summaryrefslogtreecommitdiffstats
path: root/mm/bootmem.c
AgeCommit message (Collapse)AuthorFilesLines
2015-09-08bootmem: avoid freeing to bootmem after bootmem is doneChris Metcalf1-0/+7
Bootmem isn't popular any more, but some architectures still use it, and freeing to bootmem after calling free_all_bootmem_core() can end up scribbling over random memory. Instead, make sure the kernel generates a warning in this case by ensuring the node_bootmem_map field is non-NULL when are freeing or marking bootmem. An instance of this bug was just fixed in the tile architecture ("tile: use free_bootmem_late() for initrd") and catching this case more widely seems like a good thing. Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Paul McQuade <paulmcquad@gmail.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-30mm: page_alloc: pass PFN to __free_pages_bootmemMel Gorman1-6/+7
__free_pages_bootmem prepares a page for release to the buddy allocator and assumes that the struct page is initialised. Parallel initialisation of struct pages defers initialisation and __free_pages_bootmem can be called for struct pages that cannot yet map struct page to PFN. This patch passes PFN to __free_pages_bootmem with no other functional change. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Nate Zimmer <nzimmer@sgi.com> Tested-by: Waiman Long <waiman.long@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Nate Zimmer <nzimmer@sgi.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13mem-hotplug: reset node managed pages when hot-adding a new pgdatTang Chen1-4/+5
In free_area_init_core(), zone->managed_pages is set to an approximate value for lowmem, and will be adjusted when the bootmem allocator frees pages into the buddy system. But free_area_init_core() is also called by hotadd_new_pgdat() when hot-adding memory. As a result, zone->managed_pages of the newly added node's pgdat is set to an approximate value in the very beginning. Even if the memory on that node has node been onlined, /sys/device/system/node/nodeXXX/meminfo has wrong value: hot-add node2 (memory not onlined) cat /sys/device/system/node/node2/meminfo Node 2 MemTotal: 33554432 kB Node 2 MemFree: 0 kB Node 2 MemUsed: 33554432 kB Node 2 Active: 0 kB This patch fixes this problem by reset node managed pages to 0 after hot-adding a new node. 1. Move reset_managed_pages_done from reset_node_managed_pages() to reset_all_zones_managed_pages() 2. Make reset_node_managed_pages() non-static 3. Call reset_node_managed_pages() in hotadd_new_pgdat() after pgdat is initialized Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: <stable@vger.kernel.org> [3.16+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm/bootmem.c: use include/linux/ headersPaul McQuade1-2/+2
Replace asm. headers with linux/headers: <linux/bug.h> <linux/io.h> Signed-off-by: Paul McQuade <paulmcquad@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm/bootmem.c: remove unused local `map'Daeseok Youn1-3/+3
Signed-off-by: Daeseok Youn <daeseok.youn@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13mm: use pgdat_end_pfn() to simplify the code in othersXishi Qiu1-1/+1
Use "pgdat_end_pfn()" instead of "pgdat->node_start_pfn + pgdat->node_spanned_pages". Simplify the code, no functional change. Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03mm: kill free_all_bootmem_node()Jiang Liu1-18/+0
Now nobody makes use of free_all_bootmem_node(), kill it. Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03mm: concentrate modification of totalram_pages into the mm coreJiang Liu1-1/+8
Concentrate code to modify totalram_pages into the mm core, so the arch memory initialized code doesn't need to take care of it. With these changes applied, only following functions from mm core modify global variable totalram_pages: free_bootmem_late(), free_all_bootmem(), free_all_bootmem_node(), adjust_managed_page_count(). With this patch applied, it will be much more easier for us to keep totalram_pages and zone->managed_pages in consistence. Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Acked-by: David Howells <dhowells@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: <sworddragon2@aol.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michel Lespinasse <walken@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03mm: accurately calculate zone->managed_pages for highmem zonesJiang Liu1-14/+18
Commit "mm: introduce new field 'managed_pages' to struct zone" assumes that all highmem pages will be freed into the buddy system by function mem_init(). But that's not always true, some architectures may reserve some highmem pages during boot. For example PPC may allocate highmem pages for giagant HugeTLB pages, and several architectures have code to check PageReserved flag to exclude highmem pages allocated during boot when freeing highmem pages into the buddy system. So treat highmem pages in the same way as normal pages, that is to: 1) reset zone->managed_pages to zero in mem_init(). 2) recalculate managed_pages when freeing pages into the buddy system. Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: <sworddragon2@aol.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-29mm: Add alloc_bootmem_low_pages_nopanic()Yinghai Lu1-0/+8
We don't need to panic in some case, like for swiotlb preallocating. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1359058816-7615-35-git-send-email-yinghai@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-01-11mm: bootmem: fix free_all_bootmem_core() with odd bitmap alignmentMax Filippov1-6/+18
Currently free_all_bootmem_core ignores that node_min_pfn may be not multiple of BITS_PER_LONG. Eg commit 6dccdcbe2c3e ("mm: bootmem: fix checking the bitmap when finally freeing bootmem") shifts vec by lower bits of start instead of lower bits of idx. Also if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) assumes that vec bit 0 corresponds to start pfn, which is only true when node_min_pfn is a multiple of BITS_PER_LONG. Also loop in the else clause can double-free pages (e.g. with node_min_pfn == start == 1, map[0] == ~0 on 32-bit machine page 32 will be double-freed). This bug causes the following message during xtensa kernel boot: bootmem::free_all_bootmem_core nid=0 start=1 end=8000 BUG: Bad page state in process swapper pfn:00001 page:d04bd020 count:0 mapcount:-127 mapping: (null) index:0x2 page flags: 0x0() Call Trace: bad_page+0x8c/0x9c free_pages_prepare+0x5e/0x88 free_hot_cold_page+0xc/0xa0 __free_pages+0x24/0x38 __free_pages_bootmem+0x54/0x56 free_all_bootmem_core$part$11+0xeb/0x138 free_all_bootmem+0x46/0x58 mem_init+0x25/0xa4 start_kernel+0x11e/0x25c should_never_return+0x0/0x3be7 The fix is the following: - always align vec so that its bit 0 corresponds to start - provide BITS_PER_LONG bits in vec, if those bits are available in the map - don't free pages past next start position in the else clause. Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Prasad Koya <prasad.koya@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12mm/bootmem.c: remove unused wrapper function reserve_bootmem_generic()Lin Feng1-6/+0
reserve_bootmem_generic() has no caller, Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12mm: introduce new field "managed_pages" to struct zoneJiang Liu1-0/+21
Currently a zone's present_pages is calcuated as below, which is inaccurate and may cause trouble to memory hotplug. spanned_pages - absent_pages - memmap_pages - dma_reserve. During fixing bugs caused by inaccurate zone->present_pages, we found zone->present_pages has been abused. The field zone->present_pages may have different meanings in different contexts: 1) pages existing in a zone. 2) pages managed by the buddy system. For more discussions about the issue, please refer to: http://lkml.org/lkml/2012/11/5/866 https://patchwork.kernel.org/patch/1346751/ This patchset tries to introduce a new field named "managed_pages" to struct zone, which counts "pages managed by the buddy system". And revert zone->present_pages to count "physical pages existing in a zone", which also keep in consistence with pgdat->node_present_pages. We will set an initial value for zone->managed_pages in function free_area_init_core() and will adjust it later if the initial value is inaccurate. For DMA/normal zones, the initial value is set to: (spanned_pages - absent_pages - memmap_pages - dma_reserve) Later zone->managed_pages will be adjusted to the accurate value when the bootmem allocator frees all free pages to the buddy system in function free_all_bootmem_node() and free_all_bootmem(). The bootmem allocator doesn't touch highmem pages, so highmem zones' managed_pages is set to the accurate value "spanned_pages - absent_pages" in function free_area_init_core() and won't be updated anymore. This patch also adds a new field "managed_pages" to /proc/zoneinfo and sysrq showmem. [akpm@linux-foundation.org: small comment tweaks] Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Maciej Rutecki <maciej.rutecki@gmail.com> Tested-by: Chris Clayton <chris2553@googlemail.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12bootmem: remove alloc_arch_preferred_bootmem()Joonsoo Kim1-16/+4
The name of this function is not suitable, and removing the function and open-coding it into each call sites makes the code more understandable. Additionally, we shouldn't do an allocation from bootmem when slab_is_available(), so directly return kmalloc()'s return value. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12bootmem: remove not implemented function call, bootmem_arch_preferred_node()Joonsoo Kim1-12/+0
There is no implementation of bootmem_arch_preferred_node() and a call to this function will cause a compilation error. So remove it. Signed-off-by: Joonsoo Kim <js1304@gmail.com> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11bootmem: fix wrong call parameter for free_bootmem()Joonsoo Kim1-10/+10
It is strange that alloc_bootmem() returns a virtual address and free_bootmem() requires a physical address. Anyway, free_bootmem()'s first parameter should be physical address. There are some call sites for free_bootmem() with virtual address. So fix them. [akpm@linux-foundation.org: improve free_bootmem() and free_bootmem_pate() documentation] Signed-off-by: Joonsoo Kim <js1304@gmail.com> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-11-16revert "mm: fix-up zone present pages"Andrew Morton1-9/+1
Revert commit 7f1290f2f2a4 ("mm: fix-up zone present pages") That patch tried to fix a issue when calculating zone->present_pages, but it caused a regression on 32bit systems with HIGHMEM. With that change, reset_zone_present_pages() resets all zone->present_pages to zero, and fixup_zone_present_pages() is called to recalculate zone->present_pages when the boot allocator frees core memory pages into buddy allocator. Because highmem pages are not freed by bootmem allocator, all highmem zones' present_pages becomes zero. Various options for improving the situation are being discussed but for now, let's return to the 3.6 code. Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Petr Tesarik <ptesarik@suse.cz> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Tested-by: Chris Clayton <chris2553@googlemail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: fix-up zone present pagesJianguo Wu1-1/+9
I think zone->present_pages indicates pages that buddy system can management, it should be: zone->present_pages = spanned pages - absent pages - bootmem pages, but is now: zone->present_pages = spanned pages - absent pages - memmap pages. spanned pages: total size, including holes. absent pages: holes. bootmem pages: pages used in system boot, managed by bootmem allocator. memmap pages: pages used by page structs. This may cause zone->present_pages less than it should be. For example, numa node 1 has ZONE_NORMAL and ZONE_MOVABLE, it's memmap and other bootmem will be allocated from ZONE_MOVABLE, so ZONE_NORMAL's present_pages should be spanned pages - absent pages, but now it also minus memmap pages(free_area_init_core), which are actually allocated from ZONE_MOVABLE. When offlining all memory of a zone, this will cause zone->present_pages less than 0, because present_pages is unsigned long type, it is actually a very large integer, it indirectly caused zone->watermark[WMARK_MIN] becomes a large integer(setup_per_zone_wmarks()), than cause totalreserve_pages become a large integer(calculate_totalreserve_pages()), and finally cause memory allocating failure when fork process(__vm_enough_memory()). [root@localhost ~]# dmesg -bash: fork: Cannot allocate memory I think the bug described in http://marc.info/?l=linux-mm&m=134502182714186&w=2 is also caused by wrong zone present pages. This patch intends to fix-up zone->present_pages when memory are freed to buddy system on x86_64 and IA64 platforms. Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Reported-by: Petr Tesarik <ptesarik@suse.cz> Tested-by: Petr Tesarik <ptesarik@suse.cz> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-27bootmem: Fix the short description of reserve_bootmem()Javi Merino1-1/+1
It marks pages as reserved, as the long description says. Signed-off-by: Javi Merino <javi.merino@arm.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2012-07-17bootmem: make ___alloc_bootmem_node_nopanic() really nopanicYinghai Lu1-0/+4
In reaction to commit 99ab7b19440a ("mm: sparse: fix usemap allocation above node descriptor section") Johannes said: | while backporting the below patch, I realised that your fix busted | f5bf18fa22f8 again. The problem was not a panicking version on | allocation failure but when the usemap size was too large such that | goal + size > limit triggers the BUG_ON in the bootmem allocator. So | we need a version that passes limit ONLY if the usemap is smaller than | the section. after checking the code, the name of ___alloc_bootmem_node_nopanic() does not reflect the fact. Make bootmem really not panic. Hope will kill bootmem sooner. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> [3.3.x, 3.4.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-11mm: sparse: fix usemap allocation above node descriptor sectionYinghai Lu1-1/+1
After commit f5bf18fa22f8 ("bootmem/sparsemem: remove limit constraint in alloc_bootmem_section"), usemap allocations may easily be placed outside the optimal section that holds the node descriptor, even if there is space available in that section. This results in unnecessary hotplug dependencies that need to have the node unplugged before the section holding the usemap. The reason is that the bootmem allocator doesn't guarantee a linear search starting from the passed allocation goal but may start out at a much higher address absent an upper limit. Fix this by trying the allocation with the limit at the section end, then retry without if that fails. This keeps the fix from f5bf18fa22f8 of not panicking if the allocation does not fit in the section, but still makes sure to try to stay within the section at first. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> [3.3.x, 3.4.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/bootmem.c: cleanup on addition to bootmem data listGavin Shan1-8/+8
The objects of "struct bootmem_data_t" are linked together to form double-linked list sequentially based on its minimal page frame number. The current implementation implicitly supports the following cases, which means the inserting point for current bootmem data depends on how "list_for_each" works. That makes the code a little hard to read. Besides, "list_for_each" and "list_entry" can be replaced with "list_for_each_entry". - The linked list is empty. - There has no entry in the linked list, whose minimal page frame number is bigger than current one. Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: remove sparsemem allocation details from the bootmem allocatorJohannes Weiner1-22/+0
alloc_bootmem_section() derives allocation area constraints from the specified sparsemem section. This is a bit specific for a generic memory allocator like bootmem, though, so move it over to sparsemem. As __alloc_bootmem_node_nopanic() already retries failed allocations with relaxed area constraints, the fallback code in sparsemem.c can be removed and the code becomes a bit more compact overall. [akpm@linux-foundation.org: fix build] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: David S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: bootmem: pass pgdat instead of pgdat->bdata down the stackJohannes Weiner1-10/+10
Pass down the node descriptor instead of the more specific bootmem node descriptor down the call stack, like nobootmem does, when there is no good reason for the two to be different. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: David S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: bootmem: unify allocation policy of (non-)panicking node allocationsJohannes Weiner1-20/+24
While the panicking node-specific allocation function tries to satisfy node+goal, goal, node, anywhere, the non-panicking function still does node+goal, goal, anywhere. Make it simpler: define the panicking version in terms of the non-panicking one, like the node-agnostic interface, so they always behave the same way apart from how to deal with allocation failure. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: David S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: bootmem: allocate in order node+goal, goal, node, anywhereJohannes Weiner1-1/+13
Match the nobootmem version of __alloc_bootmem_node. Try to satisfy both the node and the goal, then just the goal, then just the node, then allocate anywhere before panicking. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: David S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: bootmem: split out goal-to-node mapping from goal droppingJohannes Weiner1-2/+15
Matching the desired goal to the right node is one thing, dropping the goal when it can not be satisfied is another. Split this into separate functions so that subsequent patches can use the node-finding but drop and handle the goal fallback on their own terms. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: David S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: bootmem: rename alloc_bootmem_core to alloc_bootmem_bdataJohannes Weiner1-7/+7
Callsites need to provide a bootmem_data_t *, make the naming more descriptive. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: David S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: bootmem: remove redundant offset check when finally freeing bootmemJohannes Weiner1-1/+1
When bootmem releases an unaligned BITS_PER_LONG pages chunk of memory to the page allocator, it checks the bitmap if there are still unreserved pages in the chunk (set bits), but also if the offset in the chunk indicates BITS_PER_LONG loop iterations already. But since the consulted bitmap is only a one-word-excerpt of the full per-node bitmap, there can not be more than BITS_PER_LONG bits set in it. The additional offset check is unnecessary. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: David S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: bootmem: fix checking the bitmap when finally freeing bootmemGavin Shan1-0/+1
When bootmem releases an unaligned chunk of memory at the beginning of a node to the page allocator, it iterates from that unaligned PFN but checks an aligned word of the page bitmap. The checked bits do not correspond to the PFNs and, as a result, reserved pages can be freed. Properly shift the bitmap word so that the lowest bit corresponds to the starting PFN before entering the freeing loop. This bug has been around since commit 41546c17418f ("bootmem: clean up free_all_bootmem_core") (2.6.27) without known reports. Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: David S. Miller <davem@davemloft.net> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21bootmem/sparsemem: remove limit constraint in alloc_bootmem_sectionNishanth Aravamudan1-3/+2
While testing AMS (Active Memory Sharing) / CMO (Cooperative Memory Overcommit) on powerpc, we tripped the following: kernel BUG at mm/bootmem.c:483! cpu 0x0: Vector: 700 (Program Check) at [c000000000c03940] pc: c000000000a62bd8: .alloc_bootmem_core+0x90/0x39c lr: c000000000a64bcc: .sparse_early_usemaps_alloc_node+0x84/0x29c sp: c000000000c03bc0 msr: 8000000000021032 current = 0xc000000000b0cce0 paca = 0xc000000001d80000 pid = 0, comm = swapper kernel BUG at mm/bootmem.c:483! enter ? for help [c000000000c03c80] c000000000a64bcc .sparse_early_usemaps_alloc_node+0x84/0x29c [c000000000c03d50] c000000000a64f10 .sparse_init+0x12c/0x28c [c000000000c03e20] c000000000a474f4 .setup_arch+0x20c/0x294 [c000000000c03ee0] c000000000a4079c .start_kernel+0xb4/0x460 [c000000000c03f90] c000000000009670 .start_here_common+0x1c/0x2c This is BUG_ON(limit && goal + size > limit); and after some debugging, it seems that goal = 0x7ffff000000 limit = 0x80000000000 and sparse_early_usemaps_alloc_node -> sparse_early_usemaps_alloc_pgdat_section calls return alloc_bootmem_section(usemap_size() * count, section_nr); This is on a system with 8TB available via the AMS pool, and as a quirk of AMS in firmware, all of that memory shows up in node 0. So, we end up with an allocation that will fail the goal/limit constraints. In theory, we could "fall-back" to alloc_bootmem_node() in sparse_early_usemaps_alloc_node(), but since we actually have HOTREMOVE defined, we'll BUG_ON() instead. A simple solution appears to be to unconditionally remove the limit condition in alloc_bootmem_section, meaning allocations are allowed to cross section boundaries (necessary for systems of this size). Johannes Weiner pointed out that if alloc_bootmem_section() no longer guarantees section-locality, we need check_usemap_section_nr() to print possible cross-dependencies between node descriptors and the usemaps allocated through it. That makes the two loops in sparse_early_usemaps_alloc_node() identical, so re-factor the code a bit. [akpm@linux-foundation.org: code simplification] Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Anton Blanchard <anton@au1.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Ben Herrenschmidt <benh@kernel.crashing.org> Cc: Robert Jennings <rcj@linux.vnet.ibm.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> [3.3.1] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10mm: bootmem: try harder to free pages in bulkJohannes Weiner1-12/+10
The loop that frees pages to the page allocator while bootstrapping tries to free higher-order blocks only when the starting address is aligned to that block size. Otherwise it will free all pages on that node one-by-one. Change it to free individual pages up to the first aligned block and then try higher-order frees from there. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10mm: bootmem: drop superfluous range check when freeing pages in bulkJohannes Weiner1-1/+1
The area node_bootmem_map represents is aligned to BITS_PER_LONG, and all bits in any aligned word of that map valid. When the represented area extends beyond the end of the node, the non-existant pages will be marked as reserved. As a result, when freeing a page block, doing an explicit range check for whether that block is within the node's range is redundant as the bitmap is consulted anyway to see whether all pages in the block are unreserved. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10bootmem: micro optimize freeing pages in bulkUwe Kleine-König1-2/+2
The first entry of bdata->node_bootmem_map holds the data for bdata->node_min_pfn up to bdata->node_min_pfn + BITS_PER_LONG - 1. So the test for freeing all pages of a single map entry can be slightly relaxed. Moreover use DIV_ROUND_UP in another place instead of open coding it. Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Cc: Johannes Weiner <hannes@saeurebad.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: Map most files to use export.h instead of module.hPaul Gortmaker1-1/+1
The files changed within are only using the EXPORT_SYMBOL macro variants. They are not using core modular infrastructure and hence don't need module.h but only the export.h header. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-03-23crash_dump: export is_kdump_kernel to modules, consolidate elfcorehdr_addr, ↵Olaf Hering1-8/+0
setup_elfcorehdr and saved_max_pfn The Xen PV drivers in a crashed HVM guest can not connect to the dom0 backend drivers because both frontend and backend drivers are still in connected state. To run the connection reset function only in case of a crashdump, the is_kdump_kernel() function needs to be available for the PV driver modules. Consolidate elfcorehdr_addr, setup_elfcorehdr and saved_max_pfn into kernel/crash_dump.c Also export elfcorehdr_addr to make is_kdump_kernel() usable for modules. Leave 'elfcorehdr' as early_param(). This changes powerpc from __setup() to early_param(). It adds an address range check from x86 also on ia64 and powerpc. [akpm@linux-foundation.org: additional #includes] [akpm@linux-foundation.org: remove elfcorehdr_addr export] [akpm@linux-foundation.org: fix for Tejun's mm/nobootmem.c changes] Signed-off-by: Olaf Hering <olaf@aepfle.de> Cc: Russell King <rmk@arm.linux.org.uk> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-02-24bootmem: Move contig_page_data definition to bootmem.c/nobootmem.cYinghai Lu1-0/+7
Now that bootmem.c and nobootmem.c are separate, it's cleaner to define contig_page_data in each file than in page_alloc.c with #ifdef. Move it. This patch doesn't introduce any behavior change. -v2: According to Andrew, fixed the struct layout. -tj: Updated commit description. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Acked-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2011-02-24bootmem: Separate out CONFIG_NO_BOOTMEM code into nobootmem.cYinghai Lu1-170/+3
mm/bootmem.c contained code paths for both bootmem and no bootmem configurations. They implement about the same set of APIs in different ways and as a result bootmem.c contains massive amount of #ifdef CONFIG_NO_BOOTMEM. Separate out CONFIG_NO_BOOTMEM code into mm/nobootmem.c. As the common part is relatively small, duplicate them in nobootmem.c instead of creating a common file or ifdef'ing in bootmem.c. The followings are duplicated. * {min|max}_low_pfn, max_pfn, saved_max_pfn * free_bootmem_late() * ___alloc_bootmem() * __alloc_bootmem_low() The followings are applicable only to nobootmem and moved verbatim. * __free_pages_memory() * free_all_memory_core_early() The followings are not applicable to nobootmem and omitted in nobootmem.c. * reserve_bootmem_node() * reserve_bootmem() The rest split function bodies according to CONFIG_NO_BOOTMEM. Makefile is updated so that only either bootmem.c or nobootmem.c is built according to CONFIG_NO_BOOTMEM. This patch doesn't introduce any behavior change. -tj: Rewrote commit description. Suggested-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Acked-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2010-08-27x86, memblock: Replace e820_/_early string with memblock_Yinghai Lu1-2/+2
1.include linux/memblock.h directly. so later could reduce e820.h reference. 2 this patch is done by sed scripts mainly -v2: use MEMBLOCK_ERROR instead of -1ULL or -1UL Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-27x86: Use memblock to replace early_resYinghai Lu1-0/+3
1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-27bootmem, x86: Add weak version of reserve_bootmem_genericYinghai Lu1-0/+6
It will be used memblock_x86_to_bootmem converting It is an wrapper for reserve_bootmem, and x86 64bit is using special one. Also clean up that version for x86_64. We don't need to take care of numa path for that, bootmem can handle it how Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-07-20x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit ↵Yinghai Lu1-4/+20
numa is used Borislav Petkov reported his 32bit numa system has problem: [ 0.000000] Reserving total of 4c00 pages for numa KVA remap [ 0.000000] kva_start_pfn ~ 32800 max_low_pfn ~ 375fe [ 0.000000] max_pfn = 238000 [ 0.000000] 8202MB HIGHMEM available. [ 0.000000] 885MB LOWMEM available. [ 0.000000] mapped low ram: 0 - 375fe000 [ 0.000000] low ram: 0 - 375fe000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 1000 1000 => 34e7000 [ 0.000000] alloc (nid=8 100000 - 7ee00000) (1000000 - ffffffff) 200 40 => 34c9d80 [ 0.000000] alloc (nid=0 100000 - 7ee00000) (1000000 - ffffffffffffffff) 180 40 => 34e6140 [ 0.000000] alloc (nid=1 80000000 - c7e60000) (1000000 - ffffffffffffffff) 240 40 => 80000000 [ 0.000000] BUG: unable to handle kernel paging request at 40000000 [ 0.000000] IP: [<c2c8cff1>] __alloc_memory_core_early+0x147/0x1d6 [ 0.000000] *pdpt = 0000000000000000 *pde = f000ff53f000ff00 ... [ 0.000000] Call Trace: [ 0.000000] [<c2c8b4f8>] ? __alloc_bootmem_node+0x216/0x22f [ 0.000000] [<c2c90c9b>] ? sparse_early_usemaps_alloc_node+0x5a/0x10b [ 0.000000] [<c2c9149e>] ? sparse_init+0x1dc/0x499 [ 0.000000] [<c2c79118>] ? paging_init+0x168/0x1df [ 0.000000] [<c2c780ff>] ? native_pagetable_setup_start+0xef/0x1bb looks like it allocates too much high address for bootmem. Try to cut limit with get_max_mapped() Reported-by: Borislav Petkov <borislav.petkov@amd.com> Tested-by: Conny Seidel <conny.seidel@amd.com> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: <stable@kernel.org> [2.6.34.x] Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-07Merge branch 'x86-fixes-for-linus' of ↵Linus Torvalds1-2/+15
git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-tip * 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-tip: x86: Fix double enable_IR_x2apic() call on SMP kernel on !SMP boards x86: Increase CONFIG_NODES_SHIFT max to 10 ibft, x86: Change reserve_ibft_region() to find_ibft_region() x86, hpet: Fix bug in RTC emulation x86, hpet: Erratum workaround for read after write of HPET comparator bootmem, x86: Fix 32bit numa system without RAM on node 0 nobootmem, x86: Fix 32bit numa system without RAM on node 0 x86: Handle overlapping mptables x86: Make e820_remove_range to handle all covered case x86-32, resume: do a global tlb flush in S4 resume
2010-04-01bootmem, x86: Fix 32bit numa system without RAM on node 0Yinghai Lu1-1/+7
When 32bit numa is used, free_all_bootmem() will still only go over with node id 0. If node 0 doesn't have RAM installed, the lowest populated node becomes low RAM. This one fixes BOOTMEM path by iterating over the bdata_list. -v3: add more comments, and fix bootmem path too. -v4: seperate from one big patch Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <4BB416D7.6090203@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-04-01nobootmem, x86: Fix 32bit numa system without RAM on node 0Yinghai Lu1-1/+8
On one system without RAM on node0, got following boot dump with a 32 bit NUMA kernel: early_node_map[4] active PFN ranges 1: 0x00000010 -> 0x00000099 1: 0x00000100 -> 0x0007da00 1: 0x0007e800 -> 0x0007ffa0 1: 0x0007ffae -> 0x0007ffb0 ... Subtract (29 early reservations) #000 [0000001000 - 0000002000] #001 [0000089000 - 000008f000] #002 [0000091000 - 0000093500] ... #027 [007cbfef40 - 007e800000] #028 [007e9ca000 - 007ff95000] (0 free memory ranges) Initializing HighMem for node 0 (00000000:00000000) Initializing HighMem for node 1 (00000000:00000000) Memory: 0k/2096832k available (6662k kernel code, 2096300k reserved, 4829k data, 484k init, 0k highmem) ... Checking if this processor honours the WP bit even in supervisor mode...Ok. swapper: page allocation failure. order:0, mode:0x0 Pid: 0, comm: swapper Not tainted 2.6.34-rc3-tip-03818-g4b1ea6c-dirty #35 Call Trace: [<4087a5dc>] ? printk+0xf/0x11 [<40286728>] __alloc_pages_nodemask+0x417/0x487 [<402a9ce1>] new_slab+0xe2/0x1fe [<402aa5b2>] kmem_cache_open+0x185/0x358 [<402abbc0>] T.954+0x1c/0x60 [<40d52a29>] kmem_cache_init+0x24/0x113 [<40d39738>] start_kernel+0x166/0x2e4 [<40d3940e>] ? unknown_bootoption+0x0/0x18e [<40d390ce>] i386_start_kernel+0xce/0xd5 Mem-Info: Node 1 DMA per-cpu: CPU 0: hi: 0, btch: 1 usd: 0 Node 1 Normal per-cpu: CPU 0: hi: 0, btch: 1 usd: 0 active_anon:0 inactive_anon:0 isolated_anon:0 active_file:0 inactive_file:0 isolated_file:0 unevictable:0 dirty:0 writeback:0 unstable:0 free:0 slab_reclaimable:0 slab_unreclaimable:0 mapped:0 shmem:0 pagetables:0 bounce:0 When 32bit NUMA is used, free_all_bootmem() will still only go over with node id 0. If node 0 doesn't have RAM installed, We need to go with node1 because early_node_map still use 1 for all ranges, and ram from node1 become low ram. Use MAX_NUMNODES like 64-bit NUMA does. Note: BOOTMEM path has the same problem. this bug exist before We have NO_BOOTMEM support. -v3: add more comments, and fix bootmem path too. -v4: seperate bootmem path fix Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <4BB41689.9090502@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-03-30include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo1-0/+1
implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24x86: Remove excessive early_res debug outputJiri Kosina1-13/+0
Commit 08677214e318297 ("x86: Make 64 bit use early_res instead of bootmem before slab") introduced early_res replacement for bootmem, but left code in __free_pages_memory() which dumps all the ranges that are beeing freed, without any additional information, causing some noise in dmesg during bootup. Just remove printing of the ranges, that doesn't provide anything useful anyway. While at it, remove other commented-out KERN_DEBUG messages in the NO_BOOTMEM code as well. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Found-OK-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <alpine.LNX.2.00.1003220931360.18642@pobox.suse.cz> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-12x86: Make 64 bit use early_res instead of bootmem before slabYinghai Lu1-3/+192
Finally we can use early_res to replace bootmem for x86_64 now. Still can use CONFIG_NO_BOOTMEM to enable it or not. -v2: fix 32bit compiling about MAX_DMA32_PFN -v3: folded bug fix from LKML message below Signed-off-by: Yinghai Lu <yinghai@kernel.org> LKML-Reference: <4B747239.4070907@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-12-15mm/bootmem.c: properly __init-annotate helper functionsJan Beulich1-4/+4
Signed-off-by: Jan Beulich <jbeulich@novell.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-11-10bootmem: Add free_bootmem_late()FUJITA Tomonori1-0/+24
Add a new function for freeing bootmem after the bootmem allocator has been released and the unreserved pages given to the page allocator. This allows us to reserve bootmem and then release it if we later discover it was not needed. ( This new API will be used by the swiotlb code to recover a significant amount of RAM (64MB). ) Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: chrisw@sous-sol.org Cc: dwmw2@infradead.org Cc: joerg.roedel@amd.com Cc: muli@il.ibm.com Cc: hannes@cmpxchg.org Cc: tj@kernel.org Cc: akpm@linux-foundation.org Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <1257849980-22640-7-git-send-email-fujita.tomonori@lab.ntt.co.jp> Signed-off-by: Ingo Molnar <mingo@elte.hu>