summaryrefslogtreecommitdiffstats
path: root/include/crypto/public_key.h
AgeCommit message (Collapse)AuthorFilesLines
2014-10-06KEYS: Restore partial ID matching functionality for asymmetric keysDmitry Kasatkin1-1/+2
Bring back the functionality whereby an asymmetric key can be matched with a partial match on one of its IDs. Whilst we're at it, allow for the possibility of having an increased number of IDs. Reported-by: Dmitry Kasatkin <d.kasatkin@samsung.com> Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com> Signed-off-by: David Howells <dhowells@redhat.com>
2014-09-16KEYS: Overhaul key identification when searching for asymmetric keysDavid Howells1-2/+3
Make use of the new match string preparsing to overhaul key identification when searching for asymmetric keys. The following changes are made: (1) Use the previously created asymmetric_key_id struct to hold the following key IDs derived from the X.509 certificate or PKCS#7 message: id: serial number + issuer skid: subjKeyId + subject authority: authKeyId + issuer (2) Replace the hex fingerprint attached to key->type_data[1] with an asymmetric_key_ids struct containing the id and the skid (if present). (3) Make the asymmetric_type match data preparse select one of two searches: (a) An iterative search for the key ID given if prefixed with "id:". The prefix is expected to be followed by a hex string giving the ID to search for. The criterion key ID is checked against all key IDs recorded on the key. (b) A direct search if the key ID is not prefixed with "id:". This will look for an exact match on the key description. (4) Make x509_request_asymmetric_key() take a key ID. This is then converted into "id:<hex>" and passed into keyring_search() where match preparsing will turn it back into a binary ID. (5) X.509 certificate verification then takes the authority key ID and looks up a key that matches it to find the public key for the certificate signature. (6) PKCS#7 certificate verification then takes the id key ID and looks up a key that matches it to find the public key for the signed information block signature. Additional changes: (1) Multiple subjKeyId and authKeyId values on an X.509 certificate cause the cert to be rejected with -EBADMSG. (2) The 'fingerprint' ID is gone. This was primarily intended to convey PGP public key fingerprints. If PGP is supported in future, this should generate a key ID that carries the fingerprint. (3) Th ca_keyid= kernel command line option is now converted to a key ID and used to match the authority key ID. Possibly this should only match the actual authKeyId part and not the issuer as well. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com>
2014-07-29PKCS#7: Use x509_request_asymmetric_key()David Howells1-0/+4
pkcs7_request_asymmetric_key() and x509_request_asymmetric_key() do the same thing, the latter being a copy of the former created by the IMA folks, so drop the PKCS#7 version as the X.509 location is more general. Whilst we're at it, rename the arguments of x509_request_asymmetric_key() to better reflect what the values being passed in are intended to match on an X.509 cert. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2013-10-25keys: change asymmetric keys to use common hash definitionsDmitry Kasatkin1-14/+4
This patch makes use of the newly defined common hash algorithm info, replacing, for example, PKEY_HASH with HASH_ALGO. Changelog: - Lindent fixes - Mimi CC: David Howells <dhowells@redhat.com> Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2013-09-25KEYS: Store public key algo ID in public_key_signature structDavid Howells1-0/+1
Store public key algorithm ID in public_key_signature struct for reference purposes. This allows a public_key_signature struct to be embedded in struct x509_certificate and other places more easily. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25KEYS: Store public key algo ID in public_key structDavid Howells1-0/+1
Store public key algo ID in public_key struct for reference purposes. This allows it to be removed from the x509_certificate struct and used to find a default in public_key_verify_signature(). Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25KEYS: Move the algorithm pointer array from x509 to public_key.cDavid Howells1-0/+1
Move the public-key algorithm pointer array from x509_public_key.c to public_key.c as it isn't X.509 specific. Note that to make this configure correctly, the public key part must be dependent on the RSA module rather than the other way round. This needs a further patch to make use of the crypto module loading stuff rather than using a fixed table. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25KEYS: Rename public key parameter name arraysDavid Howells1-3/+3
Rename the arrays of public key parameters (public key algorithm names, hash algorithm names and ID type names) so that the array name ends in "_name". Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2012-10-08KEYS: Provide signature verification with an asymmetric keyDavid Howells1-0/+4
Provide signature verification using an asymmetric-type key to indicate the public key to be used. The API is a single function that can be found in crypto/public_key.h: int verify_signature(const struct key *key, const struct public_key_signature *sig) The first argument is the appropriate key to be used and the second argument is the parsed signature data: struct public_key_signature { u8 *digest; u16 digest_size; enum pkey_hash_algo pkey_hash_algo : 8; union { MPI mpi[2]; struct { MPI s; /* m^d mod n */ } rsa; struct { MPI r; MPI s; } dsa; }; }; This should be filled in prior to calling the function. The hash algorithm should already have been called and the hash finalised and the output should be in a buffer pointed to by the 'digest' member. Any extra data to be added to the hash by the hash format (eg. PGP) should have been added by the caller prior to finalising the hash. It is assumed that the signature is made up of a number of MPI values. If an algorithm becomes available for which this is not the case, the above structure will have to change. It is also assumed that it will have been checked that the signature algorithm matches the key algorithm. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08KEYS: Asymmetric public-key algorithm crypto key subtypeDavid Howells1-0/+104
Add a subtype for supporting asymmetric public-key encryption algorithms such as DSA (FIPS-186) and RSA (PKCS#1 / RFC1337). Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>