summaryrefslogtreecommitdiffstats
path: root/kernel
AgeCommit message (Collapse)AuthorFilesLines
2008-06-27sched: revert revert of: fair-group: SMP-nice for group schedulingPeter Zijlstra4-75/+488
Try again.. Initial commit: 18d95a2832c1392a2d63227a7a6d433cb9f2037e Revert: 6363ca57c76b7b83639ca8c83fc285fa26a7880e Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27sched: fix calc_delta_asym, #2Peter Zijlstra1-3/+6
Ok, so why are we in this mess, it was: 1/w but now we mixed that rw in the mix like: rw/w rw being \Sum w suggests: fiddling w, we should also fiddle rw, humm? Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27sched: fix calc_delta_asym()Peter Zijlstra2-1/+28
calc_delta_asym() is supposed to do the same as calc_delta_fair() except linearly shrink the result for negative nice processes - this causes them to have a smaller preemption threshold so that they are more easily preempted. The problem is that for task groups se->load.weight is the per cpu share of the actual task group weight; take that into account. Also provide a debug switch to disable the asymmetry (which I still don't like - but it does greatly benefit some workloads) This would explain the interactivity issues reported against group scheduling. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27sched: revert the revert of: weight calculationsPeter Zijlstra3-39/+76
Try again.. initial commit: 8f1bc385cfbab474db6c27b5af1e439614f3025c revert: f9305d4a0968201b2818dbed0dc8cb0d4ee7aeb3 Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-27sched: clean up some unused variablesPeter Zijlstra1-2/+0
In file included from /mnt/build/linux-2.6/kernel/sched.c:1496: /mnt/build/linux-2.6/kernel/sched_rt.c: In function '__enable_runtime': /mnt/build/linux-2.6/kernel/sched_rt.c:339: warning: unused variable 'rd' /mnt/build/linux-2.6/kernel/sched_rt.c: In function 'requeue_rt_entity': /mnt/build/linux-2.6/kernel/sched_rt.c:692: warning: unused variable 'queue' Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-25Merge branch 'linus' into sched/develIngo Molnar3-29/+81
Conflicts: kernel/sched_rt.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-24kgdb: sparse fixJason Wessel1-1/+2
- Fix warning reported by sparse kernel/kgdb.c:1502:6: warning: symbol 'kgdb_console_write' was not declared. Should it be static? Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
2008-06-23Merge branch 'core-fixes-for-linus' of ↵Linus Torvalds1-20/+73
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: futexes: fix fault handling in futex_lock_pi
2008-06-23futexes: fix fault handling in futex_lock_piThomas Gleixner1-20/+73
This patch addresses a very sporadic pi-futex related failure in highly threaded java apps on large SMP systems. David Holmes reported that the pi_state consistency check in lookup_pi_state triggered with his test application. This means that the kernel internal pi_state and the user space futex variable are out of sync. First we assumed that this is a user space data corruption, but deeper investigation revieled that the problem happend because the pi-futex code is not handling a fault in the futex_lock_pi path when the user space variable needs to be fixed up. The fault happens when a fork mapped the anon memory which contains the futex readonly for COW or the page got swapped out exactly between the unlock of the futex and the return of either the new futex owner or the task which was the expected owner but failed to acquire the kernel internal rtmutex. The current futex_lock_pi() code drops out with an inconsistent in case it faults and returns -EFAULT to user space. User space has no way to fixup that state. When we wrote this code we thought that we could not drop the hash bucket lock at this point to handle the fault. After analysing the code again it turned out to be wrong because there are only two tasks involved which might modify the pi_state and the user space variable: - the task which acquired the rtmutex - the pending owner of the pi_state which did not get the rtmutex Both tasks drop into the fixup_pi_state() function before returning to user space. The first task which acquired the hash bucket lock faults in the fixup of the user space variable, drops the spinlock and calls futex_handle_fault() to fault in the page. Now the second task could acquire the hash bucket lock and tries to fixup the user space variable as well. It either faults as well or it succeeds because the first task already faulted the page in. One caveat is to avoid a double fixup. After returning from the fault handling we reacquire the hash bucket lock and check whether the pi_state owner has been modified already. Reported-by: David Holmes <david.holmes@sun.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: David Holmes <david.holmes@sun.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: <stable@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> kernel/futex.c | 93 ++++++++++++++++++++++++++++++++++++++++++++------------- 1 file changed, 73 insertions(+), 20 deletions(-)
2008-06-23Merge branch 'linus' into sched/develIngo Molnar5-10/+24
2008-06-23Merge branch 'linus' into sched/urgentIngo Molnar4-10/+18
2008-06-20Merge branch 'core-fixes-for-linus' of ↵Linus Torvalds4-10/+18
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: softlockup: fix NMI hangs due to lock race - 2.6.26-rc regression rcupreempt: remove export of rcu_batches_completed_bh cpuset: limit the input of cpuset.sched_relax_domain_level
2008-06-20sched: refactor wait_for_completion_timeout()Oleg Nesterov1-18/+6
Simplify the code and fix the boundary condition of wait_for_completion_timeout(,0). We can kill the first __remove_wait_queue() as well. Signed-off-by: Ingo Molnar <mingo@elte.hu> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
2008-06-20sched: fix wait_for_completion_timeout() spurious failure under heavy loadRoland Dreier1-0/+10
It seems that the current implementaton of wait_for_completion_timeout() has a small problem under very high load for the common pattern: if (!wait_for_completion_timeout(&done, timeout)) /* handle failure */ because the implementation very roughly does (lots of code deleted to show the basic flow): static inline long __sched do_wait_for_common(struct completion *x, long timeout, int state) { if (x->done) return timeout; do { timeout = schedule_timeout(timeout); if (!timeout) return timeout; } while (!x->done); return timeout; } so if the system is very busy and x->done is not set when do_wait_for_common() is entered, it is possible that the first call to schedule_timeout() returns 0 because the task doing wait_for_completion doesn't get rescheduled for a long time, even if it is woken up early enough. In this case, wait_for_completion_timeout() returns 0 without even checking x->done again, and the code above falls into its failure case purely for scheduler reasons, even if the hardware event or whatever was being waited for happened early enough. It would make sense to add an extra test to do_wait_for() in the timeout case and return 1 if x->done is actually set. A quick audit (not exhaustive) of wait_for_completion_timeout() callers seems to indicate that no one actually cares about the return value in the success case -- they just test for 0 (timed out) versus non-zero (wait succeeded). Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-20sched: rt: dont stop the period timer when there are tasks wanting to runPeter Zijlstra1-1/+2
So if the group ever gets throttled, it will never wake up again. Reported-by: "Daniel K." <dk@uw.no> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Daniel K. <dk@uw.no> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-20sched: rt: dont stop the period timer when there are tasks wanting to runPeter Zijlstra1-1/+2
So if the group ever gets throttled, it will never wake up again. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Daniel K." <dk@uw.no> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Reported-by: "Daniel K." <dk@uw.no>
2008-06-20sched: rt: fix the bandwidth contraint computationsPeter Zijlstra1-3/+8
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Daniel K." <dk@uw.no> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-20sched: rt: move some code aroundPeter Zijlstra1-62/+57
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Daniel K." <dk@uw.no> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-20sched: rt: fix SMP bandwidth balancing for throttled groupsPeter Zijlstra1-12/+29
Now we exceed the runtime and get throttled - the period rollover tick will subtract the cpu quota from the runtime and check if we're below quota. However with this cpu having a very small portion of the runtime it will not refresh as fast as it should. Therefore, also rebalance the runtime when we're throttled. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Daniel K." <dk@uw.no> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-20sched: debug: add some rt debug outputPeter Zijlstra2-3/+51
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Daniel K." <dk@uw.no> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-19sched, delay accounting: fix incorrect delay time when constantly waiting on ↵Bharath Ravi1-0/+6
runqueue This patch corrects the incorrect value of per process run-queue wait time reported by delay statistics. The anomaly was due to the following reason. When a process leaves the CPU and immediately starts waiting for CPU on the runqueue (which means it remains in the TASK_RUNNABLE state), the time of re-entry into the run-queue is never recorded. Due to this, the waiting time on the runqueue from this point of re-entry upto the next time it hits the CPU is not accounted for. This is solved by recording the time of re-entry of a process leaving the CPU in the sched_info_depart() function IF the process will go back to waiting on the run-queue. This IF condition is verified by checking whether the process is still in the TASK_RUNNABLE state. The patch was tested on 2.6.26-rc6 using two simple CPU hog programs. The values noted prior to the fix did not account for the time spent on the runqueue waiting. After the fix, the correct values were reported back to user space. Signed-off-by: Bharath Ravi <bharathravi1@gmail.com> Signed-off-by: Madhava K R <madhavakr@gmail.com> Cc: dhaval@linux.vnet.ibm.com Cc: vatsa@in.ibm.com Cc: balbir@in.ibm.com Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-19softlockup: fix NMI hangs due to lock race - 2.6.26-rc regressionJason Wessel1-5/+10
The touch_nmi_watchdog() routine on x86 ultimately calls touch_softlockup_watchdog(). The problem is that to touch the softlockup watchdog, the cpu_clock code has to be called which could involve multiple cpu locks and can lead to a hard hang if one of the locks is held by a processor that is not going to return anytime soon (such as could be the case with kgdb or perhaps even with some other kind of exception). This patch causes the public version of the touch_softlockup_watchdog() to defer the cpu clock access to a later point. The test case for this problem is to use the following kernel config options: CONFIG_KGDB_TESTS=y CONFIG_KGDB_TESTS_ON_BOOT=y CONFIG_KGDB_TESTS_BOOT_STRING="V1F100I100000" It should be noted that kgdb test suite and these options were not available until 2.6.26-rc2, so it was necessary to patch the kgdb test suite during the bisection. I would consider this patch a regression fix because the problem first appeared in commit 27ec4407790d075c325e1f4da0a19c56953cce23 when some logic was added to try to periodically sync the clocks. It was possible to work around this particular problem by simply not performing the sync anytime the system was in a critical context. This was ok until commit 3e51f33fcc7f55e6df25d15b55ed10c8b4da84cd, which added config option CONFIG_HAVE_UNSTABLE_SCHED_CLOCK and some multi-cpu locks to sync the clocks. It became clear that accessing this code from an nmi was the source of the lockups. Avoiding the access to the low level clock code from an code inside the NMI processing also fixed the problem with the 27ec44... commit. Signed-off-by: Jason Wessel <jason.wessel@windriver.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-19rcupreempt: remove export of rcu_batches_completed_bhSteven Rostedt1-2/+0
In rcupreempt, rcu_batches_completed_bh is defined as a static inline in the header file. This does not need to be exported, and not only that, this breaks my PPC build. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: paulus@samba.org Cc: linuxppc-dev@ozlabs.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-06-19cpuset: limit the input of cpuset.sched_relax_domain_levelLi Zefan2-3/+8
We allow the inputs to be [-1 ... SD_LV_MAX), and return -EINVAL for inputs outside this range. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com> Acked-by: Paul Menage <menage@google.com> Acked-by: Paul Jackson <pj@sgi.com> Acked-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-06-19sched: CPU hotplug events must not destroy scheduler domains created by the ↵Max Krasnyansky2-0/+28
cpusets First issue is not related to the cpusets. We're simply leaking doms_cur. It's allocated in arch_init_sched_domains() which is called for every hotplug event. So we just keep reallocation doms_cur without freeing it. I introduced free_sched_domains() function that cleans things up. Second issue is that sched domains created by the cpusets are completely destroyed by the CPU hotplug events. For all CPU hotplug events scheduler attaches all CPUs to the NULL domain and then puts them all into the single domain thereby destroying domains created by the cpusets (partition_sched_domains). The solution is simple, when cpusets are enabled scheduler should not create default domain and instead let cpusets do that. Which is exactly what the patch does. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Cc: pj@sgi.com Cc: menage@google.com Cc: rostedt@goodmis.org Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-06-19Merge branch 'sched' into sched-develIngo Molnar2-30/+40
Conflicts: kernel/sched_rt.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-19sched: rt-group: fix RR bugletPeter Zijlstra1-1/+3
In tick_task_rt() we first call update_curr_rt() which can dequeue a runqueue due to it running out of runtime, and then we try to requeue it, of it also having exhausted its RR quota. Obviously requeueing something that is no longer on the runqueue will not have the expected result. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Daniel K. <dk@uw.no> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-19sched: rt-group: heirarchy aware throttlePeter Zijlstra1-26/+33
The bandwidth throttle code dequeues a group when it runs out of quota, and re-queues it once the period rolls over and the quota gets refreshed. Sadly it failed to take the hierarchy into consideration. Share more of the enqueue/dequeue code with regular task opterations. Also, some operations like sched_setscheduler() can dequeue/enqueue tasks that are in throttled runqueues, we should not inadvertly re-enqueue empty runqueues so check for that. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Daniel K. <dk@uw.no> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-19sched: rt-group: fix hierarchyPeter Zijlstra1-1/+0
Don't re-set the entity's runqueue to the wrong rq after we've set it to the right one. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Daniel K. <dk@uw.no> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-19sched: NULL pointer dereference while setting sched_rt_period_usDario Faggioli1-1/+1
When CONFIG_RT_GROUP_SCHED and CONFIG_CGROUP_SCHED are enabled, with: echo 10000 > /proc/sys/kernel/sched_rt_period_us We get this: BUG: unable to handle kernel NULL pointer dereference at 0000008c [ 947.682233] IP: [<c0216b72>] __rt_schedulable+0x12/0x160 [ 947.683123] *pde = 00000000=20 [ 947.683782] Oops: 0000 [#1] [ 947.684307] Modules linked in: [ 947.684308] [ 947.684308] Pid: 2359, comm: bash Not tainted (2.6.26-rc6 #8) [ 947.684308] EIP: 0060:[<c0216b72>] EFLAGS: 00000246 CPU: 0 [ 947.684308] EIP is at __rt_schedulable+0x12/0x160 [ 947.684308] EAX: 00000000 EBX: 00000000 ECX: 00000000 EDX: 00000001 [ 947.684308] ESI: c0521db4 EDI: 00000001 EBP: c6cc9f00 ESP: c6cc9ed0 [ 947.684308] DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 0068 [ 947.684308] Process bash (pid: 2359, tiÆcc8000 taskÇa54f00=20 task.tiÆcc8000) [ 947.684308] Stack: c0222790 00000000 080f8c08 c0521db4 c6cc9f00 00000001 00000000 00000000 [ 947.684308] c6cc9f9c 00000000 c0521db4 00000001 c6cc9f28 c0216d40 00000000 00000000 [ 947.684308] c6cc9f9c 000f4240 000e7ef0 ffffffff c0521db4 c79dfb60 c6cc9f58 c02af2cc [ 947.684308] Call Trace: [ 947.684308] [<c0222790>] ? do_proc_dointvec_conv+0x0/0x50 [ 947.684308] [<c0216d40>] ? sched_rt_handler+0x80/0x110 [ 947.684308] [<c02af2cc>] ? proc_sys_call_handler+0x9c/0xb0 [ 947.684308] [<c02af2fa>] ? proc_sys_write+0x1a/0x20 [ 947.684308] [<c0273c36>] ? vfs_write+0x96/0x160 [ 947.684308] [<c02af2e0>] ? proc_sys_write+0x0/0x20 [ 947.684308] [<c027423d>] ? sys_write+0x3d/0x70 [ 947.684308] [<c0202ef5>] ? sysenter_past_esp+0x6a/0x91 [ 947.684308] ======================= [ 947.684308] Code: 24 04 e8 62 b1 0e 00 89 c7 89 f8 8b 5d f4 8b 75 f8 8b 7d fc 89 ec 5d c3 90 55 89 e5 57 56 53 83 ec 24 89 45 ec 89 55 e4 89 4d e8 <8b> b8 8c 00 00 00 85 ff 0f 84 c9 00 00 00 8b 57 24 39 55 e8 8b [ 947.684308] EIP: [<c0216b72>] __rt_schedulable+0x12/0x160 SS:ESP 0068:c6cc9ed0 We think the following patch solves the issue. Signed-off-by: Dario Faggioli <raistlin@linux.it> Signed-off-by: Michael Trimarchi <trimarchimichael@yahoo.it> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-18sched: rework of "prioritize non-migratable tasks over migratable ones"Dmitry Adamushko2-39/+11
regarding this commit: 45c01e824991b2dd0a332e19efc4901acb31209f I think we can do it simpler. Please take a look at the patch below. Instead of having 2 separate arrays (which is + ~800 bytes on x86_32 and twice so on x86_64), let's add "exclusive" (the ones that are bound to this CPU) tasks to the head of the queue and "shared" ones -- to the end. In case of a few newly woken up "exclusive" tasks, they are 'stacked' (not queued as now), meaning that a task {i+1} is being placed in front of the previously woken up task {i}. But I don't think that this behavior may cause any realistic problems. There are a couple of changes on top of this one. (1) in check_preempt_curr_rt() I don't think there is a need for the "pick_next_rt_entity(rq, &rq->rt) != &rq->curr->rt" check. enqueue_task_rt(p) and check_preempt_curr_rt() are always called one after another with rq->lock being held so the following check "p->rt.nr_cpus_allowed == 1 && rq->curr->rt.nr_cpus_allowed != 1" should be enough (well, just its left part) to guarantee that 'p' has been queued in front of the 'curr'. (2) in set_cpus_allowed_rt() I don't thinks there is a need for requeue_task_rt() here. Perhaps, the only case when 'requeue' (+ reschedule) might be useful is as follows: i) weight == 1 && cpu_isset(task_cpu(p), *new_mask) i.e. a task is being bound to this CPU); ii) 'p' != rq->curr but here, 'p' has already been on this CPU for a while and was not migrated. i.e. it's possible that 'rq->curr' would not have high chances to be migrated right at this particular moment (although, has chance in a bit longer term), should we allow it to be preempted. Anyway, I think we should not perhaps make it more complex trying to address some rare corner cases. For instance, that's why a single queue approach would be preferable. Unless I'm missing something obvious, this approach gives us similar functionality at lower cost. Verified only compilation-wise. (Almost)-Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-17sched: fix defined-but-unused warningRabin Vincent1-0/+2
Fix this warning, which appears with !CONFIG_SMP: kernel/sched.c:1216: warning: `init_hrtick' defined but not used Signed-off-by: Rabin Vincent <rabin@rab.in> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-16Merge branch 'linus' into sched-develIngo Molnar4-55/+103
2008-06-12kprobes: fix error checking of batch registrationMasami Hiramatsu1-6/+9
Fix error checking routine to catch an error which occurs in first __register_*probe(). Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: David Miller <davem@davemloft.net> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-12Merge branch 'sched-fixes-for-linus' of ↵Linus Torvalds1-8/+14
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: sched: 64-bit: fix arithmetics overflow sched: fair group: fix overflow(was: fix divide by zero) sched: fix TASK_WAKEKILL vs SIGKILL race
2008-06-12sched: 64-bit: fix arithmetics overflowLai Jiangshan1-2/+7
(overflow means weight >= 2^32 here, because inv_weigh = 2^32/weight) A weight of a cfs_rq is the sum of weights of which entities are queued on this cfs_rq, so it will overflow when there are too many entities. Although, overflow occurs very rarely, but it break fairness when it occurs. 64-bits systems have more memory than 32-bit systems and 64-bit systems can create more process usually, so overflow may occur more frequently. This patch guarantees fairness when overflow happens on 64-bit systems. Thanks to the optimization of compiler, it changes nothing on 32-bit. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-12sched: fair group: fix overflow(was: fix divide by zero)Lai Jiangshan1-2/+5
I found a bug which can be reproduced by this way:(linux-2.6.26-rc5, x86-64) (use 2^32, 2^33, ...., 2^63 as shares value) # mkdir /dev/cpuctl # mount -t cgroup -o cpu cpuctl /dev/cpuctl # cd /dev/cpuctl # mkdir sub # echo 0x8000000000000000 > sub/cpu.shares # echo $$ > sub/tasks oops here! divide by zero. This is because do_div() expects the 2th parameter to be 32 bits, but unsigned long is 64 bits in x86_64. Peter Zijstra pointed it out that the sane thing to do is limit the shares value to something smaller instead of using an even more expensive divide. Also, I found another bug about "the shares value is too large": pid1 and pid2 are set affinity to cpu#0 pid1 is attached to cg1 and pid2 is attached to cg2 if cg1/cpu.shares = 1024 cg2/cpu.shares = 2000000000 then pid2 got 100% usage of cpu, and pid1 0% if cg1/cpu.shares = 1024 cg2/cpu.shares = 20000000000 then pid2 got 0% usage of cpu, and pid1 100% And a weight of a cfs_rq is the sum of weights of which entities are queued on this cfs_rq, so the shares value should be limited to a smaller value. I think that (1UL << 18) is a good limited value: 1) it's not too large, we can create a lot of group before overflow 2) it's several times the weight value for nice=-19 (not too small) Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-10sched: kill off dead cfs_rq_set_shares()Paul Mundt1-8/+0
Building with CONFIG_FAIR_GROUP_SCHED=y on UP results in an unused cfs_rq_set_shares() reference. As nothing is using this dummy function in the first place, just kill it off. Signed-off-by: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-10sched: trivial sched_features cleanupMike Galbraith1-2/+0
Remove unused debug/tuning features. Signed-off-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-10sched: prevent bound kthreads from changing cpus_allowedDavid Rientjes3-1/+20
Kthreads that have called kthread_bind() are bound to specific cpus, so other tasks should not be able to change their cpus_allowed from under them. Otherwise, it is possible to move kthreads, such as the migration or software watchdog threads, so they are not allowed access to the cpu they work on. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Menage <menage@google.com> Cc: Paul Jackson <pj@sgi.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-10sched: fix hotplug cpus on ia64Peter Zijlstra2-9/+115
Cliff Wickman wrote: > I built an ia64 kernel from Andrew's tree (2.6.26-rc2-mm1) > and get a very predictable hotplug cpu problem. > billberry1:/tmp/cpw # ./dis > disabled cpu 17 > enabled cpu 17 > billberry1:/tmp/cpw # ./dis > disabled cpu 17 > enabled cpu 17 > billberry1:/tmp/cpw # ./dis > > The script that disables the cpu always hangs (unkillable) > on the 3rd attempt. > > And a bit further: > The kstopmachine thread always sits on the run queue (real time) for about > 30 minutes before running. this fix solves some (but not all) issues between CPU hotplug and RT bandwidth throttling. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-10sched: fix TASK_WAKEKILL vs SIGKILL raceOleg Nesterov1-4/+2
schedule() has the special "TASK_INTERRUPTIBLE && signal_pending()" case, this allows us to do current->state = TASK_INTERRUPTIBLE; schedule(); without fear to sleep with pending signal. However, the code like current->state = TASK_KILLABLE; schedule(); is not right, schedule() doesn't take TASK_WAKEKILL into account. This means that mutex_lock_killable(), wait_for_completion_killable(), down_killable(), schedule_timeout_killable() can miss SIGKILL (and btw the second SIGKILL has no effect). Introduce the new helper, signal_pending_state(), and change schedule() to use it. Hopefully it will have more users, that is why the task's state is passed separately. Note this "__TASK_STOPPED | __TASK_TRACED" check in signal_pending_state(). This is needed to preserve the current behaviour (ptrace_notify). I hope this check will be removed soon, but this (afaics good) change needs the separate discussion. The fast path is "(state & (INTERRUPTIBLE | WAKEKILL)) + signal_pending(p)", basically the same that schedule() does now. However, this patch of course bloats schedule(). Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-06Merge branch 'for-linus' of ↵Linus Torvalds1-38/+73
git://git.kernel.org/pub/scm/linux/kernel/git/chrisw/lsm-2.6 * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/chrisw/lsm-2.6: capabilities: remain source compatible with 32-bit raw legacy capability support. LSM: remove stale web site from MAINTAINERS
2008-06-06cpusets: fix bug when adding nonexistent cpu or memLai Jiangshan1-3/+7
Adding a nonexistent cpu to a cpuset will be omitted quietly. It should return -EINVAL. Example: (real_nr_cpus <= 4 < NR_CPUS or cpu#4 was just offline) # cat cpus 0-1 # /bin/echo 4 > cpus # /bin/echo $? 0 # cat cpus # The same occurs when add a nonexistent mem. This patch will fix this bug. And when *buf == "", the check is unneeded. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Paul Jackson <pj@sgi.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-06sched: move weighted_cpuload into #ifdef CONFIG_SMP sectionThomas Gleixner1-6/+6
weighted_cpuload is only used on SMP. move it into the CONFIG_SMP section. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-06-06sched: Move cpu masks from kernel/sched.c into kernel/cpu.cMax Krasnyansky3-20/+26
kernel/cpu.c seems a more logical place for those maps since they do not really have much to do with the scheduler these days. kernel/cpu.c is now built for the UP kernel too, but it does not affect the size the kernel sections. $ size vmlinux before text data bss dec hex filename 3313797 307060 310352 3931209 3bfc49 vmlinux after text data bss dec hex filename 3313797 307060 310352 3931209 3bfc49 vmlinux Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Cc: pj@sgi.com Cc: menage@google.com Cc: rostedt@goodmis.org Cc: mingo@elte.hu Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-06-06sched: CPU hotplug events must not destroy scheduler domains created by the ↵Max Krasnyansky2-0/+28
cpusets First issue is not related to the cpusets. We're simply leaking doms_cur. It's allocated in arch_init_sched_domains() which is called for every hotplug event. So we just keep reallocation doms_cur without freeing it. I introduced free_sched_domains() function that cleans things up. Second issue is that sched domains created by the cpusets are completely destroyed by the CPU hotplug events. For all CPU hotplug events scheduler attaches all CPUs to the NULL domain and then puts them all into the single domain thereby destroying domains created by the cpusets (partition_sched_domains). The solution is simple, when cpusets are enabled scheduler should not create default domain and instead let cpusets do that. Which is exactly what the patch does. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Cc: pj@sgi.com Cc: menage@google.com Cc: rostedt@goodmis.org Cc: mingo@elte.hu Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-06-06sched: fix cpuprio build bugIngo Molnar1-1/+4
this patch was not built on !SMP: kernel/sched_rt.c: In function 'inc_rt_tasks': kernel/sched_rt.c:404: error: 'struct rq' has no member named 'online' Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-06sched: fix the cpuprio count reallyThomas Gleixner1-2/+2
Peter pointed out that the last version of the "fix" was still one off under certain circumstances. Use BITS_TO_LONG instead to get an accurate result. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-06-06sched: fix cpupri priocountGregory Haskins1-1/+1
A rounding error was pointed out by Peter Zijlstra which would result in the structure holding priorities to be off by one. Signed-off-by: Gregory Haskins <ghaskins@novell.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>