Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 9ec2690758a5 ("timerfd: Manage cancelable timers in timerfd")
introduced a CONFIG_HIGHRES_TIMERS (should be CONFIG_HIGH_RES_TIMERS)
typo, which caused applications depending on CLOCK_REALTIME timers to
become sluggy due to the fact that the time base of the realtime
timers was not updated when the wall clock time was set.
This causes anything from 100% CPU use for some applications to odd
delays and hickups.
Reported-bisected-and-tested-by: Anca Emanuel <anca.emanuel@gmail.com>
Tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Fatfingered-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The ordering of the clock bases is historical due to the
CLOCK_REALTIME and CLOCK_MONOTONIC constants. Now the hrtimer bases
have their own enumeration due to the gap between CLOCK_MONOTONIC and
CLOCK_BOOTTIME. So we can be more clever as most timers end up on the
CLOCK_MONOTONIC base due to the virtue of POSIX declaring that
relative CLOCK_REALTIME timers are not affected by time changes. In
desktop environments this is slowly changing as applications switch to
absolute timers, but I've observed empty CLOCK_REALTIME bases often
enough. There is no performance penalty or overhead when
CLOCK_REALTIME timers are active, but in case they are not we don't
skip over a full cache line.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
|
|
Instead of iterating over all possible timer bases avoid it by marking
the active bases in the cpu base.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
|
|
Peter is concerned about the extra scan of CLOCK_REALTIME_COS in the
timer interrupt. Yes, I did not think about it, because the solution
was so elegant. I didn't like the extra list in timerfd when it was
proposed some time ago, but with a rcu based list the list walk it's
less horrible than the original global lock, which was held over the
list iteration.
Requested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
|
|
Some applications must be aware of clock realtime being set
backward. A simple example is a clock applet which arms a timer for
the next minute display. If clock realtime is set backward then the
applet displays a stale time for the amount of time which the clock
was set backwards. Due to that applications poll the time because we
don't have an interface.
Extend the timerfd interface by adding a flag which puts the timer
onto a different internal realtime clock. All timers on this clock are
expired whenever the clock was set.
The timerfd core records the monotonic offset when the timer is
created. When the timer is armed, then the current offset is compared
to the previous recorded offset. When it has changed, then
timerfd_settime returns -ECANCELED. When a timer is read the offset is
compared and if it changed -ECANCELED returned to user space. Periodic
timers are not rearmed in the cancelation case.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Chris Friesen <chris.friesen@genband.com>
Tested-by: Kay Sievers <kay.sievers@vrfy.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davide Libenzi <davidel@xmailserver.org>
Reviewed-by: Alexander Shishkin <virtuoso@slind.org>
Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1104271359580.3323%40ionos%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Make clock_was_set() unconditional and rename hres_timers_resume to
hrtimers_resume. This is a preparatory patch for hrtimers which are
cancelled when clock realtime was set.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Link: http://lkml.kernel.org/r/%3C1304364267-14489-1-git-send-email-vapier%40gentoo.org%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Sedat and Bruno reported RCU stalls which turned out to be caused by
the following;
sched_init() calls init_rt_bandwidth() which calls hrtimer_init()
_BEFORE_ hrtimers_init() is called. While not entirely correct this
worked because hrtimer_init() only accessed statically initialized
data (hrtimer_bases.clock_base[CLOCK_MONOTONIC])
Commit e06383db9 (hrtimers: extend hrtimer base code to handle more
then 2 clockids) added an indirection to the hrtimer_bases.clock_base
lookup to avoid gap handling in the hot path. The table which is used
for the translataion from CLOCK_ID to HRTIMER_BASE index is
initialized at runtime in hrtimers_init(). So the early call of the
scheduler code translates CLOCK_MONOTONIC to HRTIMER_BASE_REALTIME.
Thus the rt_bandwith timer ends up on CLOCK_REALTIME. If the timer is
armed and the wall clock time is set (e.g. ntpdate in the early boot
process - which also gives the problem deterministic behaviour
i.e. magic recovery after N hours), then the timer ends up with an
expiry time far into the future. That breaks the RT throttler
mechanism as rt runtime is accumulated and never cleared, so the rt
throttler detects a false cpu hog condition and blocks all RT tasks
until the timer finally expires. That in turn stalls the RCU thread of
TINYRCU which leads to an huge amount of RCU callbacks piling up.
Make the translation table statically initialized, so we are back to
the status of <= 2.6.39.
Reported-and-tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Reported-by: Bruno Prémont <bonbons@linux-vserver.org>
Cc: John stultz <johnstul@us.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1104282353140.3005%40ionos%3E
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (62 commits)
posix-clocks: Check write permissions in posix syscalls
hrtimer: Remove empty hrtimer_init_hres_timer()
hrtimer: Update hrtimer->state documentation
hrtimer: Update base[CLOCK_BOOTTIME].offset correctly
timers: Export CLOCK_BOOTTIME via the posix timers interface
timers: Add CLOCK_BOOTTIME hrtimer base
time: Extend get_xtime_and_monotonic_offset() to also return sleep
time: Introduce get_monotonic_boottime and ktime_get_boottime
hrtimers: extend hrtimer base code to handle more then 2 clockids
ntp: Remove redundant and incorrect parameter check
mn10300: Switch do_timer() to xtimer_update()
posix clocks: Introduce dynamic clocks
posix-timers: Cleanup namespace
posix-timers: Add support for fd based clocks
x86: Add clock_adjtime for x86
posix-timers: Introduce a syscall for clock tuning.
time: Splitout compat timex accessors
ntp: Add ADJ_SETOFFSET mode bit
time: Introduce timekeeping_inject_offset
posix-timer: Update comment
...
Fix up new system-call-related conflicts in
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/syscall_table_32.S
(name_to_handle_at()/open_by_handle_at() vs clock_adjtime()), and some
due to movement of get_jiffies_64() in:
kernel/time.c
|
|
Leftover from earlier implementation. All empty, remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
In complex subsystems like mac80211 structures can contain several
timers and work structs, so identifying a specific instance from the
call trace and object type output of debugobjects can be hard.
Allow the subsystems which support debugobjects to provide a hint
function. This function returns a pointer to a kernel address
(preferrably the objects callback function) which is printed along
with the debugobjects type.
Add hint methods for timer_list, work_struct and hrtimer.
[ tglx: Massaged changelog, made it compile ]
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
LKML-Reference: <20110307085809.GA9334@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
We calculate the current time of each clock base by adding an offset
to clock_monotonic. The offset for the clock bases is set in
retrigger_next_event() which is called when we switch a cpu to highres
mode or when the clock was set.
Add the missing update for clock boottime.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <johnstul@us.ibm.com>
|
|
CLOCK_MONOTONIC stops while the system is in suspend. This is because
to applications system suspend is invisible. However, there is a
growing set of applications that are wanting to be suspend-aware,
but do not want to deal with the complications of CLOCK_REALTIME
(which might jump around if settimeofday is called).
For these applications, I propose a new clockid: CLOCK_BOOTTIME.
CLOCK_BOOTTIME is idential to CLOCK_MONOTONIC, except it also
includes any time spent in suspend.
This patch add hrtimer base for CLOCK_BOOTTIME, using
get_monotonic_boottime/ktime_get_boottime, to allow
in kernel users to set timers against.
CC: Jamie Lokier <jamie@shareable.org>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Alexander Shishkin <virtuoso@slind.org>
CC: Arve Hjønnevåg <arve@android.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Extend get_xtime_and_monotonic_offset to
get_xtime_and_monotonic_and_sleep_offset().
CC: Jamie Lokier <jamie@shareable.org>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Alexander Shishkin <virtuoso@slind.org>
CC: Arve Hjønnevåg <arve@android.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
The hrtimer code is written mainly with CLOCK_REALTIME and CLOCK_MONOTONIC
in mind. These are clockids 0 and 1 resepctively. However, if we are
to introduce any new hrtimer bases, using new clockids, we have to skip
the cputimers (clockids 2,3) as well as other clockids that may not impelement
timers.
This patch adds a little bit of indirection between the clockid and
the base, so that we can extend the base by one when we add
a new clockid at number 7 or so.
CC: Jamie Lokier <jamie@shareable.org>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Alexander Shishkin <virtuoso@slind.org>
CC: Arve Hjønnevåg <arve@android.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
The hrtimer code accesses timekeeping variables under
xtime_lock. Provide a sensible accessor function and use it.
[ tglx: Removed the conditionals, unused variable, fixed codingstyle
and massaged changelog ]
Signed-off-by: Torben Hohn <torbenh@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: johnstul@us.ibm.com
Cc: yong.zhang0@gmail.com
Cc: hch@infradead.org
LKML-Reference: <20110127145905.23248.30458.stgit@localhost>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (43 commits)
Documentation/trace/events.txt: Remove obsolete sched_signal_send.
writeback: fix global_dirty_limits comment runtime -> real-time
ppc: fix comment typo singal -> signal
drivers: fix comment typo diable -> disable.
m68k: fix comment typo diable -> disable.
wireless: comment typo fix diable -> disable.
media: comment typo fix diable -> disable.
remove doc for obsolete dynamic-printk kernel-parameter
remove extraneous 'is' from Documentation/iostats.txt
Fix spelling milisec -> ms in snd_ps3 module parameter description
Fix spelling mistakes in comments
Revert conflicting V4L changes
i7core_edac: fix typos in comments
mm/rmap.c: fix comment
sound, ca0106: Fix assignment to 'channel'.
hrtimer: fix a typo in comment
init/Kconfig: fix typo
anon_inodes: fix wrong function name in comment
fix comment typos concerning "consistent"
poll: fix a typo in comment
...
Fix up trivial conflicts in:
- drivers/net/wireless/iwlwifi/iwl-core.c (moved to iwl-legacy.c)
- fs/ext4/ext4.h
Also fix missed 'diabled' typo in drivers/net/bnx2x/bnx2x.h while at it.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
MAINTAINERS: Update timer related entries
timers: Use this_cpu_read
timerqueue: Make timerqueue_getnext() static inline
hrtimer: fix timerqueue conversion flub
hrtimers: Convert hrtimers to use timerlist infrastructure
timers: Fixup allmodconfig build issue
timers: Rename timerlist infrastructure to timerqueue
timers: Introduce timerlist infrastructure.
hrtimer: Remove stale comment on curr_timer
timer: Warn when del_timer_sync() is called in hardirq context
timer: Del_timer_sync() can be used in softirq context
timer: Make try_to_del_timer_sync() the same on SMP and UP
posix-timers: Annotate lock_timer()
timer: Permit statically-declared work with deferrable timers
time: Use ARRAY_SIZE macro in timecompare.c
timer: Initialize the field slack of timer_list
timer_list: Remove alignment padding on 64 bit when CONFIG_TIMER_STATS
time: Compensate for rounding on odd-frequency clocksources
Fix up trivial conflict in MAINTAINERS
|
|
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
__get_cpu_var() can be replaced with this_cpu_read and will then use a
single read instruction with implied address calculation to access the
correct per cpu instance.
However, the address of a per cpu variable passed to __this_cpu_read()
cannot be determined (since it's an implied address conversion through
segment prefixes). Therefore apply this only to uses of __get_cpu_var
where the address of the variable is not used.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hughd@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
In converting the hrtimers to timerqueue, I missed
a spot in hrtimer_run_queues where we loop running
timers. We end up not pulling the new next value out
and instead just use the last next value, causing
boot time hangs in some cases.
The proper fix is to pull timerqueue_getnext each iteration
instead of using a local next value.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Converts the hrtimer code to use the new timerlist infrastructure
Signed-off-by: John Stultz <john.stultz@linaro.org>
LKML Reference: <1290136329-18291-3-git-send-email-john.stultz@linaro.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
CC: Alessandro Zummo <a.zummo@towertech.it>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Richard Cochran <richardcochran@gmail.com>
|
|
The race is described as follows:
CPU X CPU Y
remove_hrtimer
// state & QUEUED == 0
timer->state = CALLBACK
unlock timer base
timer->f(n) //very long
hrtimer_start
lock timer base
remove_hrtimer // no effect
hrtimer_enqueue
timer->state = CALLBACK |
QUEUED
unlock timer base
hrtimer_start
lock timer base
remove_hrtimer
mode = INACTIVE
// CALLBACK bit lost!
switch_hrtimer_base
CALLBACK bit not set:
timer->base
changes to a
different CPU.
lock this CPU's timer base
The bug was introduced with commit ca109491f (hrtimer: removing all ur
callback modes) in 2.6.29
[ tglx: Feed new state via local variable and add a comment. ]
Signed-off-by: Salman Qazi <sqazi@google.com>
Cc: akpm@linux-foundation.org
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20101012142351.8485.21823.stgit@dungbeetle.mtv.corp.google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
|
|
No real bugs I believe, just some dead code.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: andi@firstfloor.org
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-timekeeping-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
um: Fix read_persistent_clock fallout
kgdb: Do not access xtime directly
powerpc: Clean up obsolete code relating to decrementer and timebase
powerpc: Rework VDSO gettimeofday to prevent time going backwards
clocksource: Add __clocksource_updatefreq_hz/khz methods
x86: Convert common clocksources to use clocksource_register_hz/khz
timekeeping: Make xtime and wall_to_monotonic static
hrtimer: Cleanup direct access to wall_to_monotonic
um: Convert to use read_persistent_clock
timkeeping: Fix update_vsyscall to provide wall_to_monotonic offset
powerpc: Cleanup xtime usage
powerpc: Simplify update_vsyscall
time: Kill off CONFIG_GENERIC_TIME
time: Implement timespec_add
x86: Fix vtime/file timestamp inconsistencies
Trivial conflicts in Documentation/feature-removal-schedule.txt
Much less trivial conflicts in arch/powerpc/kernel/time.c resolved as
per Thomas' earlier merge commit 47916be4e28c ("Merge branch
'powerpc.cherry-picks' into timers/clocksource")
|
|
Provides an accessor function to replace hrtimer.c's
direct access of wall_to_monotonic.
This will allow wall_to_monotonic to be made static as
planned in Documentation/feature-removal-schedule.txt
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-9-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
In the new push model, all idle CPUs indeed go into nohz mode. There is
still the concept of idle load balancer (performing the load balancing
on behalf of all the idle cpu's in the system). Busy CPU kicks the nohz
balancer when any of the nohz CPUs need idle load balancing.
The kickee CPU does the idle load balancing on behalf of all idle CPUs
instead of the normal idle balance.
This addresses the below two problems with the current nohz ilb logic:
* the idle load balancer continued to have periodic ticks during idle and
wokeup frequently, even though it did not have any rebalancing to do on
behalf of any of the idle CPUs.
* On x86 and CPUs that have APIC timer stoppage on idle CPUs, this
periodic wakeup can result in a periodic additional interrupt on a CPU
doing the timer broadcast.
Also currently we are migrating the unpinned timers from an idle to the cpu
doing idle load balancing (when all the cpus in the system are idle,
there is no idle load balancing cpu and timers get added to the same idle cpu
where the request was made. So the existing optimization works only on semi idle
system).
And In semi idle system, we no longer have periodic ticks on the idle load
balancer CPU. Using that cpu will add more delays to the timers than intended
(as that cpu's timer base may not be uptodate wrt jiffies etc). This was
causing mysterious slowdowns during boot etc.
For now, in the semi idle case, use the nearest busy cpu for migrating timers
from an idle cpu. This is good for power-savings anyway.
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <1274486981.2840.46.camel@sbs-t61.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
hrtimer_get_softirq_time() has it's own xtime lock protection, so it's
safe to use plain __current_kernel_time() and avoid the double seqlock
loop.
Signed-off-by: Stanislaw Gruszka <stf_xl@wp.pl>
LKML-Reference: <20100525214912.GA1934@r2bh72.net.upc.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The current version of schedule_hrtimeout() always uses the
monotonic clock. Some system calls such as mq_timedsend()
and mq_timedreceive(), however, require the use of the wall
clock due to the definition of the system call.
This patch provides the infrastructure to use schedule_hrtimeout()
with a CLOCK_REALTIME timer.
Signed-off-by: Carsten Emde <C.Emde@osadl.org>
Tested-by: Pradyumna Sampath <pradysam@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Veen <arjan@infradead.org>
LKML-Reference: <20100402204331.167439615@osadl.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Convert locks which cannot be sleeping locks in preempt-rt to
raw_spinlocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
|
|
There is no reason to make timer_stats_hrtimer_set_start_info and
friends visible to the rest of the kernel. So move all of them to
hrtimer.c. Also make timer_stats_hrtimer_set_start_info a static
inline function so it gets inlined and we avoid another function call.
Based on a patch by Thomas Gleixner.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
LKML-Reference: <20091210095629.GC4144@osiris.boeblingen.de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The hrtimer_interrupt hang logic adjusts min_delta_ns based on the
execution time of the hrtimer callbacks.
This is error-prone for virtual machines, where a guest vcpu can be
scheduled out during the execution of the callbacks (and the callbacks
themselves can do operations that translate to blocking operations in
the hypervisor), which in can lead to large min_delta_ns rendering the
system unusable.
Replace the current heuristics with something more reliable. Allow the
interrupt code to try 3 times to catch up with the lost time. If that
fails use the total time spent in the interrupt handler to defer the
next timer interrupt so the system can catch up with other things
which got delayed. Limit that deferment to 100ms.
The retry events and the maximum time spent in the interrupt handler
are recorded and exposed via /proc/timer_list
Inspired by a patch from Marcelo.
Reported-by: Michael Tokarev <mjt@tls.msk.ru>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marcelo Tosatti <mtosatti@redhat.com>
Cc: kvm@vger.kernel.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timers, init: Limit the number of per cpu calibration bootup messages
posix-cpu-timers: optimize and document timer_create callback
clockevents: Add missing include to pacify sparse
x86: vmiclock: Fix printk format
x86: Fix printk format due to variable type change
sparc: fix printk for change of variable type
clocksource/events: Fix fallout of generic code changes
nohz: Allow 32-bit machines to sleep for more than 2.15 seconds
nohz: Track last do_timer() cpu
nohz: Prevent clocksource wrapping during idle
nohz: Type cast printk argument
mips: Use generic mult/shift factor calculation for clocks
clocksource: Provide a generic mult/shift factor calculation
clockevents: Use u32 for mult and shift factors
nohz: Introduce arch_needs_cpu
nohz: Reuse ktime in sub-functions of tick_check_idle.
time: Remove xtime_cache
time: Implement logarithmic time accumulation
|
|
In the dynamic tick code, "max_delta_ns" (member of the
"clock_event_device" structure) represents the maximum sleep time
that can occur between timer events in nanoseconds.
The variable, "max_delta_ns", is defined as an unsigned long
which is a 32-bit integer for 32-bit machines and a 64-bit
integer for 64-bit machines (if -m64 option is used for gcc).
The value of max_delta_ns is set by calling the function
"clockevent_delta2ns()" which returns a maximum value of LONG_MAX.
For a 32-bit machine LONG_MAX is equal to 0x7fffffff and in
nanoseconds this equates to ~2.15 seconds. Hence, the maximum
sleep time for a 32-bit machine is ~2.15 seconds, where as for
a 64-bit machine it will be many years.
This patch changes the type of max_delta_ns to be "u64" instead of
"unsigned long" so that this variable is a 64-bit type for both 32-bit
and 64-bit machines. It also changes the maximum value returned by
clockevent_delta2ns() to KTIME_MAX. Hence this allows a 32-bit
machine to sleep for longer than ~2.15 seconds. Please note that this
patch also changes "min_delta_ns" to be "u64" too and although this is
unnecessary, it makes the patch simpler as it avoids to fixup all
callers of clockevent_delta2ns().
[ tglx: changed "unsigned long long" to u64 as we use this data type
through out the time code ]
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1250617512-23567-3-git-send-email-jon-hunter@ti.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
hrtimer: Remove overly verbose "switch to high res mode" message
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
hrtimer: Eliminate needless reprogramming of clock events device
|
|
On big systems, printing <number of CPUs> copies of
Switched to high resolution mode on CPU nnn
clutters up the kernel log for minimal gain. Just get rid of them.
Signed-off-by: Roland Dreier <rolandd@cisco.com>
LKML-Reference: <ada1vlw126s.fsf_-_@cisco.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
itimers: Add tracepoints for itimer
hrtimer: Add tracepoint for hrtimers
timers: Add tracepoints for timer_list timers
cputime: Optimize jiffies_to_cputime(1)
itimers: Simplify arm_timer() code a bit
itimers: Fix periodic tics precision
itimers: Merge ITIMER_VIRT and ITIMER_PROF
Trivial header file include conflicts in kernel/fork.c
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (34 commits)
time: Prevent 32 bit overflow with set_normalized_timespec()
clocksource: Delay clocksource down rating to late boot
clocksource: clocksource_select must be called with mutex locked
clocksource: Resolve cpu hotplug dead lock with TSC unstable, fix crash
timers: Drop a function prototype
clocksource: Resolve cpu hotplug dead lock with TSC unstable
timer.c: Fix S/390 comments
timekeeping: Fix invalid getboottime() value
timekeeping: Fix up read_persistent_clock() breakage on sh
timekeeping: Increase granularity of read_persistent_clock(), build fix
time: Introduce CLOCK_REALTIME_COARSE
x86: Do not unregister PIT clocksource on PIT oneshot setup/shutdown
clocksource: Avoid clocksource watchdog circular locking dependency
clocksource: Protect the watchdog rating changes with clocksource_mutex
clocksource: Call clocksource_change_rating() outside of watchdog_lock
timekeeping: Introduce read_boot_clock
timekeeping: Increase granularity of read_persistent_clock()
timekeeping: Update clocksource with stop_machine
timekeeping: Add timekeeper read_clock helper functions
timekeeping: Move NTP adjusted clock multiplier to struct timekeeper
...
Fix trivial conflict due to MIPS lemote -> loongson renaming.
|
|
On NOHZ systems the following timers,
- tick_nohz_restart_sched_tick (tick_sched_timer)
- hrtimer_start (tick_sched_timer)
are reprogramming the clock events device far more often than needed.
No specific test case was required to observe this effect. This
occurres because there was no check to see if the currently removed or
restarted hrtimer was:
1) the one which previously armed the clock events device.
2) going to be replaced by another timer which has the same expiry time.
Avoid the reprogramming in hrtimer_force_reprogram when the new expiry
value which is evaluated from the clock bases is equal to
cpu_base->expires_next. This results in faster application startup
time by ~4%.
[ tglx: simplified initial solution ]
Signed-off-by: Ashwin Chaugule <ashwinc@quicinc.com>
LKML-Reference: <4AA00165.90609@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Add tracepoints which cover the life cycle of a hrtimer. The
tracepoints are integrated with the already existing debug_object
debug points as far as possible.
[ tglx: Fixed comments, made output conistent, easier to read and
parse. Fixed output for 32bit archs which do not use the
scalar representation of ktime_t. Hand current time to
trace_hrtimer_expiry_entry instead of calling get_time()
inside of the trace assignment. ]
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Anton Blanchard <anton@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Zhaolei <zhaolei@cn.fujitsu.com>
LKML-Reference: <4A7F8B2B.5020908@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
This changes how the pktgen thread spins/waits between
packets if delay is configured. It uses a high res timer to
wait for time to arrive.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Reason: Martin's timekeeping cleanup series depends on both
timers/core and mainline changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
It's unused, remove it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <new-submission>
|
|
The timer migration expiry check should prevent the migration of a
timer to another CPU when the timer expires before the next event is
scheduled on the other CPU. Migrating the timer might delay it because
we can not reprogram the clock event device on the other CPU. But the
code implementing that check has two flaws:
- for !HIGHRES the check compares the expiry value with the clock
events device expiry value which is wrong for CLOCK_REALTIME based
timers.
- the check is racy. It holds the hrtimer base lock of the target CPU,
but the clock event device expiry value can be modified
nevertheless, e.g. by an timer interrupt firing.
The !HIGHRES case is easy to fix as we can enqueue the timer on the
cpu which was selected by the load balancer. It runs the idle
balancing code once per jiffy anyway. So the maximum delay for the
timer is the same as when we keep the tick on the current cpu going.
In the HIGHRES case we can get the next expiry value from the hrtimer
cpu_base of the target CPU and serialize the update with the cpu_base
lock. This moves the lock section in hrtimer_interrupt() so we can set
next_event to KTIME_MAX while we are handling the expired timers and
set it to the next expiry value after we handled the timers under the
base lock. While the expired timers are processed timer migration is
blocked because the expiry time of the timer is always <= KTIME_MAX.
Also remove the now useless clockevents_get_next_event() function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The timer migration code needs to check whether the expiry time of the
timer is before the programmed clock event expiry time when the timer
is enqueued on another CPU because we can not reprogram the timer
device on the other CPU. The current logic checks the expiry time even
if we enqueue on the current CPU when nohz_get_load_balancer() returns
current CPU. This might lead to an endless loop in the expiry check
code when the expiry time of the timer is before the current
programmed next event.
Check whether nohz_get_load_balancer() returns current CPU and skip
the expiry check if this is the case.
The bug was triggered from the networking code. The patch fixes the
regression http://bugzilla.kernel.org/show_bug.cgi?id=13738
(Soft-Lockup/Race in networking in 2.6.31-rc1+195)
Cc: Arun Bharadwaj <arun@linux.vnet.ibm.com
Tested-by: Joao Correia <joaomiguelcorreia@gmail.com>
Tested-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The ktime_get() functions for GENERIC_TIME=n are still located in
hrtimer.c. Move them to time/timekeeping.c where they belong.
LKML-Reference: <new-submission>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The generic ktime_get function defined in kernel/hrtimer.c is suboptimial
for GENERIC_TIME=y:
0) | ktime_get() {
0) | ktime_get_ts() {
0) | getnstimeofday() {
0) | read_tod_clock() {
0) 0.601 us | }
0) 1.938 us | }
0) | set_normalized_timespec() {
0) 0.602 us | }
0) 4.375 us | }
0) 5.523 us | }
Overall there are two read_seqbegin/read_seqretry loops and a lot of
unnecessary struct timespec calculations. ktime_get returns a nano second
value which is the sum of xtime, wall_to_monotonic and the nano second
delta from the clock source.
ktime_get can be optimized for GENERIC_TIME=y. The new version only calls
clocksource_read:
0) | ktime_get() {
0) | read_tod_clock() {
0) 0.610 us | }
0) 1.977 us | }
It uses a single read_seqbegin/readseqretry loop and just adds everthing
to a nano second value.
ktime_get_ts is optimized in a similar fashion.
[ tglx: added WARN_ON(timekeeping_suspended) as in getnstimeofday() ]
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: john stultz <johnstul@us.ibm.com>
LKML-Reference: <20090707112728.3005244d@skybase>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
* 'linux-next' of git://git.infradead.org/ubifs-2.6:
UBIFS: start using hrtimers
hrtimer: export ktime_add_safe
UBIFS: do not forget to register BDI device
UBIFS: allow sync option in rootflags
UBIFS: remove dead code
UBIFS: use anonymous device
UBIFS: return proper error code if the compr is not present
UBIFS: return error if link and unlink race
UBIFS: reset no_space flag after inode deletion
|