summaryrefslogtreecommitdiffstats
path: root/mm/kasan/quarantine.c
AgeCommit message (Collapse)AuthorFilesLines
2022-05-13kasan: give better names to shadow valuesAndrey Konovalov1-1/+1
Rename KASAN_KMALLOC_* shadow values to KASAN_SLAB_*, as they are used for all slab allocations, not only for kmalloc. Also rename KASAN_FREE_PAGE to KASAN_PAGE_FREE to be consistent with KASAN_PAGE_REDZONE and KASAN_SLAB_FREE. Link: https://lkml.kernel.org/r/bebcaf4eafdb0cabae0401a69c0af956aa87fcaa.1652111464.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-29kasan: fix sleeping function called from invalid context on RT kernelZqiang1-3/+49
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0 preempt_count: 1, expected: 0 ........... CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.1-rt16-yocto-preempt-rt #22 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x60/0x8c dump_stack+0x10/0x12 __might_resched.cold+0x13b/0x173 rt_spin_lock+0x5b/0xf0 ___cache_free+0xa5/0x180 qlist_free_all+0x7a/0x160 per_cpu_remove_cache+0x5f/0x70 smp_call_function_many_cond+0x4c4/0x4f0 on_each_cpu_cond_mask+0x49/0xc0 kasan_quarantine_remove_cache+0x54/0xf0 kasan_cache_shrink+0x9/0x10 kmem_cache_shrink+0x13/0x20 acpi_os_purge_cache+0xe/0x20 acpi_purge_cached_objects+0x21/0x6d acpi_initialize_objects+0x15/0x3b acpi_init+0x130/0x5ba do_one_initcall+0xe5/0x5b0 kernel_init_freeable+0x34f/0x3ad kernel_init+0x1e/0x140 ret_from_fork+0x22/0x30 When the kmem_cache_shrink() was called, the IPI was triggered, the ___cache_free() is called in IPI interrupt context, the local-lock or spin-lock will be acquired. On PREEMPT_RT kernel, these locks are replaced with sleepbale rt-spinlock, so the above problem is triggered. Fix it by moving the qlist_free_allfrom() from IPI interrupt context to task context when PREEMPT_RT is enabled. [akpm@linux-foundation.org: reduce ifdeffery] Link: https://lkml.kernel.org/r/20220401134649.2222485-1-qiang1.zhang@intel.com Signed-off-by: Zqiang <qiang1.zhang@intel.com> Acked-by: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-27kasan: prevent cpu_quarantine corruption when CPU offline and cache shrink ↵Zqiang1-0/+7
occur at same time kasan_quarantine_remove_cache() is called in kmem_cache_shrink()/ destroy(). The kasan_quarantine_remove_cache() call is protected by cpuslock in kmem_cache_destroy() to ensure serialization with kasan_cpu_offline(). However the kasan_quarantine_remove_cache() call is not protected by cpuslock in kmem_cache_shrink(). When a CPU is going offline and cache shrink occurs at same time, the cpu_quarantine may be corrupted by interrupt (per_cpu_remove_cache operation). So add a cpu_quarantine offline flags check in per_cpu_remove_cache(). [akpm@linux-foundation.org: add comment, per Zqiang] Link: https://lkml.kernel.org/r/20220414025925.2423818-1-qiang1.zhang@intel.com Signed-off-by: Zqiang <qiang1.zhang@intel.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-0/+11
Merge misc updates from Andrew Morton: "146 patches. Subsystems affected by this patch series: kthread, ia64, scripts, ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak, dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap, memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb, userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp, ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits) mm/damon: hide kernel pointer from tracepoint event mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging mm/damon/dbgfs: remove an unnecessary variable mm/damon: move the implementation of damon_insert_region to damon.h mm/damon: add access checking for hugetlb pages Docs/admin-guide/mm/damon/usage: update for schemes statistics mm/damon/dbgfs: support all DAMOS stats Docs/admin-guide/mm/damon/reclaim: document statistics parameters mm/damon/reclaim: provide reclamation statistics mm/damon/schemes: account how many times quota limit has exceeded mm/damon/schemes: account scheme actions that successfully applied mm/damon: remove a mistakenly added comment for a future feature Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning Docs/admin-guide/mm/damon/usage: remove redundant information Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks mm/damon: convert macro functions to static inline functions mm/damon: modify damon_rand() macro to static inline function mm/damon: move damon_rand() definition into damon.h ...
2022-01-15kasan: fix quarantine conflicting with init_on_freeAndrey Konovalov1-0/+11
KASAN's quarantine might save its metadata inside freed objects. As this happens after the memory is zeroed by the slab allocator when init_on_free is enabled, the memory coming out of quarantine is not properly zeroed. This causes lib/test_meminit.c tests to fail with Generic KASAN. Zero the metadata when the object is removed from quarantine. Link: https://lkml.kernel.org/r/2805da5df4b57138fdacd671f5d227d58950ba54.1640037083.git.andreyknvl@google.com Fixes: 6471384af2a6 ("mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options") Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-06mm/kasan: Convert to struct folio and struct slabMatthew Wilcox (Oracle)1-1/+1
KASAN accesses some slab related struct page fields so we need to convert it to struct slab. Some places are a bit simplified thanks to kasan_addr_to_slab() encapsulating the PageSlab flag check through virt_to_slab(). When resolving object address to either a real slab or a large kmalloc, use struct folio as the intermediate type for testing the slab flag to avoid unnecessary implicit compound_head(). [ vbabka@suse.cz: use struct folio, adjust to differences in previous patches ] Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Reviewed-by: Roman Gushchin <guro@fb.com> Tested-by: Hyeongogn Yoo <42.hyeyoo@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: <kasan-dev@googlegroups.com>
2021-05-07mm: fix typos in commentsIngo Molnar1-2/+2
Fix ~94 single-word typos in locking code comments, plus a few very obvious grammar mistakes. Link: https://lkml.kernel.org/r/20210322212624.GA1963421@gmail.com Link: https://lore.kernel.org/r/20210322205203.GB1959563@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Cc: Bhaskar Chowdhury <unixbhaskar@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24kasan: prefix global functions with kasan_Andrey Konovalov1-11/+11
Patch series "kasan: HW_TAGS tests support and fixes", v4. This patchset adds support for running KASAN-KUnit tests with the hardware tag-based mode and also contains a few fixes. This patch (of 15): There's a number of internal KASAN functions that are used across multiple source code files and therefore aren't marked as static inline. To avoid littering the kernel function names list with generic function names, prefix all such KASAN functions with kasan_. As a part of this change: - Rename internal (un)poison_range() to kasan_(un)poison() (no _range) to avoid name collision with a public kasan_unpoison_range(). - Rename check_memory_region() to kasan_check_range(), as it's a more fitting name. Link: https://lkml.kernel.org/r/cover.1610733117.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/I719cc93483d4ba288a634dba80ee6b7f2809cd26 Link: https://lkml.kernel.org/r/13777aedf8d3ebbf35891136e1f2287e2f34aaba.1610733117.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Suggested-by: Marco Elver <elver@google.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22kasan: sanitize objects when metadata doesn't fitAndrey Konovalov1-2/+16
KASAN marks caches that are sanitized with the SLAB_KASAN cache flag. Currently if the metadata that is appended after the object (stores e.g. stack trace ids) doesn't fit into KMALLOC_MAX_SIZE (can only happen with SLAB, see the comment in the patch), KASAN turns off sanitization completely. With this change sanitization of the object data is always enabled. However the metadata is only stored when it fits. Instead of checking for SLAB_KASAN flag accross the code to find out whether the metadata is there, use cache->kasan_info.alloc/free_meta_offset. As 0 can be a valid value for free_meta_offset, introduce KASAN_NO_FREE_META as an indicator that the free metadata is missing. Without this change all sanitized KASAN objects would be put into quarantine with generic KASAN. With this change, only the objects that have metadata (i.e. when it fits) are put into quarantine, the rest is freed right away. Along the way rework __kasan_cache_create() and add claryfying comments. Link: https://lkml.kernel.org/r/aee34b87a5e4afe586c2ac6a0b32db8dc4dcc2dc.1606162397.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/Icd947e2bea054cb5cfbdc6cf6652227d97032dcb Co-developed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22kasan: rename get_alloc/free_infoAndrey Konovalov1-2/+2
Rename get_alloc_info() and get_free_info() to kasan_get_alloc_meta() and kasan_get_free_meta() to better reflect what those do and avoid confusion with kasan_set_free_info(). No functional changes. Link: https://lkml.kernel.org/r/27b7c036b754af15a2839e945f6d8bfce32b4c2f.1606162397.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/Ib6e4ba61c8b12112b403d3479a9799ac8fff8de1 Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Marco Elver <elver@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22kasan: simplify quarantine_put call siteAndrey Konovalov1-1/+2
Patch series "kasan: boot parameters for hardware tag-based mode", v4. === Overview Hardware tag-based KASAN mode [1] is intended to eventually be used in production as a security mitigation. Therefore there's a need for finer control over KASAN features and for an existence of a kill switch. This patchset adds a few boot parameters for hardware tag-based KASAN that allow to disable or otherwise control particular KASAN features, as well as provides some initial optimizations for running KASAN in production. There's another planned patchset what will further optimize hardware tag-based KASAN, provide proper benchmarking and tests, and will fully enable tag-based KASAN for production use. Hardware tag-based KASAN relies on arm64 Memory Tagging Extension (MTE) [2] to perform memory and pointer tagging. Please see [3] and [4] for detailed analysis of how MTE helps to fight memory safety problems. The features that can be controlled are: 1. Whether KASAN is enabled at all. 2. Whether KASAN collects and saves alloc/free stacks. 3. Whether KASAN panics on a detected bug or not. The patch titled "kasan: add and integrate kasan boot parameters" of this series adds a few new boot parameters. kasan.mode allows to choose one of three main modes: - kasan.mode=off - KASAN is disabled, no tag checks are performed - kasan.mode=prod - only essential production features are enabled - kasan.mode=full - all KASAN features are enabled The chosen mode provides default control values for the features mentioned above. However it's also possible to override the default values by providing: - kasan.stacktrace=off/on - enable stacks collection (default: on for mode=full, otherwise off) - kasan.fault=report/panic - only report tag fault or also panic (default: report) If kasan.mode parameter is not provided, it defaults to full when CONFIG_DEBUG_KERNEL is enabled, and to prod otherwise. It is essential that switching between these modes doesn't require rebuilding the kernel with different configs, as this is required by the Android GKI (Generic Kernel Image) initiative. === Benchmarks For now I've only performed a few simple benchmarks such as measuring kernel boot time and slab memory usage after boot. There's an upcoming patchset which will optimize KASAN further and include more detailed benchmarking results. The benchmarks were performed in QEMU and the results below exclude the slowdown caused by QEMU memory tagging emulation (as it's different from the slowdown that will be introduced by hardware and is therefore irrelevant). KASAN_HW_TAGS=y + kasan.mode=off introduces no performance or memory impact compared to KASAN_HW_TAGS=n. kasan.mode=prod (manually excluding tagging) introduces 3% of performance and no memory impact (except memory used by hardware to store tags) compared to kasan.mode=off. kasan.mode=full has about 40% performance and 30% memory impact over kasan.mode=prod. Both come from alloc/free stack collection. === Notes This patchset is available here: https://github.com/xairy/linux/tree/up-boot-mte-v4 This patchset is based on v11 of "kasan: add hardware tag-based mode for arm64" patchset [1]. For testing in QEMU hardware tag-based KASAN requires: 1. QEMU built from master [6] (use "-machine virt,mte=on -cpu max" arguments to run). 2. GCC version 10. [1] https://lore.kernel.org/linux-arm-kernel/cover.1606161801.git.andreyknvl@google.com/T/#t [2] https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety [3] https://arxiv.org/pdf/1802.09517.pdf [4] https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf [5] https://source.android.com/devices/architecture/kernel/generic-kernel-image [6] https://github.com/qemu/qemu === Tags Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> This patch (of 19): Move get_free_info() call into quarantine_put() to simplify the call site. No functional changes. Link: https://lkml.kernel.org/r/cover.1606162397.git.andreyknvl@google.com Link: https://lkml.kernel.org/r/312d0a3ef92cc6dc4fa5452cbc1714f9393ca239.1606162397.git.andreyknvl@google.com Link: https://linux-review.googlesource.com/id/Iab0f04e7ebf8d83247024b7190c67c3c34c7940f Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Marco Elver <elver@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22kasan: drop unnecessary GPL text from comment headersAndrey Konovalov1-10/+0
Patch series "kasan: add hardware tag-based mode for arm64", v11. This patchset adds a new hardware tag-based mode to KASAN [1]. The new mode is similar to the existing software tag-based KASAN, but relies on arm64 Memory Tagging Extension (MTE) [2] to perform memory and pointer tagging (instead of shadow memory and compiler instrumentation). This patchset is co-developed and tested by Vincenzo Frascino <vincenzo.frascino@arm.com>. This patchset is available here: https://github.com/xairy/linux/tree/up-kasan-mte-v11 For testing in QEMU hardware tag-based KASAN requires: 1. QEMU built from master [4] (use "-machine virt,mte=on -cpu max" arguments to run). 2. GCC version 10. [1] https://www.kernel.org/doc/html/latest/dev-tools/kasan.html [2] https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety [3] git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux for-next/mte [4] https://github.com/qemu/qemu ====== Overview The underlying ideas of the approach used by hardware tag-based KASAN are: 1. By relying on the Top Byte Ignore (TBI) arm64 CPU feature, pointer tags are stored in the top byte of each kernel pointer. 2. With the Memory Tagging Extension (MTE) arm64 CPU feature, memory tags for kernel memory allocations are stored in a dedicated memory not accessible via normal instuctions. 3. On each memory allocation, a random tag is generated, embedded it into the returned pointer, and the corresponding memory is tagged with the same tag value. 4. With MTE the CPU performs a check on each memory access to make sure that the pointer tag matches the memory tag. 5. On a tag mismatch the CPU generates a tag fault, and a KASAN report is printed. Same as other KASAN modes, hardware tag-based KASAN is intended as a debugging feature at this point. ====== Rationale There are two main reasons for this new hardware tag-based mode: 1. Previously implemented software tag-based KASAN is being successfully used on dogfood testing devices due to its low memory overhead (as initially planned). The new hardware mode keeps the same low memory overhead, and is expected to have significantly lower performance impact, due to the tag checks being performed by the hardware. Therefore the new mode can be used as a better alternative in dogfood testing for hardware that supports MTE. 2. The new mode lays the groundwork for the planned in-kernel MTE-based memory corruption mitigation to be used in production. ====== Technical details Considering the implementation perspective, hardware tag-based KASAN is almost identical to the software mode. The key difference is using MTE for assigning and checking tags. Compared to the software mode, the hardware mode uses 4 bits per tag, as dictated by MTE. Pointer tags are stored in bits [56:60), the top 4 bits have the normal value 0xF. Having less distict tags increases the probablity of false negatives (from ~1/256 to ~1/16) in certain cases. Only synchronous exceptions are set up and used by hardware tag-based KASAN. ====== Benchmarks Note: all measurements have been performed with software emulation of Memory Tagging Extension, performance numbers for hardware tag-based KASAN on the actual hardware are expected to be better. Boot time [1]: * 2.8 sec for clean kernel * 5.7 sec for hardware tag-based KASAN * 11.8 sec for software tag-based KASAN * 11.6 sec for generic KASAN Slab memory usage after boot [2]: * 7.0 kb for clean kernel * 9.7 kb for hardware tag-based KASAN * 9.7 kb for software tag-based KASAN * 41.3 kb for generic KASAN Measurements have been performed with: * defconfig-based configs * Manually built QEMU master * QEMU arguments: -machine virt,mte=on -cpu max * CONFIG_KASAN_STACK_ENABLE disabled * CONFIG_KASAN_INLINE enabled * clang-10 as the compiler and gcc-10 as the assembler [1] Time before the ext4 driver is initialized. [2] Measured as `cat /proc/meminfo | grep Slab`. ====== Notes The cover letter for software tag-based KASAN patchset can be found here: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0116523cfffa62aeb5aa3b85ce7419f3dae0c1b8 ===== Tags Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> This patch (of 41): Don't mention "GNU General Public License version 2" text explicitly, as it's already covered by the SPDX-License-Identifier. Link: https://lkml.kernel.org/r/cover.1606161801.git.andreyknvl@google.com Link: https://lkml.kernel.org/r/6ea9f5f4aa9dbbffa0d0c0a780b37699a4531034.1606161801.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Marco Elver <elver@google.com> Reviewed-by: Alexander Potapenko <glider@google.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-11kasan: fix object remaining in offline per-cpu quarantineKuan-Ying Lee1-0/+39
We hit this issue in our internal test. When enabling generic kasan, a kfree()'d object is put into per-cpu quarantine first. If the cpu goes offline, object still remains in the per-cpu quarantine. If we call kmem_cache_destroy() now, slub will report "Objects remaining" error. ============================================================================= BUG test_module_slab (Not tainted): Objects remaining in test_module_slab on __kmem_cache_shutdown() ----------------------------------------------------------------------------- Disabling lock debugging due to kernel taint INFO: Slab 0x(____ptrval____) objects=34 used=1 fp=0x(____ptrval____) flags=0x2ffff00000010200 CPU: 3 PID: 176 Comm: cat Tainted: G B 5.10.0-rc1-00007-g4525c8781ec0-dirty #10 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x0/0x2b0 show_stack+0x18/0x68 dump_stack+0xfc/0x168 slab_err+0xac/0xd4 __kmem_cache_shutdown+0x1e4/0x3c8 kmem_cache_destroy+0x68/0x130 test_version_show+0x84/0xf0 module_attr_show+0x40/0x60 sysfs_kf_seq_show+0x128/0x1c0 kernfs_seq_show+0xa0/0xb8 seq_read+0x1f0/0x7e8 kernfs_fop_read+0x70/0x338 vfs_read+0xe4/0x250 ksys_read+0xc8/0x180 __arm64_sys_read+0x44/0x58 el0_svc_common.constprop.0+0xac/0x228 do_el0_svc+0x38/0xa0 el0_sync_handler+0x170/0x178 el0_sync+0x174/0x180 INFO: Object 0x(____ptrval____) @offset=15848 INFO: Allocated in test_version_show+0x98/0xf0 age=8188 cpu=6 pid=172 stack_trace_save+0x9c/0xd0 set_track+0x64/0xf0 alloc_debug_processing+0x104/0x1a0 ___slab_alloc+0x628/0x648 __slab_alloc.isra.0+0x2c/0x58 kmem_cache_alloc+0x560/0x588 test_version_show+0x98/0xf0 module_attr_show+0x40/0x60 sysfs_kf_seq_show+0x128/0x1c0 kernfs_seq_show+0xa0/0xb8 seq_read+0x1f0/0x7e8 kernfs_fop_read+0x70/0x338 vfs_read+0xe4/0x250 ksys_read+0xc8/0x180 __arm64_sys_read+0x44/0x58 el0_svc_common.constprop.0+0xac/0x228 kmem_cache_destroy test_module_slab: Slab cache still has objects Register a cpu hotplug function to remove all objects in the offline per-cpu quarantine when cpu is going offline. Set a per-cpu variable to indicate this cpu is offline. [qiang.zhang@windriver.com: fix slab double free when cpu-hotplug] Link: https://lkml.kernel.org/r/20201204102206.20237-1-qiang.zhang@windriver.com Link: https://lkml.kernel.org/r/1606895585-17382-2-git-send-email-Kuan-Ying.Lee@mediatek.com Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com> Signed-off-by: Zqiang <qiang.zhang@windriver.com> Suggested-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Guangye Yang <guangye.yang@mediatek.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Nicholas Tang <nicholas.tang@mediatek.com> Cc: Miles Chen <miles.chen@mediatek.com> Cc: Qian Cai <qcai@redhat.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07kasan: record and print the free trackWalter Wu1-0/+1
Move free track from kasan_alloc_meta to kasan_free_meta in order to make struct kasan_alloc_meta and kasan_free_meta size are both 16 bytes. It is a good size because it is the minimal redzone size and a good number of alignment. For free track, we make some modifications as shown below: 1) Remove the free_track from struct kasan_alloc_meta. 2) Add the free_track into struct kasan_free_meta. 3) Add a macro KASAN_KMALLOC_FREETRACK in order to check whether it can print free stack in KASAN report. [1]https://bugzilla.kernel.org/show_bug.cgi?id=198437 [walter-zh.wu@mediatek.com: build fix] Link: http://lkml.kernel.org/r/20200710162440.23887-1-walter-zh.wu@mediatek.com Suggested-by: Dmitry Vyukov <dvyukov@google.com> Co-developed-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Link: http://lkml.kernel.org/r/20200601051022.1230-1-walter-zh.wu@mediatek.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28mm: convert totalram_pages and totalhigh_pages variables to atomicArun KS1-1/+1
totalram_pages and totalhigh_pages are made static inline function. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes better to remove the lock and convert variables to atomic, with preventing poteintial store-to-read tearing as a bonus. [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Suggested-by: Michal Hocko <mhocko@suse.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28kasan: add SPDX-License-Identifier mark to source filesAndrey Konovalov1-0/+1
This patch adds a "SPDX-License-Identifier: GPL-2.0" mark to all source files under mm/kasan. Link: http://lkml.kernel.org/r/bce2d1e618afa5142e81961ab8fa4b4165337380.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26mm/kasan/quarantine.c: make quarantine_lock a raw_spinlock_tClark Williams1-9/+9
The static lock quarantine_lock is used in quarantine.c to protect the quarantine queue datastructures. It is taken inside quarantine queue manipulation routines (quarantine_put(), quarantine_reduce() and quarantine_remove_cache()), with IRQs disabled. This is not a problem on a stock kernel but is problematic on an RT kernel where spin locks are sleeping spinlocks, which can sleep and can not be acquired with disabled interrupts. Convert the quarantine_lock to a raw spinlock_t. The usage of quarantine_lock is confined to quarantine.c and the work performed while the lock is held is used for debug purpose. [bigeasy@linutronix.de: slightly altered the commit message] Link: http://lkml.kernel.org/r/20181010214945.5owshc3mlrh74z4b@linutronix.de Signed-off-by: Clark Williams <williams@redhat.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09kasan: fix races in quarantine_remove_cache()Dmitry Vyukov1-6/+36
quarantine_remove_cache() frees all pending objects that belong to the cache, before we destroy the cache itself. However there are currently two possibilities how it can fail to do so. First, another thread can hold some of the objects from the cache in temp list in quarantine_put(). quarantine_put() has a windows of enabled interrupts, and on_each_cpu() in quarantine_remove_cache() can finish right in that window. These objects will be later freed into the destroyed cache. Then, quarantine_reduce() has the same problem. It grabs a batch of objects from the global quarantine, then unlocks quarantine_lock and then frees the batch. quarantine_remove_cache() can finish while some objects from the cache are still in the local to_free list in quarantine_reduce(). Fix the race with quarantine_put() by disabling interrupts for the whole duration of quarantine_put(). In combination with on_each_cpu() in quarantine_remove_cache() it ensures that quarantine_remove_cache() either sees the objects in the per-cpu list or in the global list. Fix the race with quarantine_reduce() by protecting quarantine_reduce() with srcu critical section and then doing synchronize_srcu() at the end of quarantine_remove_cache(). I've done some assessment of how good synchronize_srcu() works in this case. And on a 4 CPU VM I see that it blocks waiting for pending read critical sections in about 2-3% of cases. Which looks good to me. I suspect that these races are the root cause of some GPFs that I episodically hit. Previously I did not have any explanation for them. BUG: unable to handle kernel NULL pointer dereference at 00000000000000c8 IP: qlist_free_all+0x2e/0xc0 mm/kasan/quarantine.c:155 PGD 6aeea067 PUD 60ed7067 PMD 0 Oops: 0000 [#1] SMP KASAN Dumping ftrace buffer: (ftrace buffer empty) Modules linked in: CPU: 0 PID: 13667 Comm: syz-executor2 Not tainted 4.10.0+ #60 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 task: ffff88005f948040 task.stack: ffff880069818000 RIP: 0010:qlist_free_all+0x2e/0xc0 mm/kasan/quarantine.c:155 RSP: 0018:ffff88006981f298 EFLAGS: 00010246 RAX: ffffea0000ffff00 RBX: 0000000000000000 RCX: ffffea0000ffff1f RDX: 0000000000000000 RSI: ffff88003fffc3e0 RDI: 0000000000000000 RBP: ffff88006981f2c0 R08: ffff88002fed7bd8 R09: 00000001001f000d R10: 00000000001f000d R11: ffff88006981f000 R12: ffff88003fffc3e0 R13: ffff88006981f2d0 R14: ffffffff81877fae R15: 0000000080000000 FS: 00007fb911a2d700(0000) GS:ffff88003ec00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000c8 CR3: 0000000060ed6000 CR4: 00000000000006f0 Call Trace: quarantine_reduce+0x10e/0x120 mm/kasan/quarantine.c:239 kasan_kmalloc+0xca/0xe0 mm/kasan/kasan.c:590 kasan_slab_alloc+0x12/0x20 mm/kasan/kasan.c:544 slab_post_alloc_hook mm/slab.h:456 [inline] slab_alloc_node mm/slub.c:2718 [inline] kmem_cache_alloc_node+0x1d3/0x280 mm/slub.c:2754 __alloc_skb+0x10f/0x770 net/core/skbuff.c:219 alloc_skb include/linux/skbuff.h:932 [inline] _sctp_make_chunk+0x3b/0x260 net/sctp/sm_make_chunk.c:1388 sctp_make_data net/sctp/sm_make_chunk.c:1420 [inline] sctp_make_datafrag_empty+0x208/0x360 net/sctp/sm_make_chunk.c:746 sctp_datamsg_from_user+0x7e8/0x11d0 net/sctp/chunk.c:266 sctp_sendmsg+0x2611/0x3970 net/sctp/socket.c:1962 inet_sendmsg+0x164/0x5b0 net/ipv4/af_inet.c:761 sock_sendmsg_nosec net/socket.c:633 [inline] sock_sendmsg+0xca/0x110 net/socket.c:643 SYSC_sendto+0x660/0x810 net/socket.c:1685 SyS_sendto+0x40/0x50 net/socket.c:1653 I am not sure about backporting. The bug is quite hard to trigger, I've seen it few times during our massive continuous testing (however, it could be cause of some other episodic stray crashes as it leads to memory corruption...). If it is triggered, the consequences are very bad -- almost definite bad memory corruption. The fix is non trivial and has chances of introducing new bugs. I am also not sure how actively people use KASAN on older releases. [dvyukov@google.com: - sorted includes[ Link: http://lkml.kernel.org/r/20170309094028.51088-1-dvyukov@google.com Link: http://lkml.kernel.org/r/20170308151532.5070-1-dvyukov@google.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09kasan: resched in quarantine_remove_cache()Dmitry Vyukov1-1/+8
We see reported stalls/lockups in quarantine_remove_cache() on machines with large amounts of RAM. quarantine_remove_cache() needs to scan whole quarantine in order to take out all objects belonging to the cache. Quarantine is currently 1/32-th of RAM, e.g. on a machine with 256GB of memory that will be 8GB. Moreover quarantine scanning is a walk over uncached linked list, which is slow. Add cond_resched() after scanning of each non-empty batch of objects. Batches are specifically kept of reasonable size for quarantine_put(). On a machine with 256GB of RAM we should have ~512 non-empty batches, each with 16MB of objects. Link: http://lkml.kernel.org/r/20170308154239.25440-1-dvyukov@google.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Greg Thelen <gthelen@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24kasan: drain quarantine of memcg slab objectsGreg Thelen1-0/+1
Per memcg slab accounting and kasan have a problem with kmem_cache destruction. - kmem_cache_create() allocates a kmem_cache, which is used for allocations from processes running in root (top) memcg. - Processes running in non root memcg and allocating with either __GFP_ACCOUNT or from a SLAB_ACCOUNT cache use a per memcg kmem_cache. - Kasan catches use-after-free by having kfree() and kmem_cache_free() defer freeing of objects. Objects are placed in a quarantine. - kmem_cache_destroy() destroys root and non root kmem_caches. It takes care to drain the quarantine of objects from the root memcg's kmem_cache, but ignores objects associated with non root memcg. This causes leaks because quarantined per memcg objects refer to per memcg kmem cache being destroyed. To see the problem: 1) create a slab cache with kmem_cache_create(,,,SLAB_ACCOUNT,) 2) from non root memcg, allocate and free a few objects from cache 3) dispose of the cache with kmem_cache_destroy() kmem_cache_destroy() will trigger a "Slab cache still has objects" warning indicating that the per memcg kmem_cache structure was leaked. Fix the leak by draining kasan quarantined objects allocated from non root memcg. Racing memcg deletion is tricky, but handled. kmem_cache_destroy() => shutdown_memcg_caches() => __shutdown_memcg_cache() => shutdown_cache() flushes per memcg quarantined objects, even if that memcg has been rmdir'd and gone through memcg_deactivate_kmem_caches(). This leak only affects destroyed SLAB_ACCOUNT kmem caches when kasan is enabled. So I don't think it's worth patching stable kernels. Link: http://lkml.kernel.org/r/1482257462-36948-1-git-send-email-gthelen@google.com Signed-off-by: Greg Thelen <gthelen@google.com> Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12kasan: eliminate long stalls during quarantine reductionDmitry Vyukov1-46/+48
Currently we dedicate 1/32 of RAM for quarantine and then reduce it by 1/4 of total quarantine size. This can be a significant amount of memory. For example, with 4GB of RAM total quarantine size is 128MB and it is reduced by 32MB at a time. With 128GB of RAM total quarantine size is 4GB and it is reduced by 1GB. This leads to several problems: - freeing 1GB can take tens of seconds, causes rcu stall warnings and just introduces unexpected long delays at random places - if kmalloc() is called under a mutex, other threads stall on that mutex while a thread reduces quarantine - threads wait on quarantine_lock while one thread grabs a large batch of objects to evict - we walk the uncached list of object to free twice which makes all of the above worse - when a thread frees objects, they are already not accounted against global_quarantine.bytes; as the result we can have quarantine_size bytes in quarantine + unbounded amount of memory in large batches in threads that are in process of freeing Reduce size of quarantine in smaller batches to reduce the delays. The only reason to reduce it in batches is amortization of overheads, the new batch size of 1MB should be well enough to amortize spinlock lock/unlock and few function calls. Plus organize quarantine as a FIFO array of batches. This allows to not walk the list in quarantine_reduce() under quarantine_lock, which in turn reduces contention and is just faster. This improves performance of heavy load (syzkaller fuzzing) by ~20% with 4 CPUs and 32GB of RAM. Also this eliminates frequent (every 5 sec) drops of CPU consumption from ~400% to ~100% (one thread reduces quarantine while others are waiting on a mutex). Some reference numbers: 1. Machine with 4 CPUs and 4GB of memory. Quarantine size 128MB. Currently we free 32MB at at time. With new code we free 1MB at a time (1024 batches, ~128 are used). 2. Machine with 32 CPUs and 128GB of memory. Quarantine size 4GB. Currently we free 1GB at at time. With new code we free 8MB at a time (1024 batches, ~512 are used). 3. Machine with 4096 CPUs and 1TB of memory. Quarantine size 32GB. Currently we free 8GB at at time. With new code we free 4MB at a time (16K batches, ~8K are used). Link: http://lkml.kernel.org/r/1478756952-18695-1-git-send-email-dvyukov@google.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-11kasan: remove the unnecessary WARN_ONCE from quarantine.cAlexander Potapenko1-5/+2
It's quite unlikely that the user will so little memory that the per-CPU quarantines won't fit into the given fraction of the available memory. Even in that case he won't be able to do anything with the information given in the warning. Link: http://lkml.kernel.org/r/1470929182-101413-1-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02kasan: avoid overflowing quarantine size on low memory systemsAlexander Potapenko1-2/+7
If the total amount of memory assigned to quarantine is less than the amount of memory assigned to per-cpu quarantines, |new_quarantine_size| may overflow. Instead, set it to zero. [akpm@linux-foundation.org: cleanup: use WARN_ONCE return value] Link: http://lkml.kernel.org/r/1470063563-96266-1-git-send-email-glider@google.com Fixes: 55834c59098d ("mm: kasan: initial memory quarantine implementation") Signed-off-by: Alexander Potapenko <glider@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02mm/kasan: get rid of ->state in struct kasan_alloc_metaAndrey Ryabinin1-2/+0
The state of object currently tracked in two places - shadow memory, and the ->state field in struct kasan_alloc_meta. We can get rid of the latter. The will save us a little bit of memory. Also, this allow us to move free stack into struct kasan_alloc_meta, without increasing memory consumption. So now we should always know when the last time the object was freed. This may be useful for long delayed use-after-free bugs. As a side effect this fixes following UBSAN warning: UBSAN: Undefined behaviour in mm/kasan/quarantine.c:102:13 member access within misaligned address ffff88000d1efebc for type 'struct qlist_node' which requires 8 byte alignment Link: http://lkml.kernel.org/r/1470062715-14077-5-git-send-email-aryabinin@virtuozzo.com Reported-by: kernel test robot <xiaolong.ye@intel.com> Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02mm/kasan, slub: don't disable interrupts when object leaves quarantineAndrey Ryabinin1-2/+6
SLUB doesn't require disabled interrupts to call ___cache_free(). Link: http://lkml.kernel.org/r/1470062715-14077-3-git-send-email-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15kasan/quarantine: fix bugs on qlist_move_cache()Joonsoo Kim1-18/+11
There are two bugs on qlist_move_cache(). One is that qlist's tail isn't set properly. curr->next can be NULL since it is singly linked list and NULL value on tail is invalid if there is one item on qlist. Another one is that if cache is matched, qlist_put() is called and it will set curr->next to NULL. It would cause to stop the loop prematurely. These problems come from complicated implementation so I'd like to re-implement it completely. Implementation in this patch is really simple. Iterate all qlist_nodes and put them to appropriate list. Unfortunately, I got this bug sometime ago and lose oops message. But, the bug looks trivial and no need to attach oops. Fixes: 55834c59098d ("mm: kasan: initial memory quarantine implementation") Link: http://lkml.kernel.org/r/1467766348-22419-1-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Alexander Potapenko <glider@google.com> Cc: Kuthonuzo Luruo <poll.stdin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm: kasan: initial memory quarantine implementationAlexander Potapenko1-0/+291
Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. When the object is freed, its state changes from KASAN_STATE_ALLOC to KASAN_STATE_QUARANTINE. The object is poisoned and put into quarantine instead of being returned to the allocator, therefore every subsequent access to that object triggers a KASAN error, and the error handler is able to say where the object has been allocated and deallocated. When it's time for the object to leave quarantine, its state becomes KASAN_STATE_FREE and it's returned to the allocator. From now on the allocator may reuse it for another allocation. Before that happens, it's still possible to detect a use-after free on that object (it retains the allocation/deallocation stacks). When the allocator reuses this object, the shadow is unpoisoned and old allocation/deallocation stacks are wiped. Therefore a use of this object, even an incorrect one, won't trigger ASan warning. Without the quarantine, it's not guaranteed that the objects aren't reused immediately, that's why the probability of catching a use-after-free is lower than with quarantine in place. Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. Freed objects are first added to per-cpu quarantine queues. When a cache is destroyed or memory shrinking is requested, the objects are moved into the global quarantine queue. Whenever a kmalloc call allows memory reclaiming, the oldest objects are popped out of the global queue until the total size of objects in quarantine is less than 3/4 of the maximum quarantine size (which is a fraction of installed physical memory). As long as an object remains in the quarantine, KASAN is able to report accesses to it, so the chance of reporting a use-after-free is increased. Once the object leaves quarantine, the allocator may reuse it, in which case the object is unpoisoned and KASAN can't detect incorrect accesses to it. Right now quarantine support is only enabled in SLAB allocator. Unification of KASAN features in SLAB and SLUB will be done later. This patch is based on the "mm: kasan: quarantine" patch originally prepared by Dmitry Chernenkov. A number of improvements have been suggested by Andrey Ryabinin. [glider@google.com: v9] Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>