Age | Commit message (Collapse) | Author | Files | Lines |
|
Tianyu reported a crash in a CPU hotplug teardown callback when booting a
kernel which has CONFIG_HOTPLUG_CPU disabled with the 'nosmt' boot
parameter.
It turns out that the SMP=y CONFIG_HOTPLUG_CPU=n case has been broken
forever in case that a bringup callback fails. Unfortunately this issue was
not recognized when the CPU hotplug code was reworked, so the shortcoming
just stayed in place.
When a bringup callback fails, the CPU hotplug code rolls back the
operation and takes the CPU offline.
The 'nosmt' command line argument uses a bringup failure to abort the
bringup of SMT sibling CPUs. This partial bringup is required due to the
MCE misdesign on Intel CPUs.
With CONFIG_HOTPLUG_CPU=y the rollback works perfectly fine, but
CONFIG_HOTPLUG_CPU=n lacks essential mechanisms to exercise the low level
teardown of a CPU including the synchronizations in various facilities like
RCU, NOHZ and others.
As a consequence the teardown callbacks which must be executed on the
outgoing CPU within stop machine with interrupts disabled are executed on
the control CPU in interrupt enabled and preemptible context causing the
kernel to crash and burn. The pre state machine code has a different
failure mode which is more subtle and resulting in a less obvious use after
free crash because the control side frees resources which are still in use
by the undead CPU.
But this is not a x86 only problem. Any architecture which supports the
SMP=y HOTPLUG_CPU=n combination suffers from the same issue. It's just less
likely to be triggered because in 99.99999% of the cases all bringup
callbacks succeed.
The easy solution of making HOTPLUG_CPU mandatory for SMP is not working on
all architectures as the following architectures have either no hotplug
support at all or not all subarchitectures support it:
alpha, arc, hexagon, openrisc, riscv, sparc (32bit), mips (partial).
Crashing the kernel in such a situation is not an acceptable state
either.
Implement a minimal rollback variant by limiting the teardown to the point
where all regular teardown callbacks have been invoked and leave the CPU in
the 'dead' idle state. This has the following consequences:
- the CPU is brought down to the point where the stop_machine takedown
would happen.
- the CPU stays there forever and is idle
- The CPU is cleared in the CPU active mask, but not in the CPU online
mask which is a legit state.
- Interrupts are not forced away from the CPU
- All facilities which only look at online mask would still see it, but
that is the case during normal hotplug/unplug operations as well. It's
just a (way) longer time frame.
This will expose issues, which haven't been exposed before or only seldom,
because now the normally transient state of being non active but online is
a permanent state. In testing this exposed already an issue vs. work queues
where the vmstat code schedules work on the almost dead CPU which ends up
in an unbound workqueue and triggers 'preemtible context' warnings. This is
not a problem of this change, it merily exposes an already existing issue.
Still this is better than crashing fully without a chance to debug it.
This is mainly thought as workaround for those architectures which do not
support HOTPLUG_CPU. All others should enforce HOTPLUG_CPU for SMP.
Fixes: 2e1a3483ce74 ("cpu/hotplug: Split out the state walk into functions")
Reported-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Konrad Wilk <konrad.wilk@oracle.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mukesh Ojha <mojha@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Micheal Kelley <michael.h.kelley@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190326163811.503390616@linutronix.de
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
With the following commit:
73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS")
... the hotplug code attempted to detect when SMT was disabled by BIOS,
in which case it reported SMT as permanently disabled. However, that
code broke a virt hotplug scenario, where the guest is booted with only
primary CPU threads, and a sibling is brought online later.
The problem is that there doesn't seem to be a way to reliably
distinguish between the HW "SMT disabled by BIOS" case and the virt
"sibling not yet brought online" case. So the above-mentioned commit
was a bit misguided, as it permanently disabled SMT for both cases,
preventing future virt sibling hotplugs.
Going back and reviewing the original problems which were attempted to
be solved by that commit, when SMT was disabled in BIOS:
1) /sys/devices/system/cpu/smt/control showed "on" instead of
"notsupported"; and
2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning.
I'd propose that we instead consider #1 above to not actually be a
problem. Because, at least in the virt case, it's possible that SMT
wasn't disabled by BIOS and a sibling thread could be brought online
later. So it makes sense to just always default the smt control to "on"
to allow for that possibility (assuming cpuid indicates that the CPU
supports SMT).
The real problem is #2, which has a simple fix: change vmx_vm_init() to
query the actual current SMT state -- i.e., whether any siblings are
currently online -- instead of looking at the SMT "control" sysfs value.
So fix it by:
a) reverting the original "fix" and its followup fix:
73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS")
bc2d8d262cba ("cpu/hotplug: Fix SMT supported evaluation")
and
b) changing vmx_vm_init() to query the actual current SMT state --
instead of the sysfs control value -- to determine whether the L1TF
warning is needed. This also requires the 'sched_smt_present'
variable to exported, instead of 'cpu_smt_control'.
Fixes: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joe Mario <jmario@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com
|
|
With commit a74cfffb03b7 ("x86/speculation: Rework SMT state change"),
arch_smt_update() is invoked from each individual CPU hotplug function.
Therefore the extra arch_smt_update() call in the sysfs SMT control is
redundant.
Fixes: a74cfffb03b7 ("x86/speculation: Rework SMT state change")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <konrad.wilk@oracle.com>
Cc: <dwmw@amazon.co.uk>
Cc: <bp@suse.de>
Cc: <srinivas.eeda@oracle.com>
Cc: <peterz@infradead.org>
Cc: <hpa@zytor.com>
Link: https://lkml.kernel.org/r/e2e064f2-e8ef-42ca-bf4f-76b612964752@default
|
|
Since we've had:
commit cb538267ea1e ("jump_label/lockdep: Assert we hold the hotplug lock for _cpuslocked() operations")
we've been getting some lockdep warnings during init, such as on HiKey960:
[ 0.820495] WARNING: CPU: 4 PID: 0 at kernel/cpu.c:316 lockdep_assert_cpus_held+0x3c/0x48
[ 0.820498] Modules linked in:
[ 0.820509] CPU: 4 PID: 0 Comm: swapper/4 Tainted: G S 4.20.0-rc5-00051-g4cae42a #34
[ 0.820511] Hardware name: HiKey960 (DT)
[ 0.820516] pstate: 600001c5 (nZCv dAIF -PAN -UAO)
[ 0.820520] pc : lockdep_assert_cpus_held+0x3c/0x48
[ 0.820523] lr : lockdep_assert_cpus_held+0x38/0x48
[ 0.820526] sp : ffff00000a9cbe50
[ 0.820528] x29: ffff00000a9cbe50 x28: 0000000000000000
[ 0.820533] x27: 00008000b69e5000 x26: ffff8000bff4cfe0
[ 0.820537] x25: ffff000008ba69e0 x24: 0000000000000001
[ 0.820541] x23: ffff000008fce000 x22: ffff000008ba70c8
[ 0.820545] x21: 0000000000000001 x20: 0000000000000003
[ 0.820548] x19: ffff00000a35d628 x18: ffffffffffffffff
[ 0.820552] x17: 0000000000000000 x16: 0000000000000000
[ 0.820556] x15: ffff00000958f848 x14: 455f3052464d4d34
[ 0.820559] x13: 00000000769dde98 x12: ffff8000bf3f65a8
[ 0.820564] x11: 0000000000000000 x10: ffff00000958f848
[ 0.820567] x9 : ffff000009592000 x8 : ffff00000958f848
[ 0.820571] x7 : ffff00000818ffa0 x6 : 0000000000000000
[ 0.820574] x5 : 0000000000000000 x4 : 0000000000000001
[ 0.820578] x3 : 0000000000000000 x2 : 0000000000000001
[ 0.820582] x1 : 00000000ffffffff x0 : 0000000000000000
[ 0.820587] Call trace:
[ 0.820591] lockdep_assert_cpus_held+0x3c/0x48
[ 0.820598] static_key_enable_cpuslocked+0x28/0xd0
[ 0.820606] arch_timer_check_ool_workaround+0xe8/0x228
[ 0.820610] arch_timer_starting_cpu+0xe4/0x2d8
[ 0.820615] cpuhp_invoke_callback+0xe8/0xd08
[ 0.820619] notify_cpu_starting+0x80/0xb8
[ 0.820625] secondary_start_kernel+0x118/0x1d0
We've also had a similar warning in sched_init_smp() for every
asymmetric system that would enable the sched_asym_cpucapacity static
key, although that was singled out in:
commit 40fa3780bac2 ("sched/core: Take the hotplug lock in sched_init_smp()")
Those warnings are actually harmless, since we cannot have hotplug
operations at the time they appear. Instead of starting to sprinkle
useless hotplug lock operations in the init codepaths, mute the
warnings until they start warning about real problems.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: cai@gmx.us
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: linux-arm-kernel@lists.infradead.org
Cc: longman@redhat.com
Cc: marc.zyngier@arm.com
Cc: mark.rutland@arm.com
Link: https://lkml.kernel.org/r/1545243796-23224-2-git-send-email-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
arch_smt_update() is only called when the sysfs SMT control knob is
changed. This means that when SMT is enabled in the sysfs control knob the
system is considered to have SMT active even if all siblings are offline.
To allow finegrained control of the speculation mitigations, the actual SMT
state is more interesting than the fact that siblings could be enabled.
Rework the code, so arch_smt_update() is invoked from each individual CPU
hotplug function, and simplify the update function while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185004.521974984@linutronix.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Ingo Molnar:
"The main changes:
- Make the IBPB barrier more strict and add STIBP support (Jiri
Kosina)
- Micro-optimize and clean up the entry code (Andy Lutomirski)
- ... plus misc other fixes"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Propagate information about RSB filling mitigation to sysfs
x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigation
x86/speculation: Apply IBPB more strictly to avoid cross-process data leak
x86/speculation: Add RETPOLINE_AMD support to the inline asm CALL_NOSPEC variant
x86/CPU: Fix unused variable warning when !CONFIG_IA32_EMULATION
x86/pti/64: Remove the SYSCALL64 entry trampoline
x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space
x86/entry/64: Document idtentry
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"The main changes are:
- Migrate CPU-intense 'misfit' tasks on asymmetric capacity systems,
to better utilize (much) faster 'big core' CPUs. (Morten Rasmussen,
Valentin Schneider)
- Topology handling improvements, in particular when CPU capacity
changes and related load-balancing fixes/improvements (Morten
Rasmussen)
- ... plus misc other improvements, fixes and updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
sched/completions/Documentation: Add recommendation for dynamic and ONSTACK completions
sched/completions/Documentation: Clean up the document some more
sched/completions/Documentation: Fix a couple of punctuation nits
cpu/SMT: State SMT is disabled even with nosmt and without "=force"
sched/core: Fix comment regarding nr_iowait_cpu() and get_iowait_load()
sched/fair: Remove setting task's se->runnable_weight during PELT update
sched/fair: Disable LB_BIAS by default
sched/pelt: Fix warning and clean up IRQ PELT config
sched/topology: Make local variables static
sched/debug: Use symbolic names for task state constants
sched/numa: Remove unused numa_stats::nr_running field
sched/numa: Remove unused code from update_numa_stats()
sched/debug: Explicitly cast sched_feat() to bool
sched/core: Disable SD_PREFER_SIBLING on asymmetric CPU capacity domains
sched/fair: Don't move tasks to lower capacity CPUs unless necessary
sched/fair: Set rq->rd->overload when misfit
sched/fair: Wrap rq->rd->overload accesses with READ/WRITE_ONCE()
sched/core: Change root_domain->overload type to int
sched/fair: Change 'prefer_sibling' type to bool
sched/fair: Kick nohz balance if rq->misfit_task_load
...
|
|
When booting with "nosmt=force" a message is issued into dmesg to
confirm that SMT has been force-disabled but such a message is not
issued when only "nosmt" is on the kernel command line.
Fix that.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181004172227.10094-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
STIBP is a feature provided by certain Intel ucodes / CPUs. This feature
(once enabled) prevents cross-hyperthread control of decisions made by
indirect branch predictors.
Enable this feature if
- the CPU is vulnerable to spectre v2
- the CPU supports SMT and has SMT siblings online
- spectre_v2 mitigation autoselection is enabled (default)
After some previous discussion, this leaves STIBP on all the time, as wrmsr
on crossing kernel boundary is a no-no. This could perhaps later be a bit
more optimized (like disabling it in NOHZ, experiment with disabling it in
idle, etc) if needed.
Note that the synchronization of the mask manipulation via newly added
spec_ctrl_mutex is currently not strictly needed, as the only updater is
already being serialized by cpu_add_remove_lock, but let's make this a
little bit more future-proof.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "WoodhouseDavid" <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: "SchauflerCasey" <casey.schaufler@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251438240.15880@cbobk.fhfr.pm
|
|
Anybody trying to assert the cpu_hotplug_lock is held (lockdep_assert_cpus_held())
from AP callbacks will fail, because the lock is held by the BP.
Stick in an explicit annotation in cpuhp_thread_fun() to make this work.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-tip-commits@vger.kernel.org
Fixes: cb538267ea1e ("jump_label/lockdep: Assert we hold the hotplug lock for _cpuslocked() operations")
Link: http://lkml.kernel.org/r/20180911095127.GT24082@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When a teardown callback fails, the CPU hotplug code brings the CPU back to
the previous state. The previous state becomes the new target state. The
rollback happens in undo_cpu_down() which increments the state
unconditionally even if the state is already the same as the target.
As a consequence the next CPU hotplug operation will start at the wrong
state. This is easily to observe when __cpu_disable() fails.
Prevent the unconditional undo by checking the state vs. target before
incrementing state and fix up the consequently wrong conditional in the
unplug code which handles the failure of the final CPU take down on the
control CPU side.
Fixes: 4dddfb5faa61 ("smp/hotplug: Rewrite AP state machine core")
Reported-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: josh@joshtriplett.org
Cc: peterz@infradead.org
Cc: jiangshanlai@gmail.com
Cc: dzickus@redhat.com
Cc: brendan.jackman@arm.com
Cc: malat@debian.org
Cc: sramana@codeaurora.org
Cc: linux-arm-msm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1809051419580.1416@nanos.tec.linutronix.de
----
|
|
The smp_mb() in cpuhp_thread_fun() is misplaced. It needs to be after the
load of st->should_run to prevent reordering of the later load/stores
w.r.t. the load of st->should_run.
Fixes: 4dddfb5faa61 ("smp/hotplug: Rewrite AP state machine core")
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infraded.org>
Cc: josh@joshtriplett.org
Cc: peterz@infradead.org
Cc: jiangshanlai@gmail.com
Cc: dzickus@redhat.com
Cc: brendan.jackman@arm.com
Cc: malat@debian.org
Cc: mojha@codeaurora.org
Cc: sramana@codeaurora.org
Cc: linux-arm-msm@vger.kernel.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1536126727-11629-1-git-send-email-neeraju@codeaurora.org
|
|
When notifiers were there, `skip_onerr` was used to avoid calling
particular step startup/teardown callbacks in the CPU up/down rollback
path, which made the hotplug asymmetric.
As notifiers are gone now after the full state machine conversion, the
`skip_onerr` field is no longer required.
Remove it from the structure and its usage.
Signed-off-by: Mukesh Ojha <mojha@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1535439294-31426-1-git-send-email-mojha@codeaurora.org
|
|
Commit 0cc3cd21657b ("cpu/hotplug: Boot HT siblings at least once")
breaks non-SMP builds.
[ I suspect the 'bool' fields should just be made to be bitfields and be
exposed regardless of configuration, but that's a separate cleanup
that I'll leave to the owners of this file for later. - Linus ]
Fixes: 0cc3cd21657b ("cpu/hotplug: Boot HT siblings at least once")
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Abel Vesa <abelvesa@linux.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These add a new framework for CPU idle time injection, to be used by
all of the idle injection code in the kernel in the future, fix some
issues and add a number of relatively small extensions in multiple
places.
Specifics:
- Add a new framework for CPU idle time injection (Daniel Lezcano).
- Add AVS support to the armada-37xx cpufreq driver (Gregory
CLEMENT).
- Add support for current CPU frequency reporting to the ACPI CPPC
cpufreq driver (George Cherian).
- Rework the cooling device registration in the imx6q/thermal driver
(Bastian Stender).
- Make the pcc-cpufreq driver refuse to work with dynamic scaling
governors on systems with many CPUs to avoid scalability issues
with it (Rafael Wysocki).
- Fix the intel_pstate driver to report different maximum CPU
frequencies on systems where they really are different and to
ignore the turbo active ratio if hardware-managend P-states (HWP)
are in use; make it use the match_string() helper (Xie Yisheng,
Srinivas Pandruvada).
- Fix a minor deferred probe issue in the qcom-kryo cpufreq driver
(Niklas Cassel).
- Add a tracepoint for the tracking of frequency limits changes (from
Andriod) to the cpufreq core (Ruchi Kandoi).
- Fix a circular lock dependency between CPU hotplug and sysfs
locking in the cpufreq core reported by lockdep (Waiman Long).
- Avoid excessive error reports on driver registration failures in
the ARM cpuidle driver (Sudeep Holla).
- Add a new device links flag to the driver core to make links go
away automatically on supplier driver removal (Vivek Gautam).
- Eliminate potential race condition between system-wide power
management transitions and system shutdown (Pingfan Liu).
- Add a quirk to save NVS memory on system suspend for the ASUS 1025C
laptop (Willy Tarreau).
- Make more systems use suspend-to-idle (instead of ACPI S3) by
default (Tristian Celestin).
- Get rid of stack VLA usage in the low-level hibernation code on
64-bit x86 (Kees Cook).
- Fix error handling in the hibernation core and mark an expected
fall-through switch in it (Chengguang Xu, Gustavo Silva).
- Extend the generic power domains (genpd) framework to support
attaching a device to a power domain by name (Ulf Hansson).
- Fix device reference counting and user limits initialization in the
devfreq core (Arvind Yadav, Matthias Kaehlcke).
- Fix a few issues in the rk3399_dmc devfreq driver and improve its
documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).
- Drop a redundant error message from the exynos-ppmu devfreq driver
(Markus Elfring)"
* tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (35 commits)
PM / reboot: Eliminate race between reboot and suspend
PM / hibernate: Mark expected switch fall-through
cpufreq: intel_pstate: Ignore turbo active ratio in HWP
cpufreq: Fix a circular lock dependency problem
cpu/hotplug: Add a cpus_read_trylock() function
x86/power/hibernate_64: Remove VLA usage
cpufreq: trace frequency limits change
cpufreq: intel_pstate: Show different max frequency with turbo 3 and HWP
cpufreq: pcc-cpufreq: Disable dynamic scaling on many-CPU systems
cpufreq: qcom-kryo: Silently error out on EPROBE_DEFER
cpufreq / CPPC: Add cpuinfo_cur_freq support for CPPC
cpufreq: armada-37xx: Add AVS support
dt-bindings: marvell: Add documentation for the Armada 3700 AVS binding
PM / devfreq: rk3399_dmc: Fix duplicated opp table on reload.
PM / devfreq: Init user limits from OPP limits, not viceversa
PM / devfreq: rk3399_dmc: fix spelling mistakes.
PM / devfreq: rk3399_dmc: do not print error when get supply and clk defer.
dt-bindings: devfreq: rk3399_dmc: move interrupts to be optional.
PM / devfreq: rk3399_dmc: remove wait for dcf irq event.
dt-bindings: clock: add rk3399 DDR3 standard speed bins.
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug update from Thomas Gleixner:
"A trivial name fix for the hotplug state machine"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpu/hotplug: Clarify CPU hotplug step name for timers
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- Cleanup and improvement of NUMA balancing
- Refactoring and improvements to the PELT (Per Entity Load Tracking)
code
- Watchdog simplification and related cleanups
- The usual pile of small incremental fixes and improvements
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
watchdog: Reduce message verbosity
stop_machine: Reflow cpu_stop_queue_two_works()
sched/numa: Move task_numa_placement() closer to numa_migrate_preferred()
sched/numa: Use group_weights to identify if migration degrades locality
sched/numa: Update the scan period without holding the numa_group lock
sched/numa: Remove numa_has_capacity()
sched/numa: Modify migrate_swap() to accept additional parameters
sched/numa: Remove unused task_capacity from 'struct numa_stats'
sched/numa: Skip nodes that are at 'hoplimit'
sched/debug: Reverse the order of printing faults
sched/numa: Use task faults only if numa_group is not yet set up
sched/numa: Set preferred_node based on best_cpu
sched/numa: Simplify load_too_imbalanced()
sched/numa: Evaluate move once per node
sched/numa: Remove redundant field
sched/debug: Show the sum wait time of a task group
sched/fair: Remove #ifdefs from scale_rt_capacity()
sched/core: Remove get_cpu() from sched_fork()
sched/cpufreq: Clarify sugov_get_util()
sched/sysctl: Remove unused sched_time_avg_ms sysctl
...
|
|
This is purely a preparatory patch for upcoming changes during the 4.19
merge window.
We have a function called "boot_cpu_state_init()" that isn't really
about the bootup cpu state: that is done much earlier by the similarly
named "boot_cpu_init()" (note lack of "state" in name).
This function initializes some hotplug CPU state, and needs to run after
the percpu data has been properly initialized. It even has a comment to
that effect.
Except it _doesn't_ actually run after the percpu data has been properly
initialized. On x86 it happens to do that, but on at least arm and
arm64, the percpu base pointers are initialized by the arch-specific
'smp_prepare_boot_cpu()' hook, which ran _after_ boot_cpu_state_init().
This had some unexpected results, and in particular we have a patch
pending for the merge window that did the obvious cleanup of using
'this_cpu_write()' in the cpu hotplug init code:
- per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
+ this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
which is obviously the right thing to do. Except because of the
ordering issue, it actually failed miserably and unexpectedly on arm64.
So this just fixes the ordering, and changes the name of the function to
be 'boot_cpu_hotplug_init()' to make it obvious that it's about cpu
hotplug state, because the core CPU state was supposed to have already
been done earlier.
Marked for stable, since the (not yet merged) patch that will show this
problem is marked for stable.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Mian Yousaf Kaukab <yousaf.kaukab@suse.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Josh reported that the late SMT evaluation in cpu_smt_state_init() sets
cpu_smt_control to CPU_SMT_NOT_SUPPORTED in case that 'nosmt' was supplied
on the kernel command line as it cannot differentiate between SMT disabled
by BIOS and SMT soft disable via 'nosmt'. That wreckages the state and
makes the sysfs interface unusable.
Rework this so that during bringup of the non boot CPUs the availability of
SMT is determined in cpu_smt_allowed(). If a newly booted CPU is not a
'primary' thread then set the local cpu_smt_available marker and evaluate
this explicitely right after the initial SMP bringup has finished.
SMT evaulation on x86 is a trainwreck as the firmware has all the
information _before_ booting the kernel, but there is no interface to query
it.
Fixes: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
After commit 249d4a9b3246 ("timers: Reinitialize per cpu bases on hotplug")
i.e. the introduction of state CPUHP_TIMERS_PREPARE instead of
CPUHP_TIMERS_DEAD the step name "timers:dead" is not longer accurate.
Rename it to "timers:prepare".
[ tglx: Massaged changelog ]
Signed-off-by: Mukesh Ojha <mojha@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: gkohli@codeaurora.org
Cc: neeraju@codeaurora.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Brendan Jackman <brendan.jackman@arm.com>
Cc: Mathieu Malaterre <malat@debian.org>
Link: https://lkml.kernel.org/r/1532443668-26810-1-git-send-email-mojha@codeaurora.org
|
|
There are use cases where it can be useful to have a cpus_read_trylock()
function to work around circular lock dependency problem involving
the cpu_hotplug_lock.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
If SMT is disabled in BIOS, the CPU code doesn't properly detect it.
The /sys/devices/system/cpu/smt/control file shows 'on', and the 'l1tf'
vulnerabilities file shows SMT as vulnerable.
Fix it by forcing 'cpu_smt_control' to CPU_SMT_NOT_SUPPORTED in such a
case. Unfortunately the detection can only be done after bringing all
the CPUs online, so we have to overwrite any previous writes to the
variable.
Reported-by: Joe Mario <jmario@redhat.com>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Fixes: f048c399e0f7 ("x86/topology: Provide topology_smt_supported()")
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
|
|
The CPU_SMT_NOT_SUPPORTED state is set (if the processor does not support
SMT) when the sysfs SMT control file is initialized.
That was fine so far as this was only required to make the output of the
control file correct and to prevent writes in that case.
With the upcoming l1tf command line parameter, this needs to be set up
before the L1TF mitigation selection and command line parsing happens.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.121795971@linutronix.de
|
|
The L1TF mitigation will gain a commend line parameter which allows to set
a combination of hypervisor mitigation and SMT control.
Expose cpu_smt_disable() so the command line parser can tweak SMT settings.
[ tglx: Split out of larger patch and made it preserve an already existing
force off state ]
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.039715135@linutronix.de
|
|
Writing 'off' to /sys/devices/system/cpu/smt/control offlines all SMT
siblings. Writing 'on' merily enables the abilify to online them, but does
not online them automatically.
Make 'on' more useful by onlining all offline siblings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
If the L1TF CPU bug is present we allow the KVM module to be loaded as the
major of users that use Linux and KVM have trusted guests and do not want a
broken setup.
Cloud vendors are the ones that are uncomfortable with CVE 2018-3620 and as
such they are the ones that should set nosmt to one.
Setting 'nosmt' means that the system administrator also needs to disable
SMT (Hyper-threading) in the BIOS, or via the 'nosmt' command line
parameter, or via the /sys/devices/system/cpu/smt/control. See commit
05736e4ac13c ("cpu/hotplug: Provide knobs to control SMT").
Other mitigations are to use task affinity, cpu sets, interrupt binding,
etc - anything to make sure that _only_ the same guests vCPUs are running
on sibling threads.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Oleg suggested to replace the "watchdog/%u" threads with
cpu_stop_work. That removes one thread per CPU while at the same time
fixes softlockup vs SCHED_DEADLINE.
But more importantly, it does away with the single
smpboot_update_cpumask_percpu_thread() user, which allows
cleanups/shrinkage of the smpboot interface.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Due to the way Machine Check Exceptions work on X86 hyperthreads it's
required to boot up _all_ logical cores at least once in order to set the
CR4.MCE bit.
So instead of ignoring the sibling threads right away, let them boot up
once so they can configure themselves. After they came out of the initial
boot stage check whether its a "secondary" sibling and cancel the operation
which puts the CPU back into offline state.
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
Provide a command line and a sysfs knob to control SMT.
The command line options are:
'nosmt': Enumerate secondary threads, but do not online them
'nosmt=force': Ignore secondary threads completely during enumeration
via MP table and ACPI/MADT.
The sysfs control file has the following states (read/write):
'on': SMT is enabled. Secondary threads can be freely onlined
'off': SMT is disabled. Secondary threads, even if enumerated
cannot be onlined
'forceoff': SMT is permanentely disabled. Writes to the control
file are rejected.
'notsupported': SMT is not supported by the CPU
The command line option 'nosmt' sets the sysfs control to 'off'. This
can be changed to 'on' to reenable SMT during runtime.
The command line option 'nosmt=force' sets the sysfs control to
'forceoff'. This cannot be changed during runtime.
When SMT is 'on' and the control file is changed to 'off' then all online
secondary threads are offlined and attempts to online a secondary thread
later on are rejected.
When SMT is 'off' and the control file is changed to 'on' then secondary
threads can be onlined again. The 'off' -> 'on' transition does not
automatically online the secondary threads.
When the control file is set to 'forceoff', the behaviour is the same as
setting it to 'off', but the operation is irreversible and later writes to
the control file are rejected.
When the control status is 'notsupported' then writes to the control file
are rejected.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
|
|
Split out the inner workings of do_cpu_down() to allow reuse of that
function for the upcoming SMT disabling mechanism.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
|
|
The asymmetry caused a warning to trigger if the bootup was stopped in state
CPUHP_AP_ONLINE_IDLE. The warning no longer triggers as kthread_park() can
now be invoked on already or still parked threads. But there is still no
reason to have this be asymmetric.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
|
|
The cpuhp_is_ap_state() function is no longer called outside of the
CONFIG_SMP #ifdef section, causing a harmless warning:
kernel/cpu.c:129:13: error: 'cpuhp_is_ap_state' defined but not used [-Werror=unused-function]
This moves the function into the #ifdef to get a clean build again.
Fixes: 17a2f1ced028 ("cpu/hotplug: Merge cpuhp_bp_states and cpuhp_ap_states")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/20180315153829.3819606-1-arnd@arndb.de
|
|
cpuhp_bp_states and cpuhp_ap_states have different set of steps without any
conflicting steps, so that they can be merged.
The original `[CPUHP_BRINGUP_CPU] = { },` is removed, because the new
cpuhp_hp_states has CPUHP_ONLINE index which is larger than
CPUHP_BRINGUP_CPU.
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/20171201135008.21633-1-jiangshanlai@gmail.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Thomas Gleixner:
"A pile of fixes for long standing issues with the timer wheel and the
NOHZ code:
- Prevent timer base confusion accross the nohz switch, which can
cause unlocked access and data corruption
- Reinitialize the stale base clock on cpu hotplug to prevent subtle
side effects including rollovers on 32bit
- Prevent an interrupt storm when the timer softirq is already
pending caused by tick_nohz_stop_sched_tick()
- Move the timer start tracepoint to a place where it actually makes
sense
- Add documentation to timerqueue functions as they caused confusion
several times now"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timerqueue: Document return values of timerqueue_add/del()
timers: Invoke timer_start_debug() where it makes sense
nohz: Prevent a timer interrupt storm in tick_nohz_stop_sched_tick()
timers: Reinitialize per cpu bases on hotplug
timers: Use deferrable base independent of base::nohz_active
|
|
The timer wheel bases are not (re)initialized on CPU hotplug. That leaves
them with a potentially stale clk and next_expiry valuem, which can cause
trouble then the CPU is plugged.
Add a prepare callback which forwards the clock, sets next_expiry to far in
the future and reset the control flags to a known state.
Set base->must_forward_clk so the first timer which is queued will try to
forward the clock to current jiffies.
Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel")
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272152200.2431@nanos
|
|
Fix non-fatal warnings such as:
kernel/cpu.c:95:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration]
static void inline cpuhp_lock_release(bool bringup) { }
^~~~~~
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/20171226140855.16583-1-malat@debian.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug fix from Ingo Molnar:
"A single fix moving the smp-call queue flush step to the intended
point in the state machine"
* 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
smp/hotplug: Move step CPUHP_AP_SMPCFD_DYING to the correct place
|
|
CPUHP_AP_SCHED_MIGRATE_DYING doesn't exist, it looks like this was
supposed to refer to CPUHP_AP_SCHED_STARTING's teardown callback,
i.e. sched_cpu_dying().
Signed-off-by: Brendan Jackman <brendan.jackman@arm.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171206105911.28093-1-brendan.jackman@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Commit 31487f8328f2 ("smp/cfd: Convert core to hotplug state machine")
accidently put this step on the wrong place. The step should be at the
cpuhp_ap_states[] rather than the cpuhp_bp_states[].
grep smpcfd /sys/devices/system/cpu/hotplug/states
40: smpcfd:prepare
129: smpcfd:dying
"smpcfd:dying" was missing before.
So was the invocation of the function smpcfd_dying_cpu().
Fixes: 31487f8328f2 ("smp/cfd: Convert core to hotplug state machine")
Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lkml.kernel.org/r/20171128131954.81229-1-jiangshanlai@gmail.com
|
|
The recent rework of the cpu hotplug internals changed the usage of the per
cpu state->node field, but missed to clean it up after usage.
So subsequent hotplug operations use the stale pointer from a previous
operation and hand it into the callback functions. The callbacks then
dereference a pointer which either belongs to a different facility or
points to freed and potentially reused memory. In either case data
corruption and crashes are the obvious consequence.
Reset the node and the last pointers in the per cpu state to NULL after the
operation which set them has completed.
Fixes: 96abb968549c ("smp/hotplug: Allow external multi-instance rollback")
Reported-by: Tvrtko Ursulin <tursulin@ursulin.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1710211606130.3213@nanos
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull watchddog clean-up and fixes from Thomas Gleixner:
"The watchdog (hard/softlockup detector) code is pretty much broken in
its current state. The patch series addresses this by removing all
duct tape and refactoring it into a workable state.
The reasons why I ask for inclusion that late in the cycle are:
1) The code causes lockdep splats vs. hotplug locking which get
reported over and over. Unfortunately there is no easy fix.
2) The risk of breakage is minimal because it's already broken
3) As 4.14 is a long term stable kernel, I prefer to have working
watchdog code in that and the lockdep issues resolved. I wouldn't
ask you to pull if 4.14 wouldn't be a LTS kernel or if the
solution would be easy to backport.
4) The series was around before the merge window opened, but then got
delayed due to the UP failure caused by the for_each_cpu()
surprise which we discussed recently.
Changes vs. V1:
- Addressed your review points
- Addressed the warning in the powerpc code which was discovered late
- Changed two function names which made sense up to a certain point
in the series. Now they match what they do in the end.
- Fixed a 'unused variable' warning, which got not detected by the
intel robot. I triggered it when trying all possible related config
combinations manually. Randconfig testing seems not random enough.
The changes have been tested by and reviewed by Don Zickus and tested
and acked by Micheal Ellerman for powerpc"
* 'core-watchdog-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
watchdog/core: Put softlockup_threads_initialized under ifdef guard
watchdog/core: Rename some softlockup_* functions
powerpc/watchdog: Make use of watchdog_nmi_probe()
watchdog/core, powerpc: Lock cpus across reconfiguration
watchdog/core, powerpc: Replace watchdog_nmi_reconfigure()
watchdog/hardlockup/perf: Fix spelling mistake: "permanetely" -> "permanently"
watchdog/hardlockup/perf: Cure UP damage
watchdog/hardlockup: Clean up hotplug locking mess
watchdog/hardlockup/perf: Simplify deferred event destroy
watchdog/hardlockup/perf: Use new perf CPU enable mechanism
watchdog/hardlockup/perf: Implement CPU enable replacement
watchdog/hardlockup/perf: Implement init time detection of perf
watchdog/hardlockup/perf: Implement init time perf validation
watchdog/core: Get rid of the racy update loop
watchdog/core, powerpc: Make watchdog_nmi_reconfigure() two stage
watchdog/sysctl: Clean up sysctl variable name space
watchdog/sysctl: Get rid of the #ifdeffery
watchdog/core: Clean up header mess
watchdog/core: Further simplify sysctl handling
watchdog/core: Get rid of the thread teardown/setup dance
...
|
|
Add a sysfs file to one-time fail a specific state. This can be used
to test the state rollback code paths.
Something like this (hotplug-up.sh):
#!/bin/bash
echo 0 > /debug/sched_debug
echo 1 > /debug/tracing/events/cpuhp/enable
ALL_STATES=`cat /sys/devices/system/cpu/hotplug/states | cut -d':' -f1`
STATES=${1:-$ALL_STATES}
for state in $STATES
do
echo 0 > /sys/devices/system/cpu/cpu1/online
echo 0 > /debug/tracing/trace
echo Fail state: $state
echo $state > /sys/devices/system/cpu/cpu1/hotplug/fail
cat /sys/devices/system/cpu/cpu1/hotplug/fail
echo 1 > /sys/devices/system/cpu/cpu1/online
cat /debug/tracing/trace > hotfail-${state}.trace
sleep 1
done
Can be used to test for all possible rollback (barring multi-instance)
scenarios on CPU-up, CPU-down is a trivial modification of the above.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bigeasy@linutronix.de
Cc: efault@gmx.de
Cc: rostedt@goodmis.org
Cc: max.byungchul.park@gmail.com
Link: https://lkml.kernel.org/r/20170920170546.972581715@infradead.org
|
|
With lockdep-crossrelease we get deadlock reports that span cpu-up and
cpu-down chains. Such deadlocks cannot possibly happen because cpu-up
and cpu-down are globally serialized.
takedown_cpu()
irq_lock_sparse()
wait_for_completion(&st->done)
cpuhp_thread_fun
cpuhp_up_callback
cpuhp_invoke_callback
irq_affinity_online_cpu
irq_local_spare()
irq_unlock_sparse()
complete(&st->done)
Now that we have consistent AP state, we can trivially separate the
AP completion between up and down using st->bringup.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: max.byungchul.park@gmail.com
Cc: bigeasy@linutronix.de
Cc: efault@gmx.de
Cc: rostedt@goodmis.org
Link: https://lkml.kernel.org/r/20170920170546.872472799@infradead.org
|
|
With lockdep-crossrelease we get deadlock reports that span cpu-up and
cpu-down chains. Such deadlocks cannot possibly happen because cpu-up
and cpu-down are globally serialized.
CPU0 CPU1 CPU2
cpuhp_up_callbacks: takedown_cpu: cpuhp_thread_fun:
cpuhp_state
irq_lock_sparse()
irq_lock_sparse()
wait_for_completion()
cpuhp_state
complete()
Now that we have consistent AP state, we can trivially separate the
AP-work class between up and down using st->bringup.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: max.byungchul.park@gmail.com
Cc: bigeasy@linutronix.de
Cc: efault@gmx.de
Cc: rostedt@goodmis.org
Link: https://lkml.kernel.org/r/20170920170546.922524234@infradead.org
|
|
While the generic callback functions have an 'int' return and thus
appear to be allowed to return error, this is not true for all states.
Specifically, what used to be STARTING/DYING are ran with IRQs
disabled from critical parts of CPU bringup/teardown and are not
allowed to fail. Add WARNs to enforce this rule.
But since some callbacks are indeed allowed to fail, we have the
situation where a state-machine rollback encounters a failure, in this
case we're stuck, we can't go forward and we can't go back. Also add a
WARN for that case.
AFAICT this is a fundamental 'problem' with no real obvious solution.
We want the 'prepare' callbacks to allow failure on either up or down.
Typically on prepare-up this would be things like -ENOMEM from
resource allocations, and the typical usage in prepare-down would be
something like -EBUSY to avoid CPUs being taken away.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bigeasy@linutronix.de
Cc: efault@gmx.de
Cc: rostedt@goodmis.org
Cc: max.byungchul.park@gmail.com
Link: https://lkml.kernel.org/r/20170920170546.819539119@infradead.org
|
|
There is currently no explicit state change on rollback. That is,
st->bringup, st->rollback and st->target are not consistent when doing
the rollback.
Rework the AP state handling to be more coherent. This does mean we
have to do a second AP kick-and-wait for rollback, but since rollback
is the slow path of a slowpath, this really should not matter.
Take this opportunity to simplify the AP thread function to only run a
single callback per invocation. This unifies the three single/up/down
modes is supports. The looping it used to do for up/down are achieved
by retaining should_run and relying on the main smpboot_thread_fn()
loop.
(I have most of a patch that does the same for the BP state handling,
but that's not critical and gets a little complicated because
CPUHP_BRINGUP_CPU does the AP handoff from a callback, which gets
recursive @st usage, I still have de-fugly that.)
[ tglx: Move cpuhp_down_callbacks() et al. into the HOTPLUG_CPU section to
avoid gcc complaining about unused functions. Make the HOTPLUG_CPU
one piece instead of having two consecutive ifdef sections of the
same type. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bigeasy@linutronix.de
Cc: efault@gmx.de
Cc: rostedt@goodmis.org
Cc: max.byungchul.park@gmail.com
Link: https://lkml.kernel.org/r/20170920170546.769658088@infradead.org
|
|
Currently the rollback of multi-instance states is handled inside
cpuhp_invoke_callback(). The problem is that when we want to allow an
explicit state change for rollback, we need to return from the
function without doing the rollback.
Change cpuhp_invoke_callback() to optionally return the multi-instance
state, such that rollback can be done from a subsequent call.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bigeasy@linutronix.de
Cc: efault@gmx.de
Cc: rostedt@goodmis.org
Cc: max.byungchul.park@gmail.com
Link: https://lkml.kernel.org/r/20170920170546.720361181@infradead.org
|
|
The following deadlock is possible in the watchdog hotplug code:
cpus_write_lock()
...
takedown_cpu()
smpboot_park_threads()
smpboot_park_thread()
kthread_park()
->park() := watchdog_disable()
watchdog_nmi_disable()
perf_event_release_kernel();
put_event()
_free_event()
->destroy() := hw_perf_event_destroy()
x86_release_hardware()
release_ds_buffers()
get_online_cpus()
when a per cpu watchdog perf event is destroyed which drops the last
reference to the PMU hardware. The cleanup code there invokes
get_online_cpus() which instantly deadlocks because the hotplug percpu
rwsem is write locked.
To solve this add a deferring mechanism:
cpus_write_lock()
kthread_park()
watchdog_nmi_disable(deferred)
perf_event_disable(event);
move_event_to_deferred(event);
....
cpus_write_unlock()
cleaup_deferred_events()
perf_event_release_kernel()
This is still properly serialized against concurrent hotplug via the
cpu_add_remove_lock, which is held by the task which initiated the hotplug
event.
This is also used to handle event destruction when the watchdog threads are
parked via other mechanisms than CPU hotplug.
Analyzed-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Don Zickus <dzickus@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Link: http://lkml.kernel.org/r/20170912194146.884469246@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|