Age | Commit message (Collapse) | Author | Files | Lines |
|
Adapt KCM to use the stream parser. This mostly involves removing
the RX handling and setting up the strparser using the interface.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The stub helper functions for the newly added kcm_proc_init/exit interfaces
are defined as 'static' in a header file, which leads to build warnings for
each file that includes them without calling them:
include/net/kcm.h:183:12: error: 'kcm_proc_init' defined but not used [-Werror=unused-function]
include/net/kcm.h:184:13: error: 'kcm_proc_exit' defined but not used [-Werror=unused-function]
This marks the two functions as 'static inline' instead, which avoids the
warnings and is obviously what was meant here.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: cd6e111bf5be ("kcm: Add statistics and proc interfaces")
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch adds receive timeout for message assembly on the attached TCP
sockets. The timeout is set when a new messages is started and the whole
message has not been received by TCP (not in the receive queue). If the
completely message is subsequently received the timer is cancelled, if the
timer expires the RX side is aborted.
The timeout value is taken from the socket timeout (SO_RCVTIMEO) that is
set on a TCP socket (i.e. set by get sockopt before attaching a TCP socket
to KCM.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Message assembly is performed on the TCP socket. This is logically
equivalent of an application that performs a peek on the socket to find
out how much memory is needed for a receive buffer. The receive socket
buffer also provides the maximum message size which is checked.
The receive algorithm is something like:
1) Receive the first skbuf for a message (or skbufs if multiple are
needed to determine message length).
2) Check the message length against the number of bytes in the TCP
receive queue (tcp_inq()).
- If all the bytes of the message are in the queue (incluing the
skbuf received), then proceed with message assembly (it should
complete with the tcp_read_sock)
- Else, mark the psock with the number of bytes needed to
complete the message.
3) In TCP data ready function, if the psock indicates that we are
waiting for the rest of the bytes of a messages, check the number
of queued bytes against that.
- If there are still not enough bytes for the message, just
return
- Else, clear the waiting bytes and proceed to receive the
skbufs. The message should now be received in one
tcp_read_sock
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch adds various counters for KCM. These include counters for
messages and bytes received or sent, as well as counters for number of
attached/unattached TCP sockets and other error or edge events.
The statistics are exposed via a proc interface. /proc/net/kcm provides
statistics per KCM socket and per psock (attached TCP sockets).
/proc/net/kcm_stats provides aggregate statistics.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This module implements the Kernel Connection Multiplexor.
Kernel Connection Multiplexor (KCM) is a facility that provides a
message based interface over TCP for generic application protocols.
With KCM an application can efficiently send and receive application
protocol messages over TCP using datagram sockets.
For more information see the included Documentation/networking/kcm.txt
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|