summaryrefslogtreecommitdiffstats
path: root/mm/memcontrol.c
AgeCommit message (Collapse)AuthorFilesLines
2020-11-22mm: memcg/slab: fix root memcg vmstatsMuchun Song1-2/+7
If we reparent the slab objects to the root memcg, when we free the slab object, we need to update the per-memcg vmstats to keep it correct for the root memcg. Now this at least affects the vmstat of NR_KERNEL_STACK_KB for !CONFIG_VMAP_STACK when the thread stack size is smaller than the PAGE_SIZE. David said: "I assume that without this fix that the root memcg's vmstat would always be inflated if we reparented" Fixes: ec9f02384f60 ("mm: workingset: fix vmstat counters for shadow nodes") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christopher Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Roman Gushchin <guro@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yafang Shao <laoar.shao@gmail.com> Cc: Chris Down <chris@chrisdown.name> Cc: <stable@vger.kernel.org> [5.3+] Link: https://lkml.kernel.org/r/20201110031015.15715-1-songmuchun@bytedance.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02mm: memcg: link page counters to root if use_hierarchy is falseRoman Gushchin1-5/+10
Richard reported a warning which can be reproduced by running the LTP madvise6 test (cgroup v1 in the non-hierarchical mode should be used): WARNING: CPU: 0 PID: 12 at mm/page_counter.c:57 page_counter_uncharge (mm/page_counter.c:57 mm/page_counter.c:50 mm/page_counter.c:156) Modules linked in: CPU: 0 PID: 12 Comm: kworker/0:1 Not tainted 5.9.0-rc7-22-default #77 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-48-gd9c812d-rebuilt.opensuse.org 04/01/2014 Workqueue: events drain_local_stock RIP: 0010:page_counter_uncharge (mm/page_counter.c:57 mm/page_counter.c:50 mm/page_counter.c:156) Call Trace: __memcg_kmem_uncharge (mm/memcontrol.c:3022) drain_obj_stock (./include/linux/rcupdate.h:689 mm/memcontrol.c:3114) drain_local_stock (mm/memcontrol.c:2255) process_one_work (./arch/x86/include/asm/jump_label.h:25 ./include/linux/jump_label.h:200 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2274) worker_thread (./include/linux/list.h:282 kernel/workqueue.c:2416) kthread (kernel/kthread.c:292) ret_from_fork (arch/x86/entry/entry_64.S:300) The problem occurs because in the non-hierarchical mode non-root page counters are not linked to root page counters, so the charge is not propagated to the root memory cgroup. After the removal of the original memory cgroup and reparenting of the object cgroup, the root cgroup might be uncharged by draining a objcg stock, for example. It leads to an eventual underflow of the charge and triggers a warning. Fix it by linking all page counters to corresponding root page counters in the non-hierarchical mode. Please note, that in the non-hierarchical mode all objcgs are always reparented to the root memory cgroup, even if the hierarchy has more than 1 level. This patch doesn't change it. The patch also doesn't affect how the hierarchical mode is working, which is the only sane and truly supported mode now. Thanks to Richard for reporting, debugging and providing an alternative version of the fix! Fixes: bf4f059954dc ("mm: memcg/slab: obj_cgroup API") Reported-by: <ltp@lists.linux.it> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Michal Koutný <mkoutny@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201026231326.3212225-1-guro@fb.com Debugged-by: Richard Palethorpe <rpalethorpe@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02mm: memcontrol: correct the NR_ANON_THPS counter of hierarchical memcgzhongjiang-ali1-2/+8
memcg_page_state will get the specified number in hierarchical memcg, It should multiply by HPAGE_PMD_NR rather than an page if the item is NR_ANON_THPS. [akpm@linux-foundation.org: fix printk warning] [akpm@linux-foundation.org: use u64 cast, per Michal] Fixes: 468c398233da ("mm: memcontrol: switch to native NR_ANON_THPS counter") Signed-off-by: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Link: https://lkml.kernel.org/r/1603722395-72443-1-git-send-email-zhongjiang-ali@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm: kmem: enable kernel memcg accounting from interrupt contextsRoman Gushchin1-0/+13
If a memcg to charge can be determined (using remote charging API), there are no reasons to exclude allocations made from an interrupt context from the accounting. Such allocations will pass even if the resulting memcg size will exceed the hard limit, but it will affect the application of the memory pressure and an inability to put the workload under the limit will eventually trigger the OOM. To use active_memcg() helper, memcg_kmem_bypass() is moved back to memcontrol.c. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200827225843.1270629-5-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm: kmem: prepare remote memcg charging infra for interrupt contextsRoman Gushchin1-14/+34
Remote memcg charging API uses current->active_memcg to store the currently active memory cgroup, which overwrites the memory cgroup of the current process. It works well for normal contexts, but doesn't work for interrupt contexts: indeed, if an interrupt occurs during the execution of a section with an active memcg set, all allocations inside the interrupt will be charged to the active memcg set (given that we'll enable accounting for allocations from an interrupt context). But because the interrupt might have no relation to the active memcg set outside, it's obviously wrong from the accounting prospective. To resolve this problem, let's add a global percpu int_active_memcg variable, which will be used to store an active memory cgroup which will be used from interrupt contexts. set_active_memcg() will transparently use current->active_memcg or int_active_memcg depending on the context. To make the read part simple and transparent for the caller, let's introduce two new functions: - struct mem_cgroup *active_memcg(void), - struct mem_cgroup *get_active_memcg(void). They are returning the active memcg if it's set, hiding all implementation details: where to get it depending on the current context. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200827225843.1270629-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm: kmem: remove redundant checks from get_obj_cgroup_from_current()Roman Gushchin1-3/+0
There are checks for current->mm and current->active_memcg in get_obj_cgroup_from_current(), but these checks are redundant: memcg_kmem_bypass() called just above performs same checks. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200827225843.1270629-3-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm: kmem: move memcg_kmem_bypass() calls to get_mem/obj_cgroup_from_current()Roman Gushchin1-5/+8
Patch series "mm: kmem: kernel memory accounting in an interrupt context". This patchset implements memcg-based memory accounting of allocations made from an interrupt context. Historically, such allocations were passed unaccounted mostly because charging the memory cgroup of the current process wasn't an option. Also performance reasons were likely a reason too. The remote charging API allows to temporarily overwrite the currently active memory cgroup, so that all memory allocations are accounted towards some specified memory cgroup instead of the memory cgroup of the current process. This patchset extends the remote charging API so that it can be used from an interrupt context. Then it removes the fence that prevented the accounting of allocations made from an interrupt context. It also contains a couple of optimizations/code refactorings. This patchset doesn't directly enable accounting for any specific allocations, but prepares the code base for it. The bpf memory accounting will likely be the first user of it: a typical example is a bpf program parsing an incoming network packet, which allocates an entry in hashmap map to store some information. This patch (of 4): Currently memcg_kmem_bypass() is called before obtaining the current memory/obj cgroup using get_mem/obj_cgroup_from_current(). Moving memcg_kmem_bypass() into get_mem/obj_cgroup_from_current() reduces the number of call sites and allows further code simplifications. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200827225843.1270629-1-guro@fb.com Link: http://lkml.kernel.org/r/20200827225843.1270629-2-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm, memcg: rework remote charging API to support nestingRoman Gushchin1-3/+3
Currently the remote memcg charging API consists of two functions: memalloc_use_memcg() and memalloc_unuse_memcg(), which set and clear the memcg value, which overwrites the memcg of the current task. memalloc_use_memcg(target_memcg); <...> memalloc_unuse_memcg(); It works perfectly for allocations performed from a normal context, however an attempt to call it from an interrupt context or just nest two remote charging blocks will lead to an incorrect accounting. On exit from the inner block the active memcg will be cleared instead of being restored. memalloc_use_memcg(target_memcg); memalloc_use_memcg(target_memcg_2); <...> memalloc_unuse_memcg(); Error: allocation here are charged to the memcg of the current process instead of target_memcg. memalloc_unuse_memcg(); This patch extends the remote charging API by switching to a single function: struct mem_cgroup *set_active_memcg(struct mem_cgroup *memcg), which sets the new value and returns the old one. So a remote charging block will look like: old_memcg = set_active_memcg(target_memcg); <...> set_active_memcg(old_memcg); This patch is heavily based on the patch by Johannes Weiner, which can be found here: https://lkml.org/lkml/2020/5/28/806 . Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Dan Schatzberg <dschatzberg@fb.com> Link: https://lkml.kernel.org/r/20200821212056.3769116-1-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm/memcg: fix device private memcg accountingRalph Campbell1-1/+4
The code in mc_handle_swap_pte() checks for non_swap_entry() and returns NULL before checking is_device_private_entry() so device private pages are never handled. Fix this by checking for non_swap_entry() after handling device private swap PTEs. I assume the memory cgroup accounting would be off somehow when moving a process to another memory cgroup. Currently, the device private page is charged like a normal anonymous page when allocated and is uncharged when the page is freed so I think that path is OK. Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ira Weiny <ira.weiny@intel.com> Link: https://lkml.kernel.org/r/20201009215952.2726-1-rcampbell@nvidia.com xFixes: c733a82874a7 ("mm/memcontrol: support MEMORY_DEVICE_PRIVATE") Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm: memcontrol: reword obsolete comment of mem_cgroup_unmark_under_oom()Miaohe Lin1-2/+2
Since commit 79dfdaccd1d5 ("memcg: make oom_lock 0 and 1 based rather than counter"), the mem_cgroup_unmark_under_oom() is added and the comment of the mem_cgroup_oom_unlock() is moved here. But this comment make no sense here because mem_cgroup_oom_lock() does not operate on under_oom field. So we reword the comment as this would be helpful. [Thanks Michal Hocko for rewording this comment.] Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: https://lkml.kernel.org/r/20200930095336.21323-1-linmiaohe@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm: memcontrol: add the missing numa_stat interface for cgroup v2Muchun Song1-60/+110
In the cgroup v1, we have a numa_stat interface. This is useful for providing visibility into the numa locality information within an memcg since the pages are allowed to be allocated from any physical node. One of the use cases is evaluating application performance by combining this information with the application's CPU allocation. But the cgroup v2 does not. So this patch adds the missing information. Suggested-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Zefan Li <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Randy Dunlap <rdunlap@infradead.org> Link: https://lkml.kernel.org/r/20200916100030.71698-2-songmuchun@bytedance.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm/memcg: unify swap and memsw page countersWaiman Long1-3/+0
The swap page counter is v2 only while memsw is v1 only. As v1 and v2 controllers cannot be active at the same time, there is no point to keep both swap and memsw page counters in mem_cgroup. The previous patch has made sure that memsw page counter is updated and accessed only when in v1 code paths. So it is now safe to alias the v1 memsw page counter to v2 swap page counter. This saves 14 long's in the size of mem_cgroup. This is a saving of 112 bytes for 64-bit archs. While at it, also document which page counters are used in v1 and/or v2. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Chris Down <chris@chrisdown.name> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yafang Shao <laoar.shao@gmail.com> Link: https://lkml.kernel.org/r/20200914024452.19167-4-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm/memcg: simplify mem_cgroup_get_max()Waiman Long1-11/+13
mem_cgroup_get_max() used to get memory+swap max from both the v1 memsw and v2 memory+swap page counters & return the maximum of these 2 values. This is redundant and it is more efficient to just get either the v1 or the v2 values depending on which one is currently in use. [longman@redhat.com: v4] Link: https://lkml.kernel.org/r/20200914150928.7841-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Chris Down <chris@chrisdown.name> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yafang Shao <laoar.shao@gmail.com> Link: https://lkml.kernel.org/r/20200914024452.19167-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm/memcg: clean up obsolete enum charge_typeWaiman Long1-8/+0
Patch series "mm/memcg: Miscellaneous cleanups and streamlining", v2. This patch (of 3): Since commit 0a31bc97c80c ("mm: memcontrol: rewrite uncharge API") and commit 00501b531c47 ("mm: memcontrol: rewrite charge API") in v3.17, the enum charge_type was no longer used anywhere. However, the enum itself was not removed at that time. Remove the obsolete enum charge_type now. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Yafang Shao <laoar.shao@gmail.com> Link: https://lkml.kernel.org/r/20200914024452.19167-1-longman@redhat.com Link: https://lkml.kernel.org/r/20200914024452.19167-2-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm: memcontrol: correct the comment of mem_cgroup_iter()Miaohe Lin1-3/+3
Since commit bbec2e15170a ("mm: rename page_counter's count/limit into usage/max"), the arg @reclaim has no priority field anymore. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: https://lkml.kernel.org/r/20200913094129.44558-1-linmiaohe@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm: memcg/slab: fix racy access to page->mem_cgroup in mem_cgroup_from_obj()Roman Gushchin1-0/+11
mem_cgroup_from_obj() checks the lowest bit of the page->mem_cgroup pointer to determine if the page has an attached obj_cgroup vector instead of a regular memcg pointer. If it's not set, it simple returns the page->mem_cgroup value as a struct mem_cgroup pointer. The commit 10befea91b61 ("mm: memcg/slab: use a single set of kmem_caches for all allocations") changed the moment when this bit is set: if previously it was set on the allocation of the slab page, now it can be set well after, when the first accounted object is allocated on this page. It opened a race: if page->mem_cgroup is set concurrently after the first page_has_obj_cgroups(page) check, a pointer to the obj_cgroups array can be returned as a memory cgroup pointer. A simple check for page->mem_cgroup pointer for NULL before the page_has_obj_cgroups() check fixes the race. Indeed, if the pointer is not NULL, it's either a simple mem_cgroup pointer or a pointer to obj_cgroup vector. The pointer can be asynchronously changed from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed from a valid memcg pointer to objcg vector or back. If the object passed to mem_cgroup_from_obj() is a slab object and page->mem_cgroup is NULL, it means that the object is not accounted, so the function must return NULL. I've discovered the race looking at the code, so far I haven't seen it in the wild. Fixes: 10befea91b61 ("mm: memcg/slab: use a single set of kmem_caches for all allocations") Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: https://lkml.kernel.org/r/20200910022435.2773735-1-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm: memcontrol: use the preferred form for passing the size of a structure typeGustavo A. R. Silva1-1/+1
Use the preferred form for passing the size of a structure type. The alternative form where the structure type is spelled out hurts readability and introduces an opportunity for a bug when the object type is changed but the corresponding object identifier to which the sizeof operator is applied is not. Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: https://lkml.kernel.org/r/773e013ff2f07fe2a0b47153f14dea054c0c04f1.1596214831.git.gustavoars@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm: memcontrol: use flex_array_size() helper in memcpy()Gustavo A. R. Silva1-4/+3
Make use of the flex_array_size() helper to calculate the size of a flexible array member within an enclosing structure. This helper offers defense-in-depth against potential integer overflows, while at the same time makes it explicitly clear that we are dealing with a flexible array member. Also, remove unnecessary braces. Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: https://lkml.kernel.org/r/ddd60dae2d9aea1ccdd2be66634815c93696125e.1596214831.git.gustavoars@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm: use find_get_incore_page in memcontrolMatthew Wilcox (Oracle)1-22/+2
The current code does not protect against swapoff of the underlying swap device, so this is a bug fix as well as a worthwhile reduction in code complexity. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Auld <matthew.auld@intel.com> Cc: William Kucharski <william.kucharski@oracle.com> Link: https://lkml.kernel.org/r/20200910183318.20139-3-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13Merge tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-blockLinus Torvalds1-1/+1
Pull block updates from Jens Axboe: - Series of merge handling cleanups (Baolin, Christoph) - Series of blk-throttle fixes and cleanups (Baolin) - Series cleaning up BDI, seperating the block device from the backing_dev_info (Christoph) - Removal of bdget() as a generic API (Christoph) - Removal of blkdev_get() as a generic API (Christoph) - Cleanup of is-partition checks (Christoph) - Series reworking disk revalidation (Christoph) - Series cleaning up bio flags (Christoph) - bio crypt fixes (Eric) - IO stats inflight tweak (Gabriel) - blk-mq tags fixes (Hannes) - Buffer invalidation fixes (Jan) - Allow soft limits for zone append (Johannes) - Shared tag set improvements (John, Kashyap) - Allow IOPRIO_CLASS_RT for CAP_SYS_NICE (Khazhismel) - DM no-wait support (Mike, Konstantin) - Request allocation improvements (Ming) - Allow md/dm/bcache to use IO stat helpers (Song) - Series improving blk-iocost (Tejun) - Various cleanups (Geert, Damien, Danny, Julia, Tetsuo, Tian, Wang, Xianting, Yang, Yufen, yangerkun) * tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block: (191 commits) block: fix uapi blkzoned.h comments blk-mq: move cancel of hctx->run_work to the front of blk_exit_queue blk-mq: get rid of the dead flush handle code path block: get rid of unnecessary local variable block: fix comment and add lockdep assert blk-mq: use helper function to test hw stopped block: use helper function to test queue register block: remove redundant mq check block: invoke blk_mq_exit_sched no matter whether have .exit_sched percpu_ref: don't refer to ref->data if it isn't allocated block: ratelimit handle_bad_sector() message blk-throttle: Re-use the throtl_set_slice_end() blk-throttle: Open code __throtl_de/enqueue_tg() blk-throttle: Move service tree validation out of the throtl_rb_first() blk-throttle: Move the list operation after list validation blk-throttle: Fix IO hang for a corner case blk-throttle: Avoid tracking latency if low limit is invalid blk-throttle: Avoid getting the current time if tg->last_finish_time is 0 blk-throttle: Remove a meaningless parameter for throtl_downgrade_state() block: Remove redundant 'return' statement ...
2020-09-26mm: memcontrol: fix missing suffix of workingset_restoreMuchun Song1-2/+2
We forget to add the suffix to the workingset_restore string, so fix it. And also update the documentation of cgroup-v2.rst. Fixes: 170b04b7ae49 ("mm/workingset: prepare the workingset detection infrastructure for anon LRU") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Randy Dunlap <rdunlap@infradead.org> Link: https://lkml.kernel.org/r/20200916100030.71698-1-songmuchun@bytedance.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-24bdi: replace BDI_CAP_NO_{WRITEBACK,ACCT_DIRTY} with a single flagChristoph Hellwig1-1/+1
Replace the two negative flags that are always used together with a single positive flag that indicates the writeback capability instead of two related non-capabilities. Also remove the pointless wrappers to just check the flag. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-09-05memcg: fix use-after-free in uncharge_batchMichal Hocko1-0/+6
syzbot has reported an use-after-free in the uncharge_batch path BUG: KASAN: use-after-free in instrument_atomic_write include/linux/instrumented.h:71 [inline] BUG: KASAN: use-after-free in atomic64_sub_return include/asm-generic/atomic-instrumented.h:970 [inline] BUG: KASAN: use-after-free in atomic_long_sub_return include/asm-generic/atomic-long.h:113 [inline] BUG: KASAN: use-after-free in page_counter_cancel mm/page_counter.c:54 [inline] BUG: KASAN: use-after-free in page_counter_uncharge+0x3d/0xc0 mm/page_counter.c:155 Write of size 8 at addr ffff8880371c0148 by task syz-executor.0/9304 CPU: 0 PID: 9304 Comm: syz-executor.0 Not tainted 5.8.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1f0/0x31e lib/dump_stack.c:118 print_address_description+0x66/0x620 mm/kasan/report.c:383 __kasan_report mm/kasan/report.c:513 [inline] kasan_report+0x132/0x1d0 mm/kasan/report.c:530 check_memory_region_inline mm/kasan/generic.c:183 [inline] check_memory_region+0x2b5/0x2f0 mm/kasan/generic.c:192 instrument_atomic_write include/linux/instrumented.h:71 [inline] atomic64_sub_return include/asm-generic/atomic-instrumented.h:970 [inline] atomic_long_sub_return include/asm-generic/atomic-long.h:113 [inline] page_counter_cancel mm/page_counter.c:54 [inline] page_counter_uncharge+0x3d/0xc0 mm/page_counter.c:155 uncharge_batch+0x6c/0x350 mm/memcontrol.c:6764 uncharge_page+0x115/0x430 mm/memcontrol.c:6796 uncharge_list mm/memcontrol.c:6835 [inline] mem_cgroup_uncharge_list+0x70/0xe0 mm/memcontrol.c:6877 release_pages+0x13a2/0x1550 mm/swap.c:911 tlb_batch_pages_flush mm/mmu_gather.c:49 [inline] tlb_flush_mmu_free mm/mmu_gather.c:242 [inline] tlb_flush_mmu+0x780/0x910 mm/mmu_gather.c:249 tlb_finish_mmu+0xcb/0x200 mm/mmu_gather.c:328 exit_mmap+0x296/0x550 mm/mmap.c:3185 __mmput+0x113/0x370 kernel/fork.c:1076 exit_mm+0x4cd/0x550 kernel/exit.c:483 do_exit+0x576/0x1f20 kernel/exit.c:793 do_group_exit+0x161/0x2d0 kernel/exit.c:903 get_signal+0x139b/0x1d30 kernel/signal.c:2743 arch_do_signal+0x33/0x610 arch/x86/kernel/signal.c:811 exit_to_user_mode_loop kernel/entry/common.c:135 [inline] exit_to_user_mode_prepare+0x8d/0x1b0 kernel/entry/common.c:166 syscall_exit_to_user_mode+0x5e/0x1a0 kernel/entry/common.c:241 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Commit 1a3e1f40962c ("mm: memcontrol: decouple reference counting from page accounting") reworked the memcg lifetime to be bound the the struct page rather than charges. It also removed the css_put_many from uncharge_batch and that is causing the above splat. uncharge_batch() is supposed to uncharge accumulated charges for all pages freed from the same memcg. The queuing is done by uncharge_page which however drops the memcg reference after it adds charges to the batch. If the current page happens to be the last one holding the reference for its memcg then the memcg is OK to go and the next page to be freed will trigger batched uncharge which needs to access the memcg which is gone already. Fix the issue by taking a reference for the memcg in the current batch. Fixes: 1a3e1f40962c ("mm: memcontrol: decouple reference counting from page accounting") Reported-by: syzbot+b305848212deec86eabe@syzkaller.appspotmail.com Reported-by: syzbot+b5ea6fb6f139c8b9482b@syzkaller.appspotmail.com Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Hugh Dickins <hughd@google.com> Link: https://lkml.kernel.org/r/20200820090341.GC5033@dhcp22.suse.cz Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14mm: replace hpage_nr_pages with thp_nr_pagesMatthew Wilcox (Oracle)1-5/+5
The thp prefix is more frequently used than hpage and we should be consistent between the various functions. [akpm@linux-foundation.org: fix mm/migrate.c] Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-13mm: memcontrol: fix warning when allocating the root cgroupJohannes Weiner1-6/+0
Commit 3e38e0aaca9e ("mm: memcg: charge memcg percpu memory to the parent cgroup") adds memory tracking to the memcg kernel structures themselves to make cgroups liable for the memory they are consuming through the allocation of child groups (which can be significant). This code is a bit awkward as it's spread out through several functions: The outermost function does memalloc_use_memcg(parent) to set up current->active_memcg, which designates which cgroup to charge, and the inner functions pass GFP_ACCOUNT to request charging for specific allocations. To make sure this dependency is satisfied at all times - to make sure we don't randomly charge whoever is calling the functions - the inner functions warn on !current->active_memcg. However, this triggers a false warning when the root memcg itself is allocated. No parent exists in this case, and so current->active_memcg is rightfully NULL. It's a false positive, not indicative of a bug. Delete the warnings for now, we can revisit this later. Fixes: 3e38e0aaca9e ("mm: memcg: charge memcg percpu memory to the parent cgroup") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Roman Gushchin <guro@fb.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/memcontrol.c: delete duplicated wordsRandy Dunlap1-1/+1
Drop the repeated word "down". Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Link: http://lkml.kernel.org/r/20200801173822.14973-6-rdunlap@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm/workingset: prepare the workingset detection infrastructure for anon LRUJoonsoo Kim1-5/+11
To prepare the workingset detection for anon LRU, this patch splits workingset event counters for refault, activate and restore into anon and file variants, as well as the refaults counter in struct lruvec. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/1595490560-15117-4-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm: memcg: charge memcg percpu memory to the parent cgroupRoman Gushchin1-4/+16
Memory cgroups are using large chunks of percpu memory to store vmstat data. Yet this memory is not accounted at all, so in the case when there are many (dying) cgroups, it's not exactly clear where all the memory is. Because the size of memory cgroup internal structures can dramatically exceed the size of object or page which is pinning it in the memory, it's not a good idea to simply ignore it. It actually breaks the isolation between cgroups. Let's account the consumed percpu memory to the parent cgroup. [guro@fb.com: add WARN_ON_ONCE()s, per Johannes] Link: http://lkml.kernel.org/r/20200811170611.GB1507044@carbon.DHCP.thefacebook.com Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Dennis Zhou <dennis@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Tobin C. Harding <tobin@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Waiman Long <longman@redhat.com> Cc: Bixuan Cui <cuibixuan@huawei.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Link: http://lkml.kernel.org/r/20200623184515.4132564-5-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm: memcg/percpu: per-memcg percpu memory statisticsRoman Gushchin1-1/+3
Percpu memory can represent a noticeable chunk of the total memory consumption, especially on big machines with many CPUs. Let's track percpu memory usage for each memcg and display it in memory.stat. A percpu allocation is usually scattered over multiple pages (and nodes), and can be significantly smaller than a page. So let's add a byte-sized counter on the memcg level: MEMCG_PERCPU_B. Byte-sized vmstat infra created for slabs can be perfectly reused for percpu case. [guro@fb.com: v3] Link: http://lkml.kernel.org/r/20200623184515.4132564-4-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Dennis Zhou <dennis@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Tobin C. Harding <tobin@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Waiman Long <longman@redhat.com> Cc: Bixuan Cui <cuibixuan@huawei.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Link: http://lkml.kernel.org/r/20200608230819.832349-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcontrol: don't count limit-setting reclaim as memory pressureJohannes Weiner1-1/+10
When an outside process lowers one of the memory limits of a cgroup (or uses the force_empty knob in cgroup1), direct reclaim is performed in the context of the write(), in order to directly enforce the new limit and have it being met by the time the write() returns. Currently, this reclaim activity is accounted as memory pressure in the cgroup that the writer(!) belongs to. This is unexpected. It specifically causes problems for senpai (https://github.com/facebookincubator/senpai), which is an agent that routinely adjusts the memory limits and performs associated reclaim work in tens or even hundreds of cgroups running on the host. The cgroup that senpai is running in itself will report elevated levels of memory pressure, even though it itself is under no memory shortage or any sort of distress. Move the psi annotation from the central cgroup reclaim function to callsites in the allocation context, and thereby no longer count any limit-setting reclaim as memory pressure. If the newly set limit causes the workload inside the cgroup into direct reclaim, that of course will continue to count as memory pressure. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Link: http://lkml.kernel.org/r/20200728135210.379885-2-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcontrol: restore proper dirty throttling when memory.high changesJohannes Weiner1-0/+2
Commit 8c8c383c04f6 ("mm: memcontrol: try harder to set a new memory.high") inadvertently removed a callback to recalculate the writeback cache size in light of a newly configured memory.high limit. Without letting the writeback cache know about a potentially heavily reduced limit, it may permit too many dirty pages, which can cause unnecessary reclaim latencies or even avoidable OOM situations. This was spotted while reading the code, it hasn't knowingly caused any problems in practice so far. Fixes: 8c8c383c04f6 ("mm: memcontrol: try harder to set a new memory.high") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/20200728135210.379885-1-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07memcg, oom: check memcg margin for parallel oomYafang Shao1-1/+7
Memcg oom killer invocation is synchronized by the global oom_lock and tasks are sleeping on the lock while somebody is selecting the victim or potentially race with the oom_reaper is releasing the victim's memory. This can result in a pointless oom killer invocation because a waiter might be racing with the oom_reaper P1 oom_reaper P2 oom_reap_task mutex_lock(oom_lock) out_of_memory # no victim because we have one already __oom_reap_task_mm mute_unlock(oom_lock) mutex_lock(oom_lock) set MMF_OOM_SKIP select_bad_process # finds a new victim The page allocator prevents from this race by trying to allocate after the lock can be acquired (in __alloc_pages_may_oom) which acts as a last minute check. Moreover page allocator simply doesn't block on the oom_lock and simply retries the whole reclaim process. Memcg oom killer should do the last minute check as well. Call mem_cgroup_margin to do that. Trylock on the oom_lock could be done as well but this doesn't seem to be necessary at this stage. [mhocko@kernel.org: commit log] Suggested-by: Michal Hocko <mhocko@kernel.org> Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/1594735034-19190-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm, memcg: decouple e{low,min} state mutations from protection checksChris Down1-21/+7
mem_cgroup_protected currently is both used to set effective low and min and return a mem_cgroup_protection based on the result. As a user, this can be a little unexpected: it appears to be a simple predicate function, if not for the big warning in the comment above about the order in which it must be executed. This change makes it so that we separate the state mutations from the actual protection checks, which makes it more obvious where we need to be careful mutating internal state, and where we are simply checking and don't need to worry about that. [mhocko@suse.com - don't check protection on root memcgs] Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Yafang Shao <laoar.shao@gmail.com> Link: http://lkml.kernel.org/r/ff3f915097fcee9f6d7041c084ef92d16aaeb56a.1594638158.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm, memcg: avoid stale protection values when cgroup is above protectionYafang Shao1-0/+8
Patch series "mm, memcg: memory.{low,min} reclaim fix & cleanup", v4. This series contains a fix for a edge case in my earlier protection calculation patches, and a patch to make the area overall a little more robust to hopefully help avoid this in future. This patch (of 2): A cgroup can have both memory protection and a memory limit to isolate it from its siblings in both directions - for example, to prevent it from being shrunk below 2G under high pressure from outside, but also from growing beyond 4G under low pressure. Commit 9783aa9917f8 ("mm, memcg: proportional memory.{low,min} reclaim") implemented proportional scan pressure so that multiple siblings in excess of their protection settings don't get reclaimed equally but instead in accordance to their unprotected portion. During limit reclaim, this proportionality shouldn't apply of course: there is no competition, all pressure is from within the cgroup and should be applied as such. Reclaim should operate at full efficiency. However, mem_cgroup_protected() never expected anybody to look at the effective protection values when it indicated that the cgroup is above its protection. As a result, a query during limit reclaim may return stale protection values that were calculated by a previous reclaim cycle in which the cgroup did have siblings. When this happens, reclaim is unnecessarily hesitant and potentially slow to meet the desired limit. In theory this could lead to premature OOM kills, although it's not obvious this has occurred in practice. Workaround the problem by special casing reclaim roots in mem_cgroup_protection. These memcgs are never participating in the reclaim protection because the reclaim is internal. We have to ignore effective protection values for reclaim roots because mem_cgroup_protected might be called from racing reclaim contexts with different roots. Calculation is relying on root -> leaf tree traversal therefore top-down reclaim protection invariants should hold. The only exception is the reclaim root which should have effective protection set to 0 but that would be problematic for the following setup: Let's have global and A's reclaim in parallel: | A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) |\ | C (low = 1G, usage = 2.5G) B (low = 1G, usage = 0.5G) for A reclaim we have B.elow = B.low C.elow = C.low For the global reclaim A.elow = A.low B.elow = min(B.usage, B.low) because children_low_usage <= A.elow C.elow = min(C.usage, C.low) With the effective values resetting we have A reclaim A.elow = 0 B.elow = B.low C.elow = C.low and global reclaim could see the above and then B.elow = C.elow = 0 because children_low_usage > A.elow Which means that protected memcgs would get reclaimed. In future we would like to make mem_cgroup_protected more robust against racing reclaim contexts but that is likely more complex solution than this simple workaround. [hannes@cmpxchg.org - large part of the changelog] [mhocko@suse.com - workaround explanation] [chris@chrisdown.name - retitle] Fixes: 9783aa9917f8 ("mm, memcg: proportional memory.{low,min} reclaim") Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/cover.1594638158.git.chris@chrisdown.name Link: http://lkml.kernel.org/r/044fb8ecffd001c7905d27c0c2ad998069fdc396.1594638158.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm, memcg: unify reclaim retry limits with page allocatorChris Down1-9/+6
Reclaim retries have been set to 5 since the beginning of time in commit 66e1707bc346 ("Memory controller: add per cgroup LRU and reclaim"). However, we now have a generally agreed-upon standard for page reclaim: MAX_RECLAIM_RETRIES (currently 16), added many years later in commit 0a0337e0d1d1 ("mm, oom: rework oom detection"). In the absence of a compelling reason to declare an OOM earlier in memcg context than page allocator context, it seems reasonable to supplant MEM_CGROUP_RECLAIM_RETRIES with MAX_RECLAIM_RETRIES, making the page allocator and memcg internals more similar in semantics when reclaim fails to produce results, avoiding premature OOMs or throttling. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/da557856c9c7654308eaff4eedc1952a95e8df5f.1594640214.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm, memcg: reclaim more aggressively before high allocator throttlingChris Down1-5/+37
Patch series "mm, memcg: reclaim harder before high throttling", v2. This patch (of 2): In Facebook production, we've seen cases where cgroups have been put into allocator throttling even when they appear to have a lot of slack file caches which should be trivially reclaimable. Looking more closely, the problem is that we only try a single cgroup reclaim walk for each return to usermode before calculating whether or not we should throttle. This single attempt doesn't produce enough pressure to shrink for cgroups with a rapidly growing amount of file caches prior to entering allocator throttling. As an example, we see that threads in an affected cgroup are stuck in allocator throttling: # for i in $(cat cgroup.threads); do > grep over_high "/proc/$i/stack" > done [<0>] mem_cgroup_handle_over_high+0x10b/0x150 [<0>] mem_cgroup_handle_over_high+0x10b/0x150 [<0>] mem_cgroup_handle_over_high+0x10b/0x150 ...however, there is no I/O pressure reported by PSI, despite a lot of slack file pages: # cat memory.pressure some avg10=78.50 avg60=84.99 avg300=84.53 total=5702440903 full avg10=78.50 avg60=84.99 avg300=84.53 total=5702116959 # cat io.pressure some avg10=0.00 avg60=0.00 avg300=0.00 total=78051391 full avg10=0.00 avg60=0.00 avg300=0.00 total=78049640 # grep _file memory.stat inactive_file 1370939392 active_file 661635072 This patch changes the behaviour to retry reclaim either until the current task goes below the 10ms grace period, or we are making no reclaim progress at all. In the latter case, we enter reclaim throttling as before. To a user, there's no intuitive reason for the reclaim behaviour to differ from hitting memory.high as part of a new allocation, as opposed to hitting memory.high because someone lowered its value. As such this also brings an added benefit: it unifies the reclaim behaviour between the two. There's precedent for this behaviour: we already do reclaim retries when writing to memory.{high,max}, in max reclaim, and in the page allocator itself. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/cover.1594640214.git.chris@chrisdown.name Link: http://lkml.kernel.org/r/a4e23b59e9ef499b575ae73a8120ee089b7d3373.1594640214.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcontrol: avoid workload stalls when lowering memory.highRoman Gushchin1-2/+2
Memory.high limit is implemented in a way such that the kernel penalizes all threads which are allocating a memory over the limit. Forcing all threads into the synchronous reclaim and adding some artificial delays allows to slow down the memory consumption and potentially give some time for userspace oom handlers/resource control agents to react. It works nicely if the memory usage is hitting the limit from below, however it works sub-optimal if a user adjusts memory.high to a value way below the current memory usage. It basically forces all workload threads (doing any memory allocations) into the synchronous reclaim and sleep. This makes the workload completely unresponsive for a long period of time and can also lead to a system-wide contention on lru locks. It can happen even if the workload is not actually tight on memory and has, for example, a ton of cold pagecache. In the current implementation writing to memory.high causes an atomic update of page counter's high value followed by an attempt to reclaim enough memory to fit into the new limit. To fix the problem described above, all we need is to change the order of execution: try to push the memory usage under the limit first, and only then set the new high limit. Reported-by: Domas Mituzas <domas@fb.com> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Chris Down <chris@chrisdown.name> Link: http://lkml.kernel.org/r/20200709194718.189231-1-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcontrol: account kernel stack per nodeShakeel Butt1-1/+1
Currently the kernel stack is being accounted per-zone. There is no need to do that. In addition due to being per-zone, memcg has to keep a separate MEMCG_KERNEL_STACK_KB. Make the stat per-node and deprecate MEMCG_KERNEL_STACK_KB as memcg_stat_item is an extension of node_stat_item. In addition localize the kernel stack stats updates to account_kernel_stack(). Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200630161539.1759185-1-shakeelb@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: use a single set of kmem_caches for all allocationsRoman Gushchin1-1/+24
Instead of having two sets of kmem_caches: one for system-wide and non-accounted allocations and the second one shared by all accounted allocations, we can use just one. The idea is simple: space for obj_cgroup metadata can be allocated on demand and filled only for accounted allocations. It allows to remove a bunch of code which is required to handle kmem_cache clones for accounted allocations. There is no more need to create them, accumulate statistics, propagate attributes, etc. It's a quite significant simplification. Also, because the total number of slab_caches is reduced almost twice (not all kmem_caches have a memcg clone), some additional memory savings are expected. On my devvm it additionally saves about 3.5% of slab memory. [guro@fb.com: fix build on MIPS] Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Naresh Kamboju <naresh.kamboju@linaro.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: remove memcg_kmem_get_cache()Roman Gushchin1-24/+1
The memcg_kmem_get_cache() function became really trivial, so let's just inline it into the single call point: memcg_slab_pre_alloc_hook(). It will make the code less bulky and can also help the compiler to generate a better code. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-15-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: simplify memcg cache creationRoman Gushchin1-47/+1
Because the number of non-root kmem_caches doesn't depend on the number of memory cgroups anymore and is generally not very big, there is no more need for a dedicated workqueue. Also, as there is no more need to pass any arguments to the memcg_create_kmem_cache() except the root kmem_cache, it's possible to just embed the work structure into the kmem_cache and avoid the dynamic allocation of the work structure. This will also simplify the synchronization: for each root kmem_cache there is only one work. So there will be no more concurrent attempts to create a non-root kmem_cache for a root kmem_cache: the second and all following attempts to queue the work will fail. On the kmem_cache destruction path there is no more need to call the expensive flush_workqueue() and wait for all pending works to be finished. Instead, cancel_work_sync() can be used to cancel/wait for only one work. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-14-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: use a single set of kmem_caches for all accounted allocationsRoman Gushchin1-131/+32
This is fairly big but mostly red patch, which makes all accounted slab allocations use a single set of kmem_caches instead of creating a separate set for each memory cgroup. Because the number of non-root kmem_caches is now capped by the number of root kmem_caches, there is no need to shrink or destroy them prematurely. They can be perfectly destroyed together with their root counterparts. This allows to dramatically simplify the management of non-root kmem_caches and delete a ton of code. This patch performs the following changes: 1) introduces memcg_params.memcg_cache pointer to represent the kmem_cache which will be used for all non-root allocations 2) reuses the existing memcg kmem_cache creation mechanism to create memcg kmem_cache on the first allocation attempt 3) memcg kmem_caches are named <kmemcache_name>-memcg, e.g. dentry-memcg 4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache or schedule it's creation and return the root cache 5) removes almost all non-root kmem_cache management code (separate refcounter, reparenting, shrinking, etc) 6) makes slab debugfs to display root_mem_cgroup css id and never show :dead and :deact flags in the memcg_slabinfo attribute. Following patches in the series will simplify the kmem_cache creation. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: move memcg_kmem_bypass() to memcontrol.hRoman Gushchin1-12/+0
To make the memcg_kmem_bypass() function available outside of the memcontrol.c, let's move it to memcontrol.h. The function is small and nicely fits into static inline sort of functions. It will be used from the slab code. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-12-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: deprecate memory.kmem.slabinfoRoman Gushchin1-3/+0
Deprecate memory.kmem.slabinfo. An empty file will be presented if corresponding config options are enabled. The interface is implementation dependent, isn't present in cgroup v2, and is generally useful only for core mm debugging purposes. In other words, it doesn't provide any value for the absolute majority of users. A drgn-based replacement can be found in tools/cgroup/memcg_slabinfo.py. It does support cgroup v1 and v2, mimics memory.kmem.slabinfo output and also allows to get any additional information without a need to recompile the kernel. If a drgn-based solution is too slow for a task, a bpf-based tracing tool can be used, which can easily keep track of all slab allocations belonging to a memory cgroup. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-11-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: save obj_cgroup for non-root slab objectsRoman Gushchin1-2/+12
Store the obj_cgroup pointer in the corresponding place of page->obj_cgroups for each allocated non-root slab object. Make sure that each allocated object holds a reference to obj_cgroup. Objcg pointer is obtained from the memcg->objcg dereferencing in memcg_kmem_get_cache() and passed from pre_alloc_hook to post_alloc_hook. Then in case of successful allocation(s) it's getting stored in the page->obj_cgroups vector. The objcg obtaining part look a bit bulky now, but it will be simplified by next commits in the series. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-9-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: allocate obj_cgroups for non-root slab pagesRoman Gushchin1-3/+14
Allocate and release memory to store obj_cgroup pointers for each non-root slab page. Reuse page->mem_cgroup pointer to store a pointer to the allocated space. This commit temporarily increases the memory footprint of the kernel memory accounting. To store obj_cgroup pointers we'll need a place for an objcg_pointer for each allocated object. However, the following patches in the series will enable sharing of slab pages between memory cgroups, which will dramatically increase the total slab utilization. And the final memory footprint will be significantly smaller than before. To distinguish between obj_cgroups and memcg pointers in case when it's not obvious which one is used (as in page_cgroup_ino()), let's always set the lowest bit in the obj_cgroup case. The original obj_cgroups pointer is marked to be ignored by kmemleak, which otherwise would report a memory leak for each allocated vector. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-8-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: obj_cgroup APIRoman Gushchin1-1/+287
Obj_cgroup API provides an ability to account sub-page sized kernel objects, which potentially outlive the original memory cgroup. The top-level API consists of the following functions: bool obj_cgroup_tryget(struct obj_cgroup *objcg); void obj_cgroup_get(struct obj_cgroup *objcg); void obj_cgroup_put(struct obj_cgroup *objcg); int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg); struct obj_cgroup *get_obj_cgroup_from_current(void); Object cgroup is basically a pointer to a memory cgroup with a per-cpu reference counter. It substitutes a memory cgroup in places where it's necessary to charge a custom amount of bytes instead of pages. All charged memory rounded down to pages is charged to the corresponding memory cgroup using __memcg_kmem_charge(). It implements reparenting: on memcg offlining it's getting reattached to the parent memory cgroup. Each online memory cgroup has an associated active object cgroup to handle new allocations and the list of all attached object cgroups. On offlining of a cgroup this list is reparented and for each object cgroup in the list the memcg pointer is swapped to the parent memory cgroup. It prevents long-living objects from pinning the original memory cgroup in the memory. The implementation is based on byte-sized per-cpu stocks. A sub-page sized leftover is stored in an atomic field, which is a part of obj_cgroup object. So on cgroup offlining the leftover is automatically reparented. memcg->objcg is rcu protected. objcg->memcg is a raw pointer, which is always pointing at a memory cgroup, but can be atomically swapped to the parent memory cgroup. So a user must ensure the lifetime of the cgroup, e.g. grab rcu_read_lock or css_set_lock. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200623174037.3951353-7-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcontrol: decouple reference counting from page accountingJohannes Weiner1-18/+21
The reference counting of a memcg is currently coupled directly to how many 4k pages are charged to it. This doesn't work well with Roman's new slab controller, which maintains pools of objects and doesn't want to keep an extra balance sheet for the pages backing those objects. This unusual refcounting design (reference counts usually track pointers to an object) is only for historical reasons: memcg used to not take any css references and simply stalled offlining until all charges had been reparented and the page counters had dropped to zero. When we got rid of the reparenting requirement, the simple mechanical translation was to take a reference for every charge. More historical context can be found in commit e8ea14cc6ead ("mm: memcontrol: take a css reference for each charged page"), commit 64f219938941 ("mm: memcontrol: remove obsolete kmemcg pinning tricks") and commit b2052564e66d ("mm: memcontrol: continue cache reclaim from offlined groups"). The new slab controller exposes the limitations in this scheme, so let's switch it to a more idiomatic reference counting model based on actual kernel pointers to the memcg: - The per-cpu stock holds a reference to the memcg its caching - User pages hold a reference for their page->mem_cgroup. Transparent huge pages will no longer acquire tail references in advance, we'll get them if needed during the split. - Kernel pages hold a reference for their page->mem_cgroup - Pages allocated in the root cgroup will acquire and release css references for simplicity. css_get() and css_put() optimize that. - The current memcg_charge_slab() already hacked around the per-charge references; this change gets rid of that as well. - tcp accounting will handle reference in mem_cgroup_sk_{alloc,free} Roman: 1) Rebased on top of the current mm tree: added css_get() in mem_cgroup_charge(), dropped mem_cgroup_try_charge() part 2) I've reformatted commit references in the commit log to make checkpatch.pl happy. [hughd@google.com: remove css_put_many() from __mem_cgroup_clear_mc()] Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2007302011450.2347@eggly.anvils Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200623174037.3951353-6-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg: convert vmstat slab counters to bytesRoman Gushchin1-7/+4
In order to prepare for per-object slab memory accounting, convert NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes. To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB). Internally global and per-node counters are stored in pages, however memcg and lruvec counters are stored in bytes. This scheme may look weird, but only for now. As soon as slab pages will be shared between multiple cgroups, global and node counters will reflect the total number of slab pages. However memcg and lruvec counters will be used for per-memcg slab memory tracking, which will take separate kernel objects in the account. Keeping global and node counters in pages helps to avoid additional overhead. The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it will fit into atomic_long_t we use for vmstats. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg: prepare for byte-sized vmstat itemsRoman Gushchin1-4/+10
To implement per-object slab memory accounting, we need to convert slab vmstat counters to bytes. Actually, out of 4 levels of counters: global, per-node, per-memcg and per-lruvec only two last levels will require byte-sized counters. It's because global and per-node counters will be counting the number of slab pages, and per-memcg and per-lruvec will be counting the amount of memory taken by charged slab objects. Converting all vmstat counters to bytes or even all slab counters to bytes would introduce an additional overhead. So instead let's store global and per-node counters in pages, and memcg and lruvec counters in bytes. To make the API clean all access helpers (both on the read and write sides) are dealing with bytes. To avoid back-and-forth conversions a new flavor of read-side helpers is introduced, which always returns values in pages: node_page_state_pages() and global_node_page_state_pages(). Actually new helpers are just reading raw values. Old helpers are simple wrappers, which will complain on an attempt to read byte value, because at the moment no one actually needs bytes. Thanks to Johannes Weiner for the idea of having the byte-sized API on top of the page-sized internal storage. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-3-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>