9-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Haicheng Li <haicheng.li@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
try_online_node calls hotadd_new_pgdat which already calls
build_all_zonelists. So the additional call is redundant. Even though
hotadd_new_pgdat will only initialize zonelists of the new node this is
the right thing to do because such a node doesn't have any memory so
other zonelists would ignore all the zones from this node anyway.
Link: http://lkml.kernel.org/r/20170721143915.14161-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
build_all_zonelists gets a zone parameter to initialize zone's pagesets.
There is only a single user which gives a non-NULL zone parameter and
that one doesn't really need the rest of the build_all_zonelists (see
commit 6dcd73d7011b ("memory-hotplug: allocate zone's pcp before
onlining pages")).
Therefore remove setup_zone_pageset from build_all_zonelists and call it
from its only user directly. This will also remove a pointless zonlists
rebuilding which is always good.
Link: http://lkml.kernel.org/r/20170721143915.14161-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has
to precede the Movable zone in the physical memory range. The purpose
of the movable zone is, however, not bound to any physical memory
restriction. It merely defines a class of migrateable and reclaimable
memory.
There are users (e.g. CMA) who might want to reserve specific physical
memory ranges for their own purpose. Moreover our pfn walkers have to
be prepared for zones overlapping in the physical range already because
we do support interleaving NUMA nodes and therefore zones can interleave
as well. This means we can allow each memory block to be associated
with a different zone.
Loosen the current onlining semantic and allow explicit onlining type on
any memblock. That means that online_{kernel,movable} will be allowed
regardless of the physical address of the memblock as long as it is
offline of course. This might result in moveble zone overlapping with
other kernel zones. Default onlining then becomes a bit tricky but
still sensible. echo online > memoryXY/state will online the given
block to
1) the default zone if the given range is outside of any zone
2) the enclosing zone if such a zone doesn't interleave with
any other zone
3) the default zone if more zones interleave for this range
where default zone is movable zone only if movable_node is enabled
otherwise it is a kernel zone.
Here is an example of the semantic with (movable_node is not present but
it work in an analogous way). We start with following memblocks, all of
them offline:
memory34/valid_zones:Normal Movable
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Normal Movable
memory38/valid_zones:Normal Movable
memory39/valid_zones:Normal Movable
memory40/valid_zones:Normal Movable
memory41/valid_zones:Normal Movable
Now, we online block 34 in default mode and block 37 as movable
root@test1:/sys/devices/system/node/node1# echo online > memory34/state
root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state
memory34/valid_zones:Normal
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Movable
memory38/valid_zones:Normal Movable
memory39/valid_zones:Normal Movable
memory40/valid_zones:Normal Movable
memory41/valid_zones:Normal Movable
As we can see all other blocks can still be onlined both into Normal and
Movable zones and the Normal is default because the Movable zone spans
only block37 now.
root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state
memory34/valid_zones:Normal
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Movable
memory38/valid_zones:Movable Normal
memory39/valid_zones:Movable Normal
memory40/valid_zones:Movable Normal
memory41/valid_zones:Movable
Now the default zone for blocks 37-41 has changed because movable zone
spans that range.
root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state
memory34/valid_zones:Normal
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Movable
memory38/valid_zones:Normal Movable
memory39/valid_zones:Normal
memory40/valid_zones:Movable Normal
memory41/valid_zones:Movable
Note that the block 39 now belongs to the zone Normal and so block38
falls into Normal by default as well.
For completness
root@test1:/sys/devices/system/node/node1# for i in memory[34]?
do
echo online > $i/state 2>/dev/null
done
memory34/valid_zones:Normal
memory35/valid_zones:Normal
memory36/valid_zones:Normal
memory37/valid_zones:Movable
memory38/valid_zones:Normal
memory39/valid_zones:Normal
memory40/valid_zones:Movable
memory41/valid_zones:Movable
Implementation wise the change is quite straightforward. We can get rid
of allow_online_pfn_range altogether. online_pages allows only offline
nodes already. The original default_zone_for_pfn will become
default_kernel_zone_for_pfn. New default_zone_for_pfn implements the
above semantic. zone_for_pfn_range is slightly reorganized to implement
kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a
catch all default behavior.
Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Prior to commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate
hotadded memory to zones until online") we used to allow to change the
valid zone types of a memory block if it is adjacent to a different zone
type.
This fact was reflected in memoryNN/valid_zones by the ordering of
printed zones. The first one was default (echo online > memoryNN/state)
and the other one could be onlined explicitly by online_{movable,kernel}.
This behavior was removed by the said patch and as such the ordering was
not all that important. In most cases a kernel zone would be default
anyway. The only exception is movable_node handled by "mm,
memory_hotplug: support movable_node for hotpluggable nodes".
Let's reintroduce this behavior again because later patch will remove
the zone overlap restriction and so user will be allowed to online
kernel resp. movable block regardless of its placement. Original
behavior will then become significant again because it would be
non-trivial for users to see what is the default zone to online into.
Implementation is really simple. Pull out zone selection out of
move_pfn_range into zone_for_pfn_range helper and use it in
show_valid_zones to display the zone for default onlining and then both
kernel and movable if they are allowed. Default online zone is not
duplicated.
Link: http://lkml.kernel.org/r/20170714121233.16861-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Andrey reported a potential deadlock with the memory hotplug lock and
the cpu hotplug lock.
The reason is that memory hotplug takes the memory hotplug lock and then
calls stop_machine() which calls get_online_cpus(). That's the reverse
lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c
The problem has been there forever. The reason why this was never
reported is that the cpu hotplug locking had this homebrewn recursive
reader writer semaphore construct which due to the recursion evaded the
full lock dep coverage. The memory hotplug code copied that construct
verbatim and therefor has similar issues.
Three steps to fix this:
1) Convert the memory hotplug locking to a per cpu rwsem so the
potential issues get reported proper by lockdep.
2) Lock the online cpus in mem_hotplug_begin() before taking the memory
hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc
code to avoid recursive locking.
3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu
hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this
by invoking lru_add_drain_all_cpuslocked() instead.
Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__remove_zone() sets up up zone_type, but never uses it for anything.
This does not cause a warning, due to the (necessary) use of
-Wno-unused-but-set-variable. However, it's noise, so just delete it.
Link: http://lkml.kernel.org/r/20170624043421.24465-2-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 394e31d2ceb4 ("mem-hotplug: alloc new page from a nearest
neighbor node when mem-offline") has duplicated a large part of
alloc_migrate_target with some hotplug specific special casing.
To be more precise it tried to enfore the allocation from a different
node than the original page. As a result the two function diverged in
their shared logic, e.g. the hugetlb allocation strategy.
Let's unify the two and express different NUMA requirements by the given
nodemask. new_node_page will simply exclude the node it doesn't care
about and alloc_migrate_target will use all the available nodes.
alloc_migrate_target will then learn to migrate hugetlb pages more
sanely and use preallocated pool when possible.
Please note that alloc_migrate_target used to call alloc_page resp.
alloc_pages_current so the memory policy of the current context which is
quite strange when we consider that it is used in the context of
alloc_contig_range which just tries to migrate pages which stand in the
way.
Link: http://lkml.kernel.org/r/20170608074553.22152-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
new_node_page will try to use the origin's next NUMA node as the
migration destination for hugetlb pages. If such a node doesn't have
any preallocated pool it falls back to __alloc_buddy_huge_page_no_mpol
to allocate a surplus page instead. This is quite subotpimal for any
configuration when hugetlb pages are no distributed to all NUMA nodes
evenly. Say we have a hotplugable node 4 and spare hugetlb pages are
node 0
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:10000
/sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node3/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node4/hugepages/hugepages-2048kB/nr_hugepages:10000
/sys/devices/system/node/node5/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node6/hugepages/hugepages-2048kB/nr_hugepages:0
/sys/devices/system/node/node7/hugepages/hugepages-2048kB/nr_hugepages:0
Now we consume the whole pool on node 4 and try to offline this node.
All the allocated pages should be moved to node0 which has enough
preallocated pages to hold them. With the current implementation
offlining very likely fails because hugetlb allocations during runtime
are much less reliable.
Fix this by reusing the nodemask which excludes migration source and try
to find a first node which has a page in the preallocated pool first and
fall back to __alloc_buddy_huge_page_no_mpol only when the whole pool is
consumed.
[akpm@linux-foundation.org: remove bogus arg from alloc_huge_page_nodemask() stub]
Link: http://lkml.kernel.org/r/20170608074553.22152-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
new_node_page tries to allocate the target page on a different NUMA node
than the source page. This makes sense in most cases during the hotplug
because we are likely to offline the whole numa node. But there are
cases where there are no other nodes to fallback (e.g. when offlining
parts of the only existing node) and we have to fallback to allocating
from the source node. The current code does that but it can be
simplified by checking the nmask and updating it before we even try to
allocate rather than special casing it.
This patch shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170608074553.22152-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
movable_node kernel parameter allows making hotpluggable NUMA nodes to
put all the hotplugable memory into movable zone which allows more or
less reliable memory hotremove. At least this is the case for the NUMA
nodes present during the boot (see find_zone_movable_pfns_for_nodes).
This is not the case for the memory hotplug, though.
echo online > /sys/devices/system/memory/memoryXYZ/state
will default to a kernel zone (usually ZONE_NORMAL) unless the
particular memblock is already in the movable zone range which is not
the case normally when onlining the memory from the udev rule context
for a freshly hotadded NUMA node. The only option currently is to have
a special udev rule to echo online_movable to all memblocks belonging to
such a node which is rather clumsy. Not to mention this is inconsistent
as well because what ended up in the movable zone during the boot will
end up in a kernel zone after hotremove & hotadd without special care.
It would be nice to reuse memblock_is_hotpluggable but the runtime
hotplug doesn't have that information available because the boot and
hotplug paths are not shared and it would be really non trivial to make
them use the same code path because the runtime hotplug doesn't play
with the memblock allocator at all.
Teach move_pfn_range that MMOP_ONLINE_KEEP can use the movable zone if
movable_node is enabled and the range doesn't overlap with the existing
normal zone. This should provide a reasonable default onlining
strategy.
Strictly speaking the semantic is not identical with the boot time
initialization because find_zone_movable_pfns_for_nodes covers only the
hotplugable range as described by the BIOS/FW. From my experience this
is usually a full node though (except for Node0 which is special and
never goes away completely). If this turns out to be a problem in the
real life we can tweak the code to store hotplug flag into memblocks but
let's keep this simple now.
Link: http://lkml.kernel.org/r/20170612111227.GI7476@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The NULL check at line 1226: if (!pgdat), implies that pointer pgdat
might be NULL.
rollback_node_hotadd() dereferences this pointer. Add NULL check to
avoid a potential NULL pointer dereference.
Addresses-Coverity-ID: 1369133
Link: http://lkml.kernel.org/r/20170530212436.GA6195@embeddedgus
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
movable_node_is_enabled is defined in memblock proper while it is
initialized from the memory hotplug proper. This is quite messy and it
makes a dependency between the two so move movable_node along with the
helper functions to memory_hotplug.
To make it more entertaining the kernel parameter is ignored unless
CONFIG_HAVE_MEMBLOCK_NODE_MAP=y because we do not have the node
information for each memblock otherwise. So let's warn when the option
is disabled.
Link: http://lkml.kernel.org/r/20170529114141.536-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 20b2f52b73fe ("numa: add CONFIG_MOVABLE_NODE for
movable-dedicated node") has introduced CONFIG_MOVABLE_NODE without a
good explanation on why it is actually useful.
It makes a lot of sense to make movable node semantic opt in but we
already have that because the feature has to be explicitly enabled on
the kernel command line. A config option on top only makes the
configuration space larger without a good reason. It also adds an
additional ifdefery that pollutes the code.
Just drop the config option and make it de-facto always enabled. This
shouldn't introduce any change to the semantic.
Link: http://lkml.kernel.org/r/20170529114141.536-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "remove CONFIG_MOVABLE_NODE".
I am continuing to clean up the memory hotplug code and
CONFIG_MOVABLE_NODE seems dubious at best. The following two patches
simply removes the flag and make it de-facto always enabled.
The current semantic of the config option is twofold 1) it automatically
binds hotplugable nodes to have memory in zone_movable by default when
movable_node is enabled 2) forbids memory hotplug to online all the
memory as movable when !CONFIG_MOVABLE_NODE.
The later restriction is quite dubious because there is no clear cut of
how much normal memory do we need for a reasonable system operation. A
single memory block which is sufficient to allow further movable onlines
is far from sufficient (e.g a node with >2GB and memblocks 128MB will
fill up this zone with struct pages leaving nothing for other
allocations). Removing the config option will not only reduce the
configuration space it also removes quite some code.
The semantic of the movable_node command line parameter is preserved.
The first patch removes the restriction mentioned above and the second
one simply removes all the CONFIG_MOVABLE_NODE related stuff. The last
patch moves movable_node flag handling to memory_hotplug proper where it
belongs.
[1] http://lkml.kernel.org/r/20170524122411.25212-1-mhocko@kernel.org
This patch (of 3):
Commit 74d42d8fe146 ("memory_hotplug: ensure every online node has
NORMAL memory") has introduced a restriction that every numa node has to
have at least some memory in !movable zones before a first movable
memory can be onlined if !CONFIG_MOVABLE_NODE.
Likewise can_offline_normal checks the amount of normal memory in
!movable zones and it disallows to offline memory if there is no normal
memory left with a justification that "memory-management acts bad when
we have nodes which is online but don't have any normal memory".
While it is true that not having _any_ memory for kernel allocations on
a NUMA node is far from great and such a node would be quite subotimal
because all kernel allocations will have to fallback to another NUMA
node but there is no reason to disallow such a configuration in
principle.
Besides that there is not really a big difference to have one memblock
for ZONE_NORMAL available or none. With 128MB size memblocks the system
might trash on the kernel allocations requests anyway. It is really
hard to draw a line on how much normal memory is really sufficient so we
have to rely on administrator to configure system sanely therefore drop
the artificial restriction and remove can_offline_normal and
can_online_high_movable altogether.
Link: http://lkml.kernel.org/r/20170529114141.536-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The main allocator function __alloc_pages_nodemask() takes a zonelist
pointer as one of its parameters. All of its callers directly or
indirectly obtain the zonelist via node_zonelist() using a preferred
node id and gfp_mask. We can make the code a bit simpler by doing the
zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node
id instead (gfp_mask is already another parameter).
There are some code size benefits thanks to removal of inlined
node_zonelist():
bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952)
This will also make things simpler if we proceed with converting cpusets
to zonelists.
Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
zone_for_memory doesn't have any user anymore as well as the whole zone
shifting infrastructure so drop them all.
This shouldn't introduce any functional changes.
Link: http://lkml.kernel.org/r/20170515085827.16474-15-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Tobias has reported following section mismatches introduced by "mm,
memory_hotplug: do not associate hotadded memory to zones until online".
WARNING: mm/built-in.o(.text+0x5a1c2): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:memmap_init_zone()
The function move_pfn_range_to_zone() references
the function __meminit memmap_init_zone().
This is often because move_pfn_range_to_zone lacks a __meminit
annotation or the annotation of memmap_init_zone is wrong.
WARNING: mm/built-in.o(.text+0x5a25b): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:init_currently_empty_zone()
The function move_pfn_range_to_zone() references
the function __meminit init_currently_empty_zone().
This is often because move_pfn_range_to_zone lacks a __meminit
annotation or the annotation of init_currently_empty_zone is wrong.
WARNING: vmlinux.o(.text+0x188aa2): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:memmap_init_zone()
The function move_pfn_range_to_zone() references
the function __meminit memmap_init_zone().
This is often because move_pfn_range_to_zone lacks a __meminit
annotation or the annotation of memmap_init_zone is wrong.
WARNING: vmlinux.o(.text+0x188b3b): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:init_currently_empty_zone()
The function move_pfn_range_to_zone() references
the function __meminit init_currently_empty_zone().
This is often because move_pfn_range_to_zone lacks a __meminit
annotation or the annotation of init_currently_empty_zone is wrong.
Both memmap_init_zone and init_currently_empty_zone are marked __meminit
but move_pfn_range_to_zone is used outside of __meminit sections (e.g.
devm_memremap_pages) so we have to hide it from the checker by __ref
annotation.
Link: http://lkml.kernel.org/r/20170515085827.16474-14-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
arch_add_memory gets for_device argument which then controls whether we
want to create memblocks for created memory sections. Simplify the
logic by telling whether we want memblocks directly rather than going
through pointless negation. This also makes the api easier to
understand because it is clear what we want rather than nothing telling
for_device which can mean anything.
This shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170515085827.16474-13-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Heiko Carstens has noticed that he can generate overlapping zones for
ZONE_DMA and ZONE_NORMAL:
DMA [mem 0x0000000000000000-0x000000007fffffff]
Normal [mem 0x0000000080000000-0x000000017fffffff]
$ cat /sys/devices/system/memory/block_size_bytes
10000000
$ cat /sys/devices/system/memory/memory5/valid_zones
DMA
$ echo 0 > /sys/devices/system/memory/memory5/online
$ cat /sys/devices/system/memory/memory5/valid_zones
Normal
$ echo 1 > /sys/devices/system/memory/memory5/online
Normal
$ cat /proc/zoneinfo
Node 0, zone DMA
spanned 524288 <-----
present 458752
managed 455078
start_pfn: 0 <-----
Node 0, zone Normal
spanned 720896
present 589824
managed 571648
start_pfn: 327680 <-----
The reason is that we assume that the default zone for kernel onlining
is ZONE_NORMAL. This was a simplification introduced by the memory
hotplug rework and it is easily fixable by checking the range overlap in
the zone order and considering the first matching zone as the default
one. If there is no such zone then assume ZONE_NORMAL as we have been
doing so far.
Fixes: "mm, memory_hotplug: do not associate hotadded memory to zones until online"
Link: http://lkml.kernel.org/r/20170601083746.4924-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Heiko Carstens has noticed that the MMOP_ONLINE_KEEP is broken currently
$ grep . memory3?/valid_zones
memory34/valid_zones:Normal Movable
memory35/valid_zones:Normal Movable
memory36/valid_zones:Normal Movable
memory37/valid_zones:Normal Movable
$ echo online_movable > memory34/state
$ grep . memory3?/valid_zones
memory34/valid_zones:Movable
memory35/valid_zones:Movable
memory36/valid_zones:Movable
memory37/valid_zones:Movable
$ echo online > memory36/state
$ grep . memory3?/valid_zones
memory34/valid_zones:Movable
memory36/valid_zones:Normal
memory37/valid_zones:Movable
so we have effectively punched a hole into the movable zone.
The problem is that move_pfn_range() check for MMOP_ONLINE_KEEP is
wrong. It only checks whether the given range is already part of the
movable zone which is not the case here as only memory34 is in the zone.
Fix this by using allow_online_pfn_range(..., MMOP_ONLINE_KERNEL) if
that is false then we can be sure that movable onlining is the right
thing to do.
Fixes: "mm, memory_hotplug: do not associate hotadded memory to zones until online"
Link: http://lkml.kernel.org/r/20170601083746.4924-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The current memory hotplug implementation relies on having all the
struct pages associate with a zone/node during the physical hotplug
phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the
vast majority of cases this means that they are added to ZONE_NORMAL.
This has been so since 9d99aaa31f59 ("[PATCH] x86_64: Support memory
hotadd without sparsemem") and it wasn't a big deal back then because
movable onlining didn't exist yet.
Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable
onlining 511c2aba8f07 ("mm, memory-hotplug: dynamic configure movable
memory and portion memory") and then things got more complicated.
Rather than reconsidering the zone association which was no longer
needed (because the memory hotplug already depended on SPARSEMEM) a
convoluted semantic of zone shifting has been developed. Only the
currently last memblock or the one adjacent to the zone_movable can be
onlined movable. This essentially means that the online type changes as
the new memblocks are added.
Let's simulate memory hot online manually
$ echo 0x100000000 > /sys/devices/system/memory/probe
$ grep . /sys/devices/system/memory/memory32/valid_zones
Normal Movable
$ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe
$ grep . /sys/devices/system/memory/memory3?/valid_zones
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
$ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe
$ grep . /sys/devices/system/memory/memory3?/valid_zones
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal
/sys/devices/system/memory/memory34/valid_zones:Normal Movable
$ echo online_movable > /sys/devices/system/memory/memory34/state
$ grep . /sys/devices/system/memory/memory3?/valid_zones
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable Normal
This is an awkward semantic because an udev event is sent as soon as the
block is onlined and an udev handler might want to online it based on
some policy (e.g. association with a node) but it will inherently race
with new blocks showing up.
This patch changes the physical online phase to not associate pages with
any zone at all. All the pages are just marked reserved and wait for
the onlining phase to be associated with the zone as per the online
request. There are only two requirements
- existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap
- ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses
the latter one is not an inherent requirement and can be changed in the
future. It preserves the current behavior and made the code slightly
simpler. This is subject to change in future.
This means that the same physical online steps as above will lead to the
following state: Normal Movable
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Normal Movable
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable
Implementation:
The current move_pfn_range is reimplemented to check the above
requirements (allow_online_pfn_range) and then updates the respective
zone (move_pfn_range_to_zone), the pgdat and links all the pages in the
pfn range with the zone/node. __add_pages is updated to not require the
zone and only initializes sections in the range. This allowed to
simplify the arch_add_memory code (s390 could get rid of quite some of
code).
devm_memremap_pages is the only user of arch_add_memory which relies on
the zone association because it only hooks into the memory hotplug only
half way. It uses it to associate the new memory with ZONE_DEVICE but
doesn't allow it to be {on,off}lined via sysfs. This means that this
particular code path has to call move_pfn_range_to_zone explicitly.
The original zone shifting code is kept in place and will be removed in
the follow up patch for an easier review.
Please note that this patch also changes the original behavior when
offlining a memory block adjacent to another zone (Normal vs. Movable)
used to allow to change its movable type. This will be handled later.
[richard.weiyang@gmail.com: simplify zone_intersects()]
Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com
[richard.weiyang@gmail.com: remove duplicate call for set_page_links]
Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com
[akpm@linux-foundation.org: remove unused local `i']
Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__pageblock_pfn_to_page has two users currently, set_zone_contiguous
which checks whether the given zone contains holes and
pageblock_pfn_to_page which then carefully returns a first valid page
from the given pfn range for the given zone. This doesn't handle zones
which are not fully populated though. Memory pageblocks can be offlined
or might not have been onlined yet. In such a case the zone should be
considered to have holes otherwise pfn walkers can touch and play with
offline pages.
Current callers of pageblock_pfn_to_page in compaction seem to work
properly right now because they only isolate PageBuddy
(isolate_freepages_block) or PageLRU resp. __PageMovable
(isolate_migratepages_block) which will be always false for these pages.
It would be safer to skip these pages altogether, though.
In order to do this patch adds a new memory section state
(SECTION_IS_ONLINE) which is set in memory_present (during boot time) or
in online_pages_range during the memory hotplug. Similarly
offline_mem_sections clears the bit and it is called when the memory
range is offlined.
pfn_to_online_page helper is then added which check the mem section and
only returns a page if it is onlined already.
Use the new helper in __pageblock_pfn_to_page and skip the whole page
block in such a case.
[mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil),
mark sections online after all struct pages are initialized in
online_pages_range (Vlastimil)]
Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Memory hotplug (add_memory_resource) has to reinitialize node
infrastructure if the node is offline (one which went through the
complete add_memory(); remove_memory() cycle). That involves node
registration to the kobj infrastructure (register_node), the proper
association with cpus (register_cpu_under_node) and finally creation of
node<->memblock symlinks (link_mem_sections).
The last part requires to know node_start_pfn and node_spanned_pages
which we currently have but a leter patch will postpone this
initialization to the onlining phase which happens later. In fact we do
not need to rely on the early pgdat initialization even now because the
currently hot added pfn range is currently known.
Split register_one_node into core which does all the common work for the
boot time NUMA initialization and the hotplug (__register_one_node).
register_one_node keeps the full initialization while hotplug calls
__register_one_node and manually calls link_mem_sections for the proper
range.
This shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170515085827.16474-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Device memory hotplug hooks into regular memory hotplug only half way.
It needs memory sections to track struct pages but there is no
need/desire to associate those sections with memory blocks and export
them to the userspace via sysfs because they cannot be onlined anyway.
This is currently expressed by for_device argument to arch_add_memory
which then makes sure to associate the given memory range with
ZONE_DEVICE. register_new_memory then relies on is_zone_device_section
to distinguish special memory hotplug from the regular one. While this
works now, later patches in this series want to move __add_zone outside
of arch_add_memory path so we have to come up with something else.
Add want_memblock down the __add_pages path and use it to control
whether the section->memblock association should be done.
arch_add_memory then just trivially want memblock for everything but
for_device hotplug.
remove_memory_section doesn't need is_zone_device_section either. We
can simply skip all the memblock specific cleanup if there is no
memblock for the given section.
This shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170515085827.16474-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The primary purpose of this helper is to query the node state so use the
node id directly. This is a preparatory patch for later changes.
This shouldn't introduce any functional change
Link: http://lkml.kernel.org/r/20170515085827.16474-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|