Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Ingo Molnar:
"Update/fix two CPU sanity checks in the hotplug and the boot code, and
fix a typo in the Kconfig help text.
[ Context: the first two commits are the result of an ongoing
annotation+review work of (intentional) tick_do_timer_cpu() data
races reported by KCSAN, but the annotations aren't fully cooked
yet ]"
* tag 'timers-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timekeeping: Fix spelling mistake in Kconfig "fullfill" -> "fulfill"
tick/sched: Remove bogus boot "safety" check
tick: Remove pointless cpu valid check in hotplug code
|
|
There is a spelling mistake in the Kconfig help text. Fix it.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/20201217171705.57586-1-colin.king@canonical.com
|
|
can_stop_idle_tick() checks whether the do_timer() duty has been taken over
by a CPU on boot. That's silly because the boot CPU always takes over with
the initial clockevent device.
But even if no CPU would have installed a clockevent and taken over the
duty then the question whether the tick on the current CPU can be stopped
or not is moot. In that case the current CPU would have no clockevent
either, so there would be nothing to keep ticking.
Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20201206212002.725238293@linutronix.de
|
|
tick_handover_do_timer() which is invoked when a CPU is unplugged has a
check for cpumask_first(cpu_online_mask) when it tries to hand over the
tick update duty.
Checking the result of cpumask_first() there is pointless because if the
online mask is empty at this point, then this would be the last CPU in the
system going offline, which is impossible. There is always at least one CPU
remaining. If online mask would be really empty then the timer duty would
be the least of the resulting problems.
Remove the well meant check simply because it is pointless and confusing.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20201206212002.582579516@linutronix.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic cross-architecture timer cleanup from Arnd Bergmann:
"This cleans up two ancient timer features that were never completed in
the past, CONFIG_GENERIC_CLOCKEVENTS and CONFIG_ARCH_USES_GETTIMEOFFSET.
There was only one user left for the ARCH_USES_GETTIMEOFFSET variant
of clocksource implementations, the ARM EBSA110 platform. Rather than
changing to use modern timekeeping, we remove the platform entirely as
Russell no longer uses his machine and nobody else seems to have one
any more.
The conditional code for using arch_gettimeoffset() is removed as a
result.
For CONFIG_GENERIC_CLOCKEVENTS, there are still a couple of platforms
not using clockevent drivers: parisc, ia64, most of m68k, and one Arm
platform. These all do timer ticks slighly differently, and this gets
cleaned up to the point they at least all call the same helper
function.
Instead of most platforms using 'select GENERIC_CLOCKEVENTS' in
Kconfig, the polarity is now reversed, with the few remaining ones
selecting LEGACY_TIMER_TICK instead"
* tag 'asm-generic-timers-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
timekeeping: default GENERIC_CLOCKEVENTS to enabled
timekeeping: remove xtime_update
m68k: remove timer_interrupt() function
m68k: change remaining timers to legacy_timer_tick
m68k: m68328: use legacy_timer_tick()
m68k: sun3/sun3c: use legacy_timer_tick
m68k: split heartbeat out of timer function
m68k: coldfire: use legacy_timer_tick()
parisc: use legacy_timer_tick
ARM: rpc: use legacy_timer_tick
ia64: convert to legacy_timer_tick
timekeeping: add CONFIG_LEGACY_TIMER_TICK
timekeeping: remove arch_gettimeoffset
net: remove am79c961a driver
ARM: remove ebsa110 platform
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- migrate_disable/enable() support which originates from the RT tree
and is now a prerequisite for the new preemptible kmap_local() API
which aims to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
* tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
sched/fair: Trivial correction of the newidle_balance() comment
sched/fair: Clear SMT siblings after determining the core is not idle
sched: Fix kernel-doc markup
x86: Print ratio freq_max/freq_base used in frequency invariance calculations
x86, sched: Use midpoint of max_boost and max_P for frequency invariance on AMD EPYC
x86, sched: Calculate frequency invariance for AMD systems
irq_work: Optimize irq_work_single()
smp: Cleanup smp_call_function*()
irq_work: Cleanup
sched: Limit the amount of NUMA imbalance that can exist at fork time
sched/numa: Allow a floating imbalance between NUMA nodes
sched: Avoid unnecessary calculation of load imbalance at clone time
sched/numa: Rename nr_running and break out the magic number
sched: Make migrate_disable/enable() independent of RT
sched/topology: Condition EAS enablement on FIE support
arm64: Rebuild sched domains on invariance status changes
sched/topology,schedutil: Wrap sched domains rebuild
sched/uclamp: Allow to reset a task uclamp constraint value
sched/core: Fix typos in comments
Documentation: scheduler: fix information on arch SD flags, sched_domain and sched_debug
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers and timekeeping updates from Thomas Gleixner:
"Core:
- Robustness improvements for the NOHZ tick management
- Fixes and consolidation of the NTP/RTC synchronization code
- Small fixes and improvements in various places
- A set of function documentation udpates and fixes
Drivers:
- Cleanups and improvements in various clocksoure/event drivers
- Removal of the EZChip NPS clocksource driver as the platfrom
support was removed from ARC
- The usual set of new device tree binding and json conversions
- The RTC driver which have been acked by the RTC maintainer:
* fix a long standing bug in the MC146818 library code which can
cause reading garbage during the RTC internal update.
* changes related to the NTP/RTC consolidation work"
* tag 'timers-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
ntp: Fix prototype in the !CONFIG_GENERIC_CMOS_UPDATE case
tick/sched: Make jiffies update quick check more robust
ntp: Consolidate the RTC update implementation
ntp: Make the RTC sync offset less obscure
ntp, rtc: Move rtc_set_ntp_time() to ntp code
ntp: Make the RTC synchronization more reliable
rtc: core: Make the sync offset default more realistic
rtc: cmos: Make rtc_cmos sync offset correct
rtc: mc146818: Reduce spinlock section in mc146818_set_time()
rtc: mc146818: Prevent reading garbage
clocksource/drivers/sh_cmt: Fix potential deadlock when calling runtime PM
clocksource/drivers/arm_arch_timer: Correct fault programming of CNTKCTL_EL1.EVNTI
clocksource/drivers/arm_arch_timer: Use stable count reader in erratum sne
clocksource/drivers/dw_apb_timer_of: Add error handling if no clock available
clocksource/drivers/riscv: Make RISCV_TIMER depends on RISCV_SBI
clocksource/drivers/ingenic: Fix section mismatch
clocksource/drivers/cadence_ttc: Fix memory leak in ttc_setup_clockevent()
dt-bindings: timer: renesas: tmu: Convert to json-schema
dt-bindings: timer: renesas: tmu: Document r8a774e1 bindings
clocksource/drivers/orion: Add missing clk_disable_unprepare() on error path
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull misc fixes from Christian Brauner:
"This contains several fixes which felt worth being combined into a
single branch:
- Use put_nsproxy() instead of open-coding it switch_task_namespaces()
- Kirill's work to unify lifecycle management for all namespaces. The
lifetime counters are used identically for all namespaces types.
Namespaces may of course have additional unrelated counters and
these are not altered. This work allows us to unify the type of the
counters and reduces maintenance cost by moving the counter in one
place and indicating that basic lifetime management is identical
for all namespaces.
- Peilin's fix adding three byte padding to Dmitry's
PTRACE_GET_SYSCALL_INFO uapi struct to prevent an info leak.
- Two smal patches to convert from the /* fall through */ comment
annotation to the fallthrough keyword annotation which I had taken
into my branch and into -next before df561f6688fe ("treewide: Use
fallthrough pseudo-keyword") made it upstream which fixed this
tree-wide.
Since I didn't want to invalidate all testing for other commits I
didn't rebase and kept them"
* tag 'fixes-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
nsproxy: use put_nsproxy() in switch_task_namespaces()
sys: Convert to the new fallthrough notation
signal: Convert to the new fallthrough notation
time: Use generic ns_common::count
cgroup: Use generic ns_common::count
mnt: Use generic ns_common::count
user: Use generic ns_common::count
pid: Use generic ns_common::count
ipc: Use generic ns_common::count
uts: Use generic ns_common::count
net: Use generic ns_common::count
ns: Add a common refcount into ns_common
ptrace: Prevent kernel-infoleak in ptrace_get_syscall_info()
|
|
The quick check in tick_do_update_jiffies64() whether jiffies need to be
updated is not really correct under all circumstances and on all
architectures, especially not on 32bit systems.
The quick check does:
if (now < READ_ONCE(tick_next_period))
return;
and the counterpart in the update is:
WRITE_ONCE(tick_next_period, next_update_time);
This has two problems:
1) On weakly ordered architectures there is no guarantee that the stores
before the WRITE_ONCE() are visible which means that other CPUs can
operate on a stale jiffies value.
2) On 32bit the store of tick_next_period which is an u64 is split into
two 32bit stores. If the first 32bit store advances tick_next_period
far out and the second 32bit store is delayed (virt, NMI ...) then
jiffies will become stale until the second 32bit store happens.
Address this by seperating the handling for 32bit and 64bit.
On 64bit problem #1 is addressed by replacing READ_ONCE() / WRITE_ONCE()
with smp_load_acquire() / smp_store_release().
On 32bit problem #2 is addressed by protecting the quick check with the
jiffies sequence counter. The load and stores can be plain because the
sequence count mechanics provides the required barriers already.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87czzpc02w.fsf@nanos.tec.linutronix.de
|
|
The code for the legacy RTC and the RTC class based update are pretty much
the same. Consolidate the common parts into one function and just invoke
the actual setter functions.
For RTC class based devices the update code checks whether the offset is
valid for the device, which is usually not the case for the first
invocation. If it's not the same it stores the correct offset and lets the
caller try again. That's not much different from the previous approach
where the first invocation had a pretty low probability to actually hit the
allowed window.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.355743355@linutronix.de
|
|
The current RTC set_offset_nsec value is not really intuitive to
understand.
tsched twrite(t2.tv_sec - 1) t2 (seconds increment)
The offset is calculated from twrite based on the assumption that t2 -
twrite == 1s. That means for the MC146818 RTC the offset needs to be
negative so that the write happens 500ms before t2.
It's easier to understand when the whole calculation is based on t2. That
avoids negative offsets and the meaning is obvious:
t2 - twrite: The time defined by the chip when seconds increment
after the write.
twrite - tsched: The time for the transport to the point where the chip
is updated.
==> set_offset_nsec = t2 - tsched
ttransport = twrite - tsched
tRTCinc = t2 - twrite
==> set_offset_nsec = ttransport + tRTCinc
tRTCinc is a chip property and can be obtained from the data sheet.
ttransport depends on how the RTC is connected. It is close to 0 for
directly accessible RTCs. For RTCs behind a slow bus, e.g. i2c, it's the
time required to send the update over the bus. This can be estimated or
even calibrated, but that's a different problem.
Adjust the implementation and update comments accordingly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.263204937@linutronix.de
|
|
rtc_set_ntp_time() is not really RTC functionality as the code is just a
user of RTC. Move it into the NTP code which allows further cleanups.
Requested-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.166871172@linutronix.de
|
|
Miroslav reported that the periodic RTC synchronization in the NTP code
fails more often than not to hit the specified update window.
The reason is that the code uses delayed_work to schedule the update which
needs to be in thread context as the underlying RTC might be connected via
a slow bus, e.g. I2C. In the update function it verifies whether the
current time is correct vs. the requirements of the underlying RTC.
But delayed_work is using the timer wheel for scheduling which is
inaccurate by design. Depending on the distance to the expiry the wheel
gets less granular to allow batching and to avoid the cascading of the
original timer wheel. See 500462a9de65 ("timers: Switch to a non-cascading
wheel") and the code for further details.
The code already deals with this by splitting the 660 seconds period into a
long 659 seconds timer and then retrying with a smaller delta.
But looking at the actual granularities of the timer wheel (which depend on
the HZ configuration) the 659 seconds timer ends up in an outer wheel level
and is affected by a worst case granularity of:
HZ Granularity
1000 32s
250 16s
100 40s
So the initial timer can be already off by max 12.5% which is not a big
issue as the period of the sync is defined as ~11 minutes.
The fine grained second attempt schedules to the desired update point with
a timer expiring less than a second from now. Depending on the actual delta
and the HZ setting even the second attempt can end up in outer wheel levels
which have a large enough granularity to make the correctness check fail.
As this is a fundamental property of the timer wheel there is no way to
make this more accurate short of iterating in one jiffies steps towards the
update point.
Switch it to an hrtimer instead which schedules the actual update work. The
hrtimer will expire precisely (max 1 jiffie delay when high resolution
timers are not available). The actual scheduling delay of the work is the
same as before.
The update is triggered from do_adjtimex() which is a bit racy but not much
more racy than it was before:
if (ntp_synced())
queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
which is racy when the work is currently executed and has not managed to
reschedule itself.
This becomes now:
if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
queue_work(system_power_efficient_wq, &sync_work, 0);
which is racy when the hrtimer has expired and the work is currently
executed and has not yet managed to rearm the hrtimer.
Not a big problem as it just schedules work for nothing.
The new implementation has a safe guard in place to catch the case where
the hrtimer is queued on entry to the work function and avoids an extra
update attempt of the RTC that way.
Reported-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Miroslav Lichvar <mlichvar@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20201206220542.062910520@linutronix.de
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Get rid of the __call_single_node union and clean up the API a little
to avoid external code relying on the structure layout as much.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
|
|
The variable tick_period is initialized to NSEC_PER_TICK / HZ during boot
and never updated again.
If NSEC_PER_TICK is not an integer multiple of HZ this computation is less
accurate than TICK_NSEC which has proper rounding in place.
Aside of the inaccuracy there is no reason for having this variable at
all. It's just a pointless indirection and all usage sites can just use the
TICK_NSEC constant.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.766643526@linutronix.de
|
|
calc_load_global() does not need the sequence count protection.
[ tglx: Split it up properly and added comments ]
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.660902274@linutronix.de
|
|
Now that it's clear that there is always one tick to account, simplify the
calculations some more.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.565663056@linutronix.de
|
|
If jiffies are up to date already (caller lost the race against another
CPU) there is no point to change the sequence count. Doing that just forces
other CPUs into the seqcount retry loop in tick_nohz_next_event() for
nothing.
Just bail out early.
[ tglx: Rewrote most of it ]
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.462195901@linutronix.de
|
|
No point in doing calculations.
tick_next_period = last_jiffies_update + tick_period
Just check whether now is before tick_next_period to figure out whether
jiffies need an update.
Add a comment why the intentional data race in the quick check is safe or
not so safe in a 32bit corner case and why we don't worry about it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.337366695@linutronix.de
|
|
The protection rules for tick_next_period and last_jiffies_update are blury
at best. Clarify this.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.197713794@linutronix.de
|
|
tick_broadcast_setup_oneshot() accesses tick_next_period twice without any
serialization. This is wrong in two aspects:
- Reading it twice might make the broadcast data inconsistent if the
variable is updated concurrently.
- On 32bit systems the access might see an partial update
Protect it with jiffies_lock. That's safe as none of the callchains leading
up to this function can create a lock ordering violation:
timer interrupt
run_local_timers()
hrtimer_run_queues()
hrtimer_switch_to_hres()
tick_init_highres()
tick_switch_to_oneshot()
tick_broadcast_switch_to_oneshot()
or
tick_check_oneshot_change()
tick_nohz_switch_to_nohz()
tick_switch_to_oneshot()
tick_broadcast_switch_to_oneshot()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201117132006.061341507@linutronix.de
|
|
timens_on_fork() always return 0, and maybe not
need to judge the return value in copy_namespaces().
So make timens_on_fork() return nothing and do not
judge its return val in copy_namespaces().
Signed-off-by: Hui Su <sh_def@163.com>
Link: https://lore.kernel.org/r/20201117161750.GA45121@rlk
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
The hrtimer_get_remaining() markup is documenting, instead,
__hrtimer_get_remaining(), as it is placed at the C file.
In order to properly document it, a kernel-doc markup is needed together
with the function prototype. So, add a new one, while preserving the
existing one, just fixing the function name.
The hrtimer_is_queued prototype has a typo: it is using
'=' instead of '-' to split: identifier - description
as required by kernel-doc markup.
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/9dc87808c2fd07b7e050bafcd033c5ef05808fea.1605521731.git.mchehab+huawei@kernel.org
|
|
No users outside of the timer code. Move the caller below this function to
avoid a pointless forward declaration.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The kernel-doc parser complains:
kernel/time/timekeeping.c:1543: warning: Function parameter or member
'ts' not described in 'read_persistent_clock64'
kernel/time/timekeeping.c:764: warning: Function parameter or member
'tk' not described in 'timekeeping_forward_now'
kernel/time/timekeeping.c:1331: warning: Function parameter or member
'ts' not described in 'timekeeping_inject_offset'
kernel/time/timekeeping.c:1331: warning: Excess function parameter 'tv'
description in 'timekeeping_inject_offset'
Add the missing parameter documentations and rename the 'tv' parameter of
timekeeping_inject_offset() to 'ts' so it matches the implemention.
[ tglx: Reworded a few docs and massaged changelog ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-5-git-send-email-alex.shi@linux.alibaba.com
|
|
Address the following kernel-doc markup warnings:
kernel/time/timekeeping.c:1563: warning: Function parameter or member
'wall_time' not described in 'read_persistent_wall_and_boot_offset'
kernel/time/timekeeping.c:1563: warning: Function parameter or member
'boot_offset' not described in 'read_persistent_wall_and_boot_offset'
The parameters are described but miss the leading '@' and the colon after
the parameter names.
[ tglx: Massaged changelog ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-6-git-send-email-alex.shi@linux.alibaba.com
|
|
The kernel-doc parser complains about:
kernel/time/timekeeping.c:651: warning: Function parameter or member
'nb' not described in 'pvclock_gtod_register_notifier'
kernel/time/timekeeping.c:670: warning: Function parameter or member
'nb' not described in 'pvclock_gtod_unregister_notifier'
Add the missing parameter explanations.
[ tglx: Massaged changelog ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-3-git-send-email-alex.shi@linux.alibaba.com
|
|
Alex reported the following warning:
kernel/time/timekeeping.c:464: warning: Function parameter or member
'tkf' not described in '__ktime_get_fast_ns'
which is not entirely correct because the documented function is
ktime_get_mono_fast_ns() which does not have a parameter, but the
kernel-doc parser looks at the function declaration which follows the
comment and complains about the missing parameter documentation.
Aside of that the documentation for the rest of the NMI safe accessors is
either incomplete or missing.
- Move the function documentation to the right place
- Fixup the references and inconsistencies
- Add the missing documentation for ktime_get_raw_fast_ns()
Reported-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Address the following warning:
kernel/time/timekeeping.c:415: warning: Function parameter or member
'tkf' not described in 'update_fast_timekeeper'
[ tglx: Remove the bogus ktime_get_mono_fast_ns() part ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-2-git-send-email-alex.shi@linux.alibaba.com
|
|
Various static functions in the timekeeping code have function comments
which pretend to be kernel-doc, but are incomplete and trigger parser
warnings.
As these functions are local to the timekeeping core code there is no need
to expose them via kernel-doc.
Remove the double star kernel-doc marker and remove excess newlines.
[ tglx: Massaged changelog and removed excess newlines ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-4-git-send-email-alex.shi@linux.alibaba.com
|
|
Address these kernel-doc warnings:
kernel/time/timeconv.c:79: warning: Function parameter or member
'totalsecs' not described in 'time64_to_tm'
kernel/time/timeconv.c:79: warning: Function parameter or member
'offset' not described in 'time64_to_tm'
kernel/time/timeconv.c:79: warning: Function parameter or member
'result' not described in 'time64_to_tm'
The parameters are described but lack colons after the parameter name.
[ tglx: Massaged changelog ]
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1605252275-63652-1-git-send-email-alex.shi@linux.alibaba.com
|
|
PREEMPT_RT does not spin and wait until a running timer completes its
callback but instead it blocks on a sleeping lock to prevent a livelock in
the case that the task waiting for the callback completion preempted the
callback.
This cannot be done for timers flagged with TIMER_IRQSAFE. These timers can
be canceled from an interrupt disabled context even on RT kernels.
The expiry callback of such timers is invoked with interrupts disabled so
there is no need to use the expiry lock mechanism because obviously the
callback cannot be preempted even on RT kernels.
Do not use the timer_base::expiry_lock mechanism when waiting for a running
callback to complete if the timer is flagged with TIMER_IRQSAFE.
Also add a lockdep assertion for RT kernels to validate that the expiry
lock mechanism is always invoked in preemptible context.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201103190937.hga67rqhvknki3tp@linutronix.de
|
|
Use the "%ps" printk format string to resolve symbol names.
This works on all platforms, including ia64, ppc64 and parisc64 on which
one needs to dereference pointers to function descriptors instead of
function pointers.
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201104163401.GA3984@ls3530.fritz.box
|
|
Almost all machines use GENERIC_CLOCKEVENTS, so it feels wrong to
require each one to select that symbol manually.
Instead, enable it whenever CONFIG_LEGACY_TIMER_TICK is disabled as
a simplification. It should be possible to select both
GENERIC_CLOCKEVENTS and LEGACY_TIMER_TICK from an architecture now
and decide at runtime between the two.
For the clockevents arch-support.txt file, this means that additional
architectures are marked as TODO when they have at least one machine
that still uses LEGACY_TIMER_TICK, rather than being marked 'ok' when
at least one machine has been converted. This means that both m68k and
arm (for riscpc) revert to TODO.
At this point, we could just always enable CONFIG_GENERIC_CLOCKEVENTS
rather than leaving it off when not needed. I built an m68k
defconfig kernel (using gcc-10.1.0) and found that this would add
around 5.5KB in kernel image size:
text data bss dec hex filename
3861936 1092236 196656 5150828 4e986c obj-m68k/vmlinux-no-clockevent
3866201 1093832 196184 5156217 4ead79 obj-m68k/vmlinux-clockevent
On Arm (MACH_RPC), that difference appears to be twice as large,
around 11KB on top of an 6MB vmlinux.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
There are no more users of xtime_update aside from legacy_timer_tick(),
so fold it into that function and remove the declaration.
update_process_times() is now only called inside of the kernel/time/
code, so the declaration can be moved there.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
All platforms that currently do not use generic clockevents roughly call
the same set of functions in their timer interrupts: xtime_update(),
update_process_times() and profile_tick(), sometimes in a different
sequence.
Add a helper function that performs all three of them, to make the
callers more uniform and simplify the interface.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
With Arm EBSA110 gone, nothing uses it any more, so the corresponding
code and the Kconfig option can be removed.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
UBSAN reports:
Undefined behaviour in ./include/linux/time64.h:127:27
signed integer overflow:
17179869187 * 1000000000 cannot be represented in type 'long long int'
Call Trace:
timespec64_to_ns include/linux/time64.h:127 [inline]
set_cpu_itimer+0x65c/0x880 kernel/time/itimer.c:180
do_setitimer+0x8e/0x740 kernel/time/itimer.c:245
__x64_sys_setitimer+0x14c/0x2c0 kernel/time/itimer.c:336
do_syscall_64+0xa1/0x540 arch/x86/entry/common.c:295
Commit bd40a175769d ("y2038: itimer: change implementation to timespec64")
replaced the original conversion which handled time clamping correctly with
timespec64_to_ns() which has no overflow protection.
Fix it in timespec64_to_ns() as this is not necessarily limited to the
usage in itimers.
[ tglx: Added comment and adjusted the fixes tag ]
Fixes: 361a3bf00582 ("time64: Add time64.h header and define struct timespec64")
Signed-off-by: Zeng Tao <prime.zeng@hisilicon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1598952616-6416-1-git-send-email-prime.zeng@hisilicon.com
|
|
There is no caller in tree, remove it.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200909134749.32300-1-yuehaibing@huawei.com
|
|
There is no caller in tree, remove it.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200909134850.21940-1-yuehaibing@huawei.com
|
|
Since sched_clock_read_begin() and sched_clock_read_retry() are called
by notrace function sched_clock(), they shouldn't be traceable either,
or else ftrace_graph_caller will run into a dead loop on the path
as below (arm for instance):
ftrace_graph_caller()
prepare_ftrace_return()
function_graph_enter()
ftrace_push_return_trace()
trace_clock_local()
sched_clock()
sched_clock_read_begin/retry()
Fixes: 1b86abc1c645 ("sched_clock: Expose struct clock_read_data")
Signed-off-by: Quanyang Wang <quanyang.wang@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200929082027.16787-1-quanyang.wang@windriver.com
|
|
Use the new api and associate the seqcounter to the jiffies_lock enabling
lockdep support - although for this particular case the write-side locking
and non-preemptibility are quite obvious.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201021190749.19363-1-dave@stgolabs.net
|
|
With the removal of the interrupt perturbations in previous random32
change (random32: make prandom_u32() output unpredictable), the PRNG
has become 100% deterministic again. While SipHash is expected to be
way more robust against brute force than the previous Tausworthe LFSR,
there's still the risk that whoever has even one temporary access to
the PRNG's internal state is able to predict all subsequent draws till
the next reseed (roughly every minute). This may happen through a side
channel attack or any data leak.
This patch restores the spirit of commit f227e3ec3b5c ("random32: update
the net random state on interrupt and activity") in that it will perturb
the internal PRNG's statee using externally collected noise, except that
it will not pick that noise from the random pool's bits nor upon
interrupt, but will rather combine a few elements along the Tx path
that are collectively hard to predict, such as dev, skb and txq
pointers, packet length and jiffies values. These ones are combined
using a single round of SipHash into a single long variable that is
mixed with the net_rand_state upon each invocation.
The operation was inlined because it produces very small and efficient
code, typically 3 xor, 2 add and 2 rol. The performance was measured
to be the same (even very slightly better) than before the switch to
SipHash; on a 6-core 12-thread Core i7-8700k equipped with a 40G NIC
(i40e), the connection rate dropped from 556k/s to 555k/s while the
SYN cookie rate grew from 5.38 Mpps to 5.45 Mpps.
Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/
Cc: George Spelvin <lkml@sdf.org>
Cc: Amit Klein <aksecurity@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: tytso@mit.edu
Cc: Florian Westphal <fw@strlen.de>
Cc: Marc Plumb <lkml.mplumb@gmail.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Willy Tarreau <w@1wt.eu>
|
|
Non-cryptographic PRNGs may have great statistical properties, but
are usually trivially predictable to someone who knows the algorithm,
given a small sample of their output. An LFSR like prandom_u32() is
particularly simple, even if the sample is widely scattered bits.
It turns out the network stack uses prandom_u32() for some things like
random port numbers which it would prefer are *not* trivially predictable.
Predictability led to a practical DNS spoofing attack. Oops.
This patch replaces the LFSR with a homebrew cryptographic PRNG based
on the SipHash round function, which is in turn seeded with 128 bits
of strong random key. (The authors of SipHash have *not* been consulted
about this abuse of their algorithm.) Speed is prioritized over security;
attacks are rare, while performance is always wanted.
Replacing all callers of prandom_u32() is the quick fix.
Whether to reinstate a weaker PRNG for uses which can tolerate it
is an open question.
Commit f227e3ec3b5c ("random32: update the net random state on interrupt
and activity") was an earlier attempt at a solution. This patch replaces
it.
Reported-by: Amit Klein <aksecurity@gmail.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: tytso@mit.edu
Cc: Florian Westphal <fw@strlen.de>
Cc: Marc Plumb <lkml.mplumb@gmail.com>
Fixes: f227e3ec3b5c ("random32: update the net random state on interrupt and activity")
Signed-off-by: George Spelvin <lkml@sdf.org>
Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/
[ willy: partial reversal of f227e3ec3b5c; moved SIPROUND definitions
to prandom.h for later use; merged George's prandom_seed() proposal;
inlined siprand_u32(); replaced the net_rand_state[] array with 4
members to fix a build issue; cosmetic cleanups to make checkpatch
happy; fixed RANDOM32_SELFTEST build ]
Signed-off-by: Willy Tarreau <w@1wt.eu>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU changes from Ingo Molnar:
- Debugging for smp_call_function()
- RT raw/non-raw lock ordering fixes
- Strict grace periods for KASAN
- New smp_call_function() torture test
- Torture-test updates
- Documentation updates
- Miscellaneous fixes
[ This doesn't actually pull the tag - I've dropped the last merge from
the RCU branch due to questions about the series. - Linus ]
* tag 'core-rcu-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (77 commits)
smp: Make symbol 'csd_bug_count' static
kernel/smp: Provide CSD lock timeout diagnostics
smp: Add source and destination CPUs to __call_single_data
rcu: Shrink each possible cpu krcp
rcu/segcblist: Prevent useless GP start if no CBs to accelerate
torture: Add gdb support
rcutorture: Allow pointer leaks to test diagnostic code
rcutorture: Hoist OOM registry up one level
refperf: Avoid null pointer dereference when buf fails to allocate
rcutorture: Properly synchronize with OOM notifier
rcutorture: Properly set rcu_fwds for OOM handling
torture: Add kvm.sh --help and update help message
rcutorture: Add CONFIG_PROVE_RCU_LIST to TREE05
torture: Update initrd documentation
rcutorture: Replace HTTP links with HTTPS ones
locktorture: Make function torture_percpu_rwsem_init() static
torture: document --allcpus argument added to the kvm.sh script
rcutorture: Output number of elapsed grace periods
rcutorture: Remove KCSAN stubs
rcu: Remove unused "cpu" parameter from rcu_report_qs_rdp()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
"These are the locking updates for v5.10:
- Add deadlock detection for recursive read-locks.
The rationale is outlined in commit 224ec489d3cd ("lockdep/
Documention: Recursive read lock detection reasoning")
The main deadlock pattern we want to detect is:
TASK A: TASK B:
read_lock(X);
write_lock(X);
read_lock_2(X);
- Add "latch sequence counters" (seqcount_latch_t):
A sequence counter variant where the counter even/odd value is used
to switch between two copies of protected data. This allows the
read path, typically NMIs, to safely interrupt the write side
critical section.
We utilize this new variant for sched-clock, and to make x86 TSC
handling safer.
- Other seqlock cleanups, fixes and enhancements
- KCSAN updates
- LKMM updates
- Misc updates, cleanups and fixes"
* tag 'locking-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
lockdep: Revert "lockdep: Use raw_cpu_*() for per-cpu variables"
lockdep: Fix lockdep recursion
lockdep: Fix usage_traceoverflow
locking/atomics: Check atomic-arch-fallback.h too
locking/seqlock: Tweak DEFINE_SEQLOCK() kernel doc
lockdep: Optimize the memory usage of circular queue
seqlock: Unbreak lockdep
seqlock: PREEMPT_RT: Do not starve seqlock_t writers
seqlock: seqcount_LOCKNAME_t: Introduce PREEMPT_RT support
seqlock: seqcount_t: Implement all read APIs as statement expressions
seqlock: Use unique prefix for seqcount_t property accessors
seqlock: seqcount_LOCKNAME_t: Standardize naming convention
seqlock: seqcount latch APIs: Only allow seqcount_latch_t
rbtree_latch: Use seqcount_latch_t
x86/tsc: Use seqcount_latch_t
timekeeping: Use seqcount_latch_t
time/sched_clock: Use seqcount_latch_t
seqlock: Introduce seqcount_latch_t
mm/swap: Do not abuse the seqcount_t latching API
time/sched_clock: Use raw_read_seqcount_latch() during suspend
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timekeeping updates from Thomas Gleixner:
"Updates for timekeeping, timers and related drivers:
Core:
- Early boot support for the NMI safe timekeeper by utilizing
local_clock() up to the point where timekeeping is initialized.
This allows printk() to store multiple timestamps in the ringbuffer
which is useful for coordinating dmesg information across a fleet
of machines.
- Provide a multi-timestamp accessor for printk()
- Make timer init more robust by checking for invalid timer flags.
- Comma vs semicolon fixes
Drivers:
- Support for new platforms in existing drivers (SP804 and Renesas
CMT)
- Comma vs semicolon fixes
* tag 'timers-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource/drivers/armada-370-xp: Use semicolons rather than commas to separate statements
clocksource/drivers/mps2-timer: Use semicolons rather than commas to separate statements
timers: Mask invalid flags in do_init_timer()
clocksource/drivers/sp804: Enable Hisilicon sp804 timer 64bit mode
clocksource/drivers/sp804: Add support for Hisilicon sp804 timer
clocksource/drivers/sp804: Support non-standard register offset
clocksource/drivers/sp804: Prepare for support non-standard register offset
clocksource/drivers/sp804: Remove a mismatched comment
clocksource/drivers/sp804: Delete the leading "__" of some functions
clocksource/drivers/sp804: Remove unused sp804_timer_disable() and timer-sp804.h
clocksource/drivers/sp804: Cleanup clk_get_sys()
dt-bindings: timer: renesas,cmt: Document r8a774e1 CMT support
dt-bindings: timer: renesas,cmt: Document r8a7742 CMT support
alarmtimer: Convert comma to semicolon
timekeeping: Provide multi-timestamp accessor to NMI safe timekeeper
timekeeping: Utilize local_clock() for NMI safe timekeeper during early boot
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Pull v5.10 RCU changes from Paul E. McKenney:
- Debugging for smp_call_function().
- Strict grace periods for KASAN. The point of this series is to find
RCU-usage bugs, so the corresponding new RCU_STRICT_GRACE_PERIOD
Kconfig option depends on both DEBUG_KERNEL and RCU_EXPERT, and is
further disabled by dfefault. Finally, the help text includes
a goodly list of scary caveats.
- New smp_call_function() torture test.
- Torture-test updates.
- Documentation updates.
- Miscellaneous fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|