Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes for various problems that have user visible effects
or seem to be urgent:
- fix corruption when combining DIO and non-blocking io_uring over
multiple extents (seen on MariaDB)
- fix relocation crash due to premature return from commit
- fix quota deadlock between rescan and qgroup removal
- fix item data bounds checks in tree-checker (found on a fuzzed
image)
- fix fsync of prealloc extents after EOF
- add missing run of delayed items after unlink during log replay
- don't start relocation until snapshot drop is finished
- fix reversed condition for subpage writers locking
- fix warning on page error"
* tag 'for-5.17-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fallback to blocking mode when doing async dio over multiple extents
btrfs: add missing run of delayed items after unlink during log replay
btrfs: qgroup: fix deadlock between rescan worker and remove qgroup
btrfs: fix relocation crash due to premature return from btrfs_commit_transaction()
btrfs: do not start relocation until in progress drops are done
btrfs: tree-checker: use u64 for item data end to avoid overflow
btrfs: do not WARN_ON() if we have PageError set
btrfs: fix lost prealloc extents beyond eof after full fsync
btrfs: subpage: fix a wrong check on subpage->writers
|
|
Since bit 57 was exported for uffd-wp write-protected (commit
fb8e37f35a2f: "mm/pagemap: export uffd-wp protection information"),
fixing it can reduce some unnecessary confusion.
Link: https://lkml.kernel.org/r/20220301044538.3042713-1-yun.zhou@windriver.com
Fixes: fb8e37f35a2fe1 ("mm/pagemap: export uffd-wp protection information")
Signed-off-by: Yun Zhou <yun.zhou@windriver.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Tiberiu A Georgescu <tiberiu.georgescu@nutanix.com>
Cc: Florian Schmidt <florian.schmidt@nutanix.com>
Cc: Ivan Teterevkov <ivan.teterevkov@nutanix.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Colin Cross <ccross@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Avoid mixing strings and their anon_vma_name referenced pointers by
using struct anon_vma_name whenever possible. This simplifies the code
and allows easier sharing of anon_vma_name structures when they
represent the same name.
[surenb@google.com: fix comment]
Link: https://lkml.kernel.org/r/20220223153613.835563-1-surenb@google.com
Link: https://lkml.kernel.org/r/20220224231834.1481408-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Colin Cross <ccross@google.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Alexey Gladkov <legion@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Chris Hyser <chris.hyser@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Xiaofeng Cao <caoxiaofeng@yulong.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Some users recently reported that MariaDB was getting a read corruption
when using io_uring on top of btrfs. This started to happen in 5.16,
after commit 51bd9563b6783d ("btrfs: fix deadlock due to page faults
during direct IO reads and writes"). That changed btrfs to use the new
iomap flag IOMAP_DIO_PARTIAL and to disable page faults before calling
iomap_dio_rw(). This was necessary to fix deadlocks when the iovector
corresponds to a memory mapped file region. That type of scenario is
exercised by test case generic/647 from fstests.
For this MariaDB scenario, we attempt to read 16K from file offset X
using IOCB_NOWAIT and io_uring. In that range we have 4 extents, each
with a size of 4K, and what happens is the following:
1) btrfs_direct_read() disables page faults and calls iomap_dio_rw();
2) iomap creates a struct iomap_dio object, its reference count is
initialized to 1 and its ->size field is initialized to 0;
3) iomap calls btrfs_dio_iomap_begin() with file offset X, which finds
the first 4K extent, and setups an iomap for this extent consisting
of a single page;
4) At iomap_dio_bio_iter(), we are able to access the first page of the
buffer (struct iov_iter) with bio_iov_iter_get_pages() without
triggering a page fault;
5) iomap submits a bio for this 4K extent
(iomap_dio_submit_bio() -> btrfs_submit_direct()) and increments
the refcount on the struct iomap_dio object to 2; The ->size field
of the struct iomap_dio object is incremented to 4K;
6) iomap calls btrfs_iomap_begin() again, this time with a file
offset of X + 4K. There we setup an iomap for the next extent
that also has a size of 4K;
7) Then at iomap_dio_bio_iter() we call bio_iov_iter_get_pages(),
which tries to access the next page (2nd page) of the buffer.
This triggers a page fault and returns -EFAULT;
8) At __iomap_dio_rw() we see the -EFAULT, but we reset the error
to 0 because we passed the flag IOMAP_DIO_PARTIAL to iomap and
the struct iomap_dio object has a ->size value of 4K (we submitted
a bio for an extent already). The 'wait_for_completion' variable
is not set to true, because our iocb has IOCB_NOWAIT set;
9) At the bottom of __iomap_dio_rw(), we decrement the reference count
of the struct iomap_dio object from 2 to 1. Because we were not
the only ones holding a reference on it and 'wait_for_completion' is
set to false, -EIOCBQUEUED is returned to btrfs_direct_read(), which
just returns it up the callchain, up to io_uring;
10) The bio submitted for the first extent (step 5) completes and its
bio endio function, iomap_dio_bio_end_io(), decrements the last
reference on the struct iomap_dio object, resulting in calling
iomap_dio_complete_work() -> iomap_dio_complete().
11) At iomap_dio_complete() we adjust the iocb->ki_pos from X to X + 4K
and return 4K (the amount of io done) to iomap_dio_complete_work();
12) iomap_dio_complete_work() calls the iocb completion callback,
iocb->ki_complete() with a second argument value of 4K (total io
done) and the iocb with the adjust ki_pos of X + 4K. This results
in completing the read request for io_uring, leaving it with a
result of 4K bytes read, and only the first page of the buffer
filled in, while the remaining 3 pages, corresponding to the other
3 extents, were not filled;
13) For the application, the result is unexpected because if we ask
to read N bytes, it expects to get N bytes read as long as those
N bytes don't cross the EOF (i_size).
MariaDB reports this as an error, as it's not expecting a short read,
since it knows it's asking for read operations fully within the i_size
boundary. This is typical in many applications, but it may also be
questionable if they should react to such short reads by issuing more
read calls to get the remaining data. Nevertheless, the short read
happened due to a change in btrfs regarding how it deals with page
faults while in the middle of a read operation, and there's no reason
why btrfs can't have the previous behaviour of returning the whole data
that was requested by the application.
The problem can also be triggered with the following simple program:
/* Get O_DIRECT */
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <liburing.h>
int main(int argc, char *argv[])
{
char *foo_path;
struct io_uring ring;
struct io_uring_sqe *sqe;
struct io_uring_cqe *cqe;
struct iovec iovec;
int fd;
long pagesize;
void *write_buf;
void *read_buf;
ssize_t ret;
int i;
if (argc != 2) {
fprintf(stderr, "Use: %s <directory>\n", argv[0]);
return 1;
}
foo_path = malloc(strlen(argv[1]) + 5);
if (!foo_path) {
fprintf(stderr, "Failed to allocate memory for file path\n");
return 1;
}
strcpy(foo_path, argv[1]);
strcat(foo_path, "/foo");
/*
* Create file foo with 2 extents, each with a size matching
* the page size. Then allocate a buffer to read both extents
* with io_uring, using O_DIRECT and IOCB_NOWAIT. Before doing
* the read with io_uring, access the first page of the buffer
* to fault it in, so that during the read we only trigger a
* page fault when accessing the second page of the buffer.
*/
fd = open(foo_path, O_CREAT | O_TRUNC | O_WRONLY |
O_DIRECT, 0666);
if (fd == -1) {
fprintf(stderr,
"Failed to create file 'foo': %s (errno %d)",
strerror(errno), errno);
return 1;
}
pagesize = sysconf(_SC_PAGE_SIZE);
ret = posix_memalign(&write_buf, pagesize, 2 * pagesize);
if (ret) {
fprintf(stderr, "Failed to allocate write buffer\n");
return 1;
}
memset(write_buf, 0xab, pagesize);
memset(write_buf + pagesize, 0xcd, pagesize);
/* Create 2 extents, each with a size matching page size. */
for (i = 0; i < 2; i++) {
ret = pwrite(fd, write_buf + i * pagesize, pagesize,
i * pagesize);
if (ret != pagesize) {
fprintf(stderr,
"Failed to write to file, ret = %ld errno %d (%s)\n",
ret, errno, strerror(errno));
return 1;
}
ret = fsync(fd);
if (ret != 0) {
fprintf(stderr, "Failed to fsync file\n");
return 1;
}
}
close(fd);
fd = open(foo_path, O_RDONLY | O_DIRECT);
if (fd == -1) {
fprintf(stderr,
"Failed to open file 'foo': %s (errno %d)",
strerror(errno), errno);
return 1;
}
ret = posix_memalign(&read_buf, pagesize, 2 * pagesize);
if (ret) {
fprintf(stderr, "Failed to allocate read buffer\n");
return 1;
}
/*
* Fault in only the first page of the read buffer.
* We want to trigger a page fault for the 2nd page of the
* read buffer during the read operation with io_uring
* (O_DIRECT and IOCB_NOWAIT).
*/
memset(read_buf, 0, 1);
ret = io_uring_queue_init(1, &ring, 0);
if (ret != 0) {
fprintf(stderr, "Failed to create io_uring queue\n");
return 1;
}
sqe = io_uring_get_sqe(&ring);
if (!sqe) {
fprintf(stderr, "Failed to get io_uring sqe\n");
return 1;
}
iovec.iov_base = read_buf;
iovec.iov_len = 2 * pagesize;
io_uring_prep_readv(sqe, fd, &iovec, 1, 0);
ret = io_uring_submit_and_wait(&ring, 1);
if (ret != 1) {
fprintf(stderr,
"Failed at io_uring_submit_and_wait()\n");
return 1;
}
ret = io_uring_wait_cqe(&ring, &cqe);
if (ret < 0) {
fprintf(stderr, "Failed at io_uring_wait_cqe()\n");
return 1;
}
printf("io_uring read result for file foo:\n\n");
printf(" cqe->res == %d (expected %d)\n", cqe->res, 2 * pagesize);
printf(" memcmp(read_buf, write_buf) == %d (expected 0)\n",
memcmp(read_buf, write_buf, 2 * pagesize));
io_uring_cqe_seen(&ring, cqe);
io_uring_queue_exit(&ring);
return 0;
}
When running it on an unpatched kernel:
$ gcc io_uring_test.c -luring
$ mkfs.btrfs -f /dev/sda
$ mount /dev/sda /mnt/sda
$ ./a.out /mnt/sda
io_uring read result for file foo:
cqe->res == 4096 (expected 8192)
memcmp(read_buf, write_buf) == -205 (expected 0)
After this patch, the read always returns 8192 bytes, with the buffer
filled with the correct data. Although that reproducer always triggers
the bug in my test vms, it's possible that it will not be so reliable
on other environments, as that can happen if the bio for the first
extent completes and decrements the reference on the struct iomap_dio
object before we do the atomic_dec_and_test() on the reference at
__iomap_dio_rw().
Fix this in btrfs by having btrfs_dio_iomap_begin() return -EAGAIN
whenever we try to satisfy a non blocking IO request (IOMAP_NOWAIT flag
set) over a range that spans multiple extents (or a mix of extents and
holes). This avoids returning success to the caller when we only did
partial IO, which is not optimal for writes and for reads it's actually
incorrect, as the caller doesn't expect to get less bytes read than it has
requested (unless EOF is crossed), as previously mentioned. This is also
the type of behaviour that xfs follows (xfs_direct_write_iomap_begin()),
even though it doesn't use IOMAP_DIO_PARTIAL.
A test case for fstests will follow soon.
Link: https://lore.kernel.org/linux-btrfs/CABVffEM0eEWho+206m470rtM0d9J8ue85TtR-A_oVTuGLWFicA@mail.gmail.com/
Link: https://lore.kernel.org/linux-btrfs/CAHF2GV6U32gmqSjLe=XKgfcZAmLCiH26cJ2OnHGp5x=VAH4OHQ@mail.gmail.com/
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When cachefiles_shorten_object() calls fallocate() to shape the cache
file to match the DIO size, it passes the total file size it wants to
achieve, not the amount of zeros that should be inserted. Since this is
meant to preallocate that amount of storage for the file, it can cause
the cache to fill up the disk and hit ENOSPC.
Fix this by passing the length actually required to go from the current
EOF to the desired EOF.
Fixes: 7623ed6772de ("cachefiles: Implement cookie resize for truncate")
Reported-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/164630854858.3665356.17419701804248490708.stgit@warthog.procyon.org.uk # v1
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs
Pull erofs fix from Gao Xiang:
"A one-line patch to fix the new ztailpacking feature on > 4GiB
filesystems because z_idataoff can get trimmed improperly.
ztailpacking is still a brand new EXPERIMENTAL feature, but it'd be
better to fix the issue as soon as possible to avoid unnecessary
backporting.
Summary:
- Fix ztailpacking z_idataoff getting trimmed on > 4GiB filesystems"
* tag 'erofs-for-5.17-rc7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs:
erofs: fix ztailpacking on > 4GiB filesystems
|
|
During log replay, whenever we need to check if a name (dentry) exists in
a directory we do searches on the subvolume tree for inode references or
or directory entries (BTRFS_DIR_INDEX_KEY keys, and BTRFS_DIR_ITEM_KEY
keys as well, before kernel 5.17). However when during log replay we
unlink a name, through btrfs_unlink_inode(), we may not delete inode
references and dir index keys from a subvolume tree and instead just add
the deletions to the delayed inode's delayed items, which will only be
run when we commit the transaction used for log replay. This means that
after an unlink operation during log replay, if we attempt to search for
the same name during log replay, we will not see that the name was already
deleted, since the deletion is recorded only on the delayed items.
We run delayed items after every unlink operation during log replay,
except at unlink_old_inode_refs() and at add_inode_ref(). This was due
to an overlook, as delayed items should be run after evert unlink, for
the reasons stated above.
So fix those two cases.
Fixes: 0d836392cadd5 ("Btrfs: fix mount failure after fsync due to hard link recreation")
Fixes: 1f250e929a9c9 ("Btrfs: fix log replay failure after unlink and link combination")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The commit e804861bd4e6 ("btrfs: fix deadlock between quota disable and
qgroup rescan worker") by Kawasaki resolves deadlock between quota
disable and qgroup rescan worker. But also there is a deadlock case like
it. It's about enabling or disabling quota and creating or removing
qgroup. It can be reproduced in simple script below.
for i in {1..100}
do
btrfs quota enable /mnt &
btrfs qgroup create 1/0 /mnt &
btrfs qgroup destroy 1/0 /mnt &
btrfs quota disable /mnt &
done
Here's why the deadlock happens:
1) The quota rescan task is running.
2) Task A calls btrfs_quota_disable(), locks the qgroup_ioctl_lock
mutex, and then calls btrfs_qgroup_wait_for_completion(), to wait for
the quota rescan task to complete.
3) Task B calls btrfs_remove_qgroup() and it blocks when trying to lock
the qgroup_ioctl_lock mutex, because it's being held by task A. At that
point task B is holding a transaction handle for the current transaction.
4) The quota rescan task calls btrfs_commit_transaction(). This results
in it waiting for all other tasks to release their handles on the
transaction, but task B is blocked on the qgroup_ioctl_lock mutex
while holding a handle on the transaction, and that mutex is being held
by task A, which is waiting for the quota rescan task to complete,
resulting in a deadlock between these 3 tasks.
To resolve this issue, the thread disabling quota should unlock
qgroup_ioctl_lock before waiting rescan completion. Move
btrfs_qgroup_wait_for_completion() after unlock of qgroup_ioctl_lock.
Fixes: e804861bd4e6 ("btrfs: fix deadlock between quota disable and qgroup rescan worker")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Signed-off-by: Sidong Yang <realwakka@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_commit_transaction()
We are seeing crashes similar to the following trace:
[38.969182] WARNING: CPU: 20 PID: 2105 at fs/btrfs/relocation.c:4070 btrfs_relocate_block_group+0x2dc/0x340 [btrfs]
[38.973556] CPU: 20 PID: 2105 Comm: btrfs Not tainted 5.17.0-rc4 #54
[38.974580] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[38.976539] RIP: 0010:btrfs_relocate_block_group+0x2dc/0x340 [btrfs]
[38.980336] RSP: 0000:ffffb0dd42e03c20 EFLAGS: 00010206
[38.981218] RAX: ffff96cfc4ede800 RBX: ffff96cfc3ce0000 RCX: 000000000002ca14
[38.982560] RDX: 0000000000000000 RSI: 4cfd109a0bcb5d7f RDI: ffff96cfc3ce0360
[38.983619] RBP: ffff96cfc309c000 R08: 0000000000000000 R09: 0000000000000000
[38.984678] R10: ffff96cec0000001 R11: ffffe84c80000000 R12: ffff96cfc4ede800
[38.985735] R13: 0000000000000000 R14: 0000000000000000 R15: ffff96cfc3ce0360
[38.987146] FS: 00007f11c15218c0(0000) GS:ffff96d6dfb00000(0000) knlGS:0000000000000000
[38.988662] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[38.989398] CR2: 00007ffc922c8e60 CR3: 00000001147a6001 CR4: 0000000000370ee0
[38.990279] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[38.991219] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[38.992528] Call Trace:
[38.992854] <TASK>
[38.993148] btrfs_relocate_chunk+0x27/0xe0 [btrfs]
[38.993941] btrfs_balance+0x78e/0xea0 [btrfs]
[38.994801] ? vsnprintf+0x33c/0x520
[38.995368] ? __kmalloc_track_caller+0x351/0x440
[38.996198] btrfs_ioctl_balance+0x2b9/0x3a0 [btrfs]
[38.997084] btrfs_ioctl+0x11b0/0x2da0 [btrfs]
[38.997867] ? mod_objcg_state+0xee/0x340
[38.998552] ? seq_release+0x24/0x30
[38.999184] ? proc_nr_files+0x30/0x30
[38.999654] ? call_rcu+0xc8/0x2f0
[39.000228] ? __x64_sys_ioctl+0x84/0xc0
[39.000872] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[39.001973] __x64_sys_ioctl+0x84/0xc0
[39.002566] do_syscall_64+0x3a/0x80
[39.003011] entry_SYSCALL_64_after_hwframe+0x44/0xae
[39.003735] RIP: 0033:0x7f11c166959b
[39.007324] RSP: 002b:00007fff2543e998 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[39.008521] RAX: ffffffffffffffda RBX: 00007f11c1521698 RCX: 00007f11c166959b
[39.009833] RDX: 00007fff2543ea40 RSI: 00000000c4009420 RDI: 0000000000000003
[39.011270] RBP: 0000000000000003 R08: 0000000000000013 R09: 00007f11c16f94e0
[39.012581] R10: 0000000000000000 R11: 0000000000000246 R12: 00007fff25440df3
[39.014046] R13: 0000000000000000 R14: 00007fff2543ea40 R15: 0000000000000001
[39.015040] </TASK>
[39.015418] ---[ end trace 0000000000000000 ]---
[43.131559] ------------[ cut here ]------------
[43.132234] kernel BUG at fs/btrfs/extent-tree.c:2717!
[43.133031] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[43.133702] CPU: 1 PID: 1839 Comm: btrfs Tainted: G W 5.17.0-rc4 #54
[43.134863] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[43.136426] RIP: 0010:unpin_extent_range+0x37a/0x4f0 [btrfs]
[43.139913] RSP: 0000:ffffb0dd4216bc70 EFLAGS: 00010246
[43.140629] RAX: 0000000000000000 RBX: ffff96cfc34490f8 RCX: 0000000000000001
[43.141604] RDX: 0000000080000001 RSI: 0000000051d00000 RDI: 00000000ffffffff
[43.142645] RBP: 0000000000000000 R08: 0000000000000000 R09: ffff96cfd07dca50
[43.143669] R10: ffff96cfc46e8a00 R11: fffffffffffec000 R12: 0000000041d00000
[43.144657] R13: ffff96cfc3ce0000 R14: ffffb0dd4216bd08 R15: 0000000000000000
[43.145686] FS: 00007f7657dd68c0(0000) GS:ffff96d6df640000(0000) knlGS:0000000000000000
[43.146808] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[43.147584] CR2: 00007f7fe81bf5b0 CR3: 00000001093ee004 CR4: 0000000000370ee0
[43.148589] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[43.149581] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[43.150559] Call Trace:
[43.150904] <TASK>
[43.151253] btrfs_finish_extent_commit+0x88/0x290 [btrfs]
[43.152127] btrfs_commit_transaction+0x74f/0xaa0 [btrfs]
[43.152932] ? btrfs_attach_transaction_barrier+0x1e/0x50 [btrfs]
[43.153786] btrfs_ioctl+0x1edc/0x2da0 [btrfs]
[43.154475] ? __check_object_size+0x150/0x170
[43.155170] ? preempt_count_add+0x49/0xa0
[43.155753] ? __x64_sys_ioctl+0x84/0xc0
[43.156437] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[43.157456] __x64_sys_ioctl+0x84/0xc0
[43.157980] do_syscall_64+0x3a/0x80
[43.158543] entry_SYSCALL_64_after_hwframe+0x44/0xae
[43.159231] RIP: 0033:0x7f7657f1e59b
[43.161819] RSP: 002b:00007ffda5cd1658 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[43.162702] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f7657f1e59b
[43.163526] RDX: 0000000000000000 RSI: 0000000000009408 RDI: 0000000000000003
[43.164358] RBP: 0000000000000003 R08: 0000000000000000 R09: 0000000000000000
[43.165208] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[43.166029] R13: 00005621b91c3232 R14: 00005621b91ba580 R15: 00007ffda5cd1800
[43.166863] </TASK>
[43.167125] Modules linked in: btrfs blake2b_generic xor pata_acpi ata_piix libata raid6_pq scsi_mod libcrc32c virtio_net virtio_rng net_failover rng_core failover scsi_common
[43.169552] ---[ end trace 0000000000000000 ]---
[43.171226] RIP: 0010:unpin_extent_range+0x37a/0x4f0 [btrfs]
[43.174767] RSP: 0000:ffffb0dd4216bc70 EFLAGS: 00010246
[43.175600] RAX: 0000000000000000 RBX: ffff96cfc34490f8 RCX: 0000000000000001
[43.176468] RDX: 0000000080000001 RSI: 0000000051d00000 RDI: 00000000ffffffff
[43.177357] RBP: 0000000000000000 R08: 0000000000000000 R09: ffff96cfd07dca50
[43.178271] R10: ffff96cfc46e8a00 R11: fffffffffffec000 R12: 0000000041d00000
[43.179178] R13: ffff96cfc3ce0000 R14: ffffb0dd4216bd08 R15: 0000000000000000
[43.180071] FS: 00007f7657dd68c0(0000) GS:ffff96d6df800000(0000) knlGS:0000000000000000
[43.181073] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[43.181808] CR2: 00007fe09905f010 CR3: 00000001093ee004 CR4: 0000000000370ee0
[43.182706] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[43.183591] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
We first hit the WARN_ON(rc->block_group->pinned > 0) in
btrfs_relocate_block_group() and then the BUG_ON(!cache) in
unpin_extent_range(). This tells us that we are exiting relocation and
removing the block group with bytes still pinned for that block group.
This is supposed to be impossible: the last thing relocate_block_group()
does is commit the transaction to get rid of pinned extents.
Commit d0c2f4fa555e ("btrfs: make concurrent fsyncs wait less when
waiting for a transaction commit") introduced an optimization so that
commits from fsync don't have to wait for the previous commit to unpin
extents. This was only intended to affect fsync, but it inadvertently
made it possible for any commit to skip waiting for the previous commit
to unpin. This is because if a call to btrfs_commit_transaction() finds
that another thread is already committing the transaction, it waits for
the other thread to complete the commit and then returns. If that other
thread was in fsync, then it completes the commit without completing the
previous commit. This makes the following sequence of events possible:
Thread 1____________________|Thread 2 (fsync)_____________________|Thread 3 (balance)___________________
btrfs_commit_transaction(N) | |
btrfs_run_delayed_refs | |
pin extents | |
... | |
state = UNBLOCKED |btrfs_sync_file |
| btrfs_start_transaction(N + 1) |relocate_block_group
| | btrfs_join_transaction(N + 1)
| btrfs_commit_transaction(N + 1) |
... | trans->state = COMMIT_START |
| | btrfs_commit_transaction(N + 1)
| | wait_for_commit(N + 1, COMPLETED)
| wait_for_commit(N, SUPER_COMMITTED)|
state = SUPER_COMMITTED | ... |
btrfs_finish_extent_commit| |
unpin_extent_range() | trans->state = COMPLETED |
| | return
| |
... | |Thread 1 isn't done, so pinned > 0
| |and we WARN
| |
| |btrfs_remove_block_group
unpin_extent_range() | |
Thread 3 removed the | |
block group, so we BUG| |
There are other sequences involving SUPER_COMMITTED transactions that
can cause a similar outcome.
We could fix this by making relocation explicitly wait for unpinning,
but there may be other cases that need it. Josef mentioned ENOSPC
flushing and the free space cache inode as other potential victims.
Rather than playing whack-a-mole, this fix is conservative and makes all
commits not in fsync wait for all previous transactions, which is what
the optimization intended.
Fixes: d0c2f4fa555e ("btrfs: make concurrent fsyncs wait less when waiting for a transaction commit")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We hit a bug with a recovering relocation on mount for one of our file
systems in production. I reproduced this locally by injecting errors
into snapshot delete with balance running at the same time. This
presented as an error while looking up an extent item
WARNING: CPU: 5 PID: 1501 at fs/btrfs/extent-tree.c:866 lookup_inline_extent_backref+0x647/0x680
CPU: 5 PID: 1501 Comm: btrfs-balance Not tainted 5.16.0-rc8+ #8
RIP: 0010:lookup_inline_extent_backref+0x647/0x680
RSP: 0018:ffffae0a023ab960 EFLAGS: 00010202
RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000000000
RBP: ffff943fd2a39b60 R08: 0000000000000000 R09: 0000000000000001
R10: 0001434088152de0 R11: 0000000000000000 R12: 0000000001d05000
R13: ffff943fd2a39b60 R14: ffff943fdb96f2a0 R15: ffff9442fc923000
FS: 0000000000000000(0000) GS:ffff944e9eb40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1157b1fca8 CR3: 000000010f092000 CR4: 0000000000350ee0
Call Trace:
<TASK>
insert_inline_extent_backref+0x46/0xd0
__btrfs_inc_extent_ref.isra.0+0x5f/0x200
? btrfs_merge_delayed_refs+0x164/0x190
__btrfs_run_delayed_refs+0x561/0xfa0
? btrfs_search_slot+0x7b4/0xb30
? btrfs_update_root+0x1a9/0x2c0
btrfs_run_delayed_refs+0x73/0x1f0
? btrfs_update_root+0x1a9/0x2c0
btrfs_commit_transaction+0x50/0xa50
? btrfs_update_reloc_root+0x122/0x220
prepare_to_merge+0x29f/0x320
relocate_block_group+0x2b8/0x550
btrfs_relocate_block_group+0x1a6/0x350
btrfs_relocate_chunk+0x27/0xe0
btrfs_balance+0x777/0xe60
balance_kthread+0x35/0x50
? btrfs_balance+0xe60/0xe60
kthread+0x16b/0x190
? set_kthread_struct+0x40/0x40
ret_from_fork+0x22/0x30
</TASK>
Normally snapshot deletion and relocation are excluded from running at
the same time by the fs_info->cleaner_mutex. However if we had a
pending balance waiting to get the ->cleaner_mutex, and a snapshot
deletion was running, and then the box crashed, we would come up in a
state where we have a half deleted snapshot.
Again, in the normal case the snapshot deletion needs to complete before
relocation can start, but in this case relocation could very well start
before the snapshot deletion completes, as we simply add the root to the
dead roots list and wait for the next time the cleaner runs to clean up
the snapshot.
Fix this by setting a bit on the fs_info if we have any DEAD_ROOT's that
had a pending drop_progress key. If they do then we know we were in the
middle of the drop operation and set a flag on the fs_info. Then
balance can wait until this flag is cleared to start up again.
If there are DEAD_ROOT's that don't have a drop_progress set then we're
safe to start balance right away as we'll be properly protected by the
cleaner_mutex.
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
User reported there is an array-index-out-of-bounds access while
mounting the crafted image:
[350.411942 ] loop0: detected capacity change from 0 to 262144
[350.427058 ] BTRFS: device fsid a62e00e8-e94e-4200-8217-12444de93c2e devid 1 transid 8 /dev/loop0 scanned by systemd-udevd (1044)
[350.428564 ] BTRFS info (device loop0): disk space caching is enabled
[350.428568 ] BTRFS info (device loop0): has skinny extents
[350.429589 ]
[350.429619 ] UBSAN: array-index-out-of-bounds in fs/btrfs/struct-funcs.c:161:1
[350.429636 ] index 1048096 is out of range for type 'page *[16]'
[350.429650 ] CPU: 0 PID: 9 Comm: kworker/u8:1 Not tainted 5.16.0-rc4
[350.429652 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
[350.429653 ] Workqueue: btrfs-endio-meta btrfs_work_helper [btrfs]
[350.429772 ] Call Trace:
[350.429774 ] <TASK>
[350.429776 ] dump_stack_lvl+0x47/0x5c
[350.429780 ] ubsan_epilogue+0x5/0x50
[350.429786 ] __ubsan_handle_out_of_bounds+0x66/0x70
[350.429791 ] btrfs_get_16+0xfd/0x120 [btrfs]
[350.429832 ] check_leaf+0x754/0x1a40 [btrfs]
[350.429874 ] ? filemap_read+0x34a/0x390
[350.429878 ] ? load_balance+0x175/0xfc0
[350.429881 ] validate_extent_buffer+0x244/0x310 [btrfs]
[350.429911 ] btrfs_validate_metadata_buffer+0xf8/0x100 [btrfs]
[350.429935 ] end_bio_extent_readpage+0x3af/0x850 [btrfs]
[350.429969 ] ? newidle_balance+0x259/0x480
[350.429972 ] end_workqueue_fn+0x29/0x40 [btrfs]
[350.429995 ] btrfs_work_helper+0x71/0x330 [btrfs]
[350.430030 ] ? __schedule+0x2fb/0xa40
[350.430033 ] process_one_work+0x1f6/0x400
[350.430035 ] ? process_one_work+0x400/0x400
[350.430036 ] worker_thread+0x2d/0x3d0
[350.430037 ] ? process_one_work+0x400/0x400
[350.430038 ] kthread+0x165/0x190
[350.430041 ] ? set_kthread_struct+0x40/0x40
[350.430043 ] ret_from_fork+0x1f/0x30
[350.430047 ] </TASK>
[350.430047 ]
[350.430077 ] BTRFS warning (device loop0): bad eb member start: ptr 0xffe20f4e start 20975616 member offset 4293005178 size 2
btrfs check reports:
corrupt leaf: root=3 block=20975616 physical=20975616 slot=1, unexpected
item end, have 4294971193 expect 3897
The first slot item offset is 4293005033 and the size is 1966160.
In check_leaf, we use btrfs_item_end() to check item boundary versus
extent_buffer data size. However, return type of btrfs_item_end() is u32.
(u32)(4293005033 + 1966160) == 3897, overflow happens and the result 3897
equals to leaf data size reasonably.
Fix it by use u64 variable to store item data end in check_leaf() to
avoid u32 overflow.
This commit does solve the invalid memory access showed by the stack
trace. However, its metadata profile is DUP and another copy of the
leaf is fine. So the image can be mounted successfully. But when umount
is called, the ASSERT btrfs_mark_buffer_dirty() will be triggered
because the only node in extent tree has 0 item and invalid owner. It's
solved by another commit
"btrfs: check extent buffer owner against the owner rootid".
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=215299
Reported-by: Wenqing Liu <wenqingliu0120@gmail.com>
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Su Yue <l@damenly.su>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Whenever we do any extent buffer operations we call
assert_eb_page_uptodate() to complain loudly if we're operating on an
non-uptodate page. Our overnight tests caught this warning earlier this
week
WARNING: CPU: 1 PID: 553508 at fs/btrfs/extent_io.c:6849 assert_eb_page_uptodate+0x3f/0x50
CPU: 1 PID: 553508 Comm: kworker/u4:13 Tainted: G W 5.17.0-rc3+ #564
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Workqueue: btrfs-cache btrfs_work_helper
RIP: 0010:assert_eb_page_uptodate+0x3f/0x50
RSP: 0018:ffffa961440a7c68 EFLAGS: 00010246
RAX: 0017ffffc0002112 RBX: ffffe6e74453f9c0 RCX: 0000000000001000
RDX: ffffe6e74467c887 RSI: ffffe6e74453f9c0 RDI: ffff8d4c5efc2fc0
RBP: 0000000000000d56 R08: ffff8d4d4a224000 R09: 0000000000000000
R10: 00015817fa9d1ef0 R11: 000000000000000c R12: 00000000000007b1
R13: ffff8d4c5efc2fc0 R14: 0000000001500000 R15: 0000000001cb1000
FS: 0000000000000000(0000) GS:ffff8d4dbbd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ff31d3448d8 CR3: 0000000118be8004 CR4: 0000000000370ee0
Call Trace:
extent_buffer_test_bit+0x3f/0x70
free_space_test_bit+0xa6/0xc0
load_free_space_tree+0x1f6/0x470
caching_thread+0x454/0x630
? rcu_read_lock_sched_held+0x12/0x60
? rcu_read_lock_sched_held+0x12/0x60
? rcu_read_lock_sched_held+0x12/0x60
? lock_release+0x1f0/0x2d0
btrfs_work_helper+0xf2/0x3e0
? lock_release+0x1f0/0x2d0
? finish_task_switch.isra.0+0xf9/0x3a0
process_one_work+0x26d/0x580
? process_one_work+0x580/0x580
worker_thread+0x55/0x3b0
? process_one_work+0x580/0x580
kthread+0xf0/0x120
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
This was partially fixed by c2e39305299f01 ("btrfs: clear extent buffer
uptodate when we fail to write it"), however all that fix did was keep
us from finding extent buffers after a failed writeout. It didn't keep
us from continuing to use a buffer that we already had found.
In this case we're searching the commit root to cache the block group,
so we can start committing the transaction and switch the commit root
and then start writing. After the switch we can look up an extent
buffer that hasn't been written yet and start processing that block
group. Then we fail to write that block out and clear Uptodate on the
page, and then we start spewing these errors.
Normally we're protected by the tree lock to a certain degree here. If
we read a block we have that block read locked, and we block the writer
from locking the block before we submit it for the write. However this
isn't necessarily fool proof because the read could happen before we do
the submit_bio and after we locked and unlocked the extent buffer.
Also in this particular case we have path->skip_locking set, so that
won't save us here. We'll simply get a block that was valid when we
read it, but became invalid while we were using it.
What we really want is to catch the case where we've "read" a block but
it's not marked Uptodate. On read we ClearPageError(), so if we're
!Uptodate and !Error we know we didn't do the right thing for reading
the page.
Fix this by checking !Uptodate && !Error, this way we will not complain
if our buffer gets invalidated while we're using it, and we'll maintain
the spirit of the check which is to make sure we have a fully in-cache
block while we're messing with it.
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When doing a full fsync, if we have prealloc extents beyond (or at) eof,
and the leaves that contain them were not modified in the current
transaction, we end up not logging them. This results in losing those
extents when we replay the log after a power failure, since the inode is
truncated to the current value of the logged i_size.
Just like for the fast fsync path, we need to always log all prealloc
extents starting at or beyond i_size. The fast fsync case was fixed in
commit 471d557afed155 ("Btrfs: fix loss of prealloc extents past i_size
after fsync log replay") but it missed the full fsync path. The problem
exists since the very early days, when the log tree was added by
commit e02119d5a7b439 ("Btrfs: Add a write ahead tree log to optimize
synchronous operations").
Example reproducer:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
# Create our test file with many file extent items, so that they span
# several leaves of metadata, even if the node/page size is 64K. Use
# direct IO and not fsync/O_SYNC because it's both faster and it avoids
# clearing the full sync flag from the inode - we want the fsync below
# to trigger the slow full sync code path.
$ xfs_io -f -d -c "pwrite -b 4K 0 16M" /mnt/foo
# Now add two preallocated extents to our file without extending the
# file's size. One right at i_size, and another further beyond, leaving
# a gap between the two prealloc extents.
$ xfs_io -c "falloc -k 16M 1M" /mnt/foo
$ xfs_io -c "falloc -k 20M 1M" /mnt/foo
# Make sure everything is durably persisted and the transaction is
# committed. This makes all created extents to have a generation lower
# than the generation of the transaction used by the next write and
# fsync.
sync
# Now overwrite only the first extent, which will result in modifying
# only the first leaf of metadata for our inode. Then fsync it. This
# fsync will use the slow code path (inode full sync bit is set) because
# it's the first fsync since the inode was created/loaded.
$ xfs_io -c "pwrite 0 4K" -c "fsync" /mnt/foo
# Extent list before power failure.
$ xfs_io -c "fiemap -v" /mnt/foo
/mnt/foo:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 2178048..2178055 8 0x0
1: [8..16383]: 26632..43007 16376 0x0
2: [16384..32767]: 2156544..2172927 16384 0x0
3: [32768..34815]: 2172928..2174975 2048 0x800
4: [34816..40959]: hole 6144
5: [40960..43007]: 2174976..2177023 2048 0x801
<power fail>
# Mount fs again, trigger log replay.
$ mount /dev/sdc /mnt
# Extent list after power failure and log replay.
$ xfs_io -c "fiemap -v" /mnt/foo
/mnt/foo:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 2178048..2178055 8 0x0
1: [8..16383]: 26632..43007 16376 0x0
2: [16384..32767]: 2156544..2172927 16384 0x1
# The prealloc extents at file offsets 16M and 20M are missing.
So fix this by calling btrfs_log_prealloc_extents() when we are doing a
full fsync, so that we always log all prealloc extents beyond eof.
A test case for fstests will follow soon.
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
When looping btrfs/074 with 64K page size and 4K sectorsize, there is a
low chance (1/50~1/100) to crash with the following ASSERT() triggered
in btrfs_subpage_start_writer():
ret = atomic_add_return(nbits, &subpage->writers);
ASSERT(ret == nbits); <<< This one <<<
[CAUSE]
With more debugging output on the parameters of
btrfs_subpage_start_writer(), it shows a very concerning error:
ret=29 nbits=13 start=393216 len=53248
For @nbits it's correct, but @ret which is the returned value from
atomic_add_return(), it's not only larger than nbits, but also larger
than max sectors per page value (for 64K page size and 4K sector size,
it's 16).
This indicates that some call sites are not properly decreasing the value.
And that's exactly the case, in btrfs_page_unlock_writer(), due to the
fact that we can have page locked either by lock_page() or
process_one_page(), we have to check if the subpage has any writer.
If no writers, it's locked by lock_page() and we only need to unlock it.
But unfortunately the check for the writers are completely opposite:
if (atomic_read(&subpage->writers))
/* No writers, locked by plain lock_page() */
return unlock_page(page);
We directly unlock the page if it has writers, which is the completely
opposite what we want.
Thankfully the affected call site is only limited to
extent_write_locked_range(), so it's mostly affecting compressed write.
[FIX]
Just fix the wrong check condition to fix the bug.
Fixes: e55a0de18572 ("btrfs: rework page locking in __extent_writepage()")
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
z_idataoff here is an absolute physical offset, so it should use
erofs_off_t (64 bits at least). Otherwise, it'll get trimmed and
cause the decompresion failure.
Link: https://lore.kernel.org/r/20220222033118.20540-1-hsiangkao@linux.alibaba.com
Fixes: ab92184ff8f1 ("erofs: add on-disk compressed tail-packing inline support")
Reviewed-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull binfmt_elf fix from Kees Cook:
"This addresses a regression[1] under ia64 where some ET_EXEC binaries
were not loading"
Link: https://linux-regtracking.leemhuis.info/regzbot/regression/a3edd529-c42d-3b09-135c-7e98a15b150f@leemhuis.info/ [1]
- Fix ia64 ET_EXEC loading
* tag 'binfmt_elf-v5.17-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
binfmt_elf: Avoid total_mapping_size for ET_EXEC
|
|
Partially revert commit 5f501d555653 ("binfmt_elf: reintroduce using
MAP_FIXED_NOREPLACE"), which applied the ET_DYN "total_mapping_size"
logic also to ET_EXEC.
At least ia64 has ET_EXEC PT_LOAD segments that are not virtual-address
contiguous (but _are_ file-offset contiguous). This would result in a
giant mapping attempting to cover the entire span, including the virtual
address range hole, and well beyond the size of the ELF file itself,
causing the kernel to refuse to load it. For example:
$ readelf -lW /usr/bin/gcc
...
Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz ...
...
LOAD 0x000000 0x4000000000000000 0x4000000000000000 0x00b5a0 0x00b5a0 ...
LOAD 0x00b5a0 0x600000000000b5a0 0x600000000000b5a0 0x0005ac 0x000710 ...
...
^^^^^^^^ ^^^^^^^^^^^^^^^^^^ ^^^^^^^^ ^^^^^^^^
File offset range : 0x000000-0x00bb4c
0x00bb4c bytes
Virtual address range : 0x4000000000000000-0x600000000000bcb0
0x200000000000bcb0 bytes
Remove the total_mapping_size logic for ET_EXEC, which reduces the
ET_EXEC MAP_FIXED_NOREPLACE coverage to only the first PT_LOAD (better
than nothing), and retains it for ET_DYN.
Ironically, this is the reverse of the problem that originally caused
problems with MAP_FIXED_NOREPLACE: overlapping PT_LOAD segments. Future
work could restore full coverage if load_elf_binary() were to perform
mappings in a separate phase from the loading (where it could resolve
both overlaps and holes).
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-mm@kvack.org
Reported-by: matoro <matoro_bugzilla_kernel@matoro.tk>
Fixes: 5f501d555653 ("binfmt_elf: reintroduce using MAP_FIXED_NOREPLACE")
Link: https://lore.kernel.org/r/a3edd529-c42d-3b09-135c-7e98a15b150f@leemhuis.info
Tested-by: matoro <matoro_mailinglist_kernel@matoro.tk>
Link: https://lore.kernel.org/lkml/ce8af9c13bcea9230c7689f3c1e0e2cd@matoro.tk
Tested-By: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Link: https://lore.kernel.org/lkml/49182d0d-708b-4029-da5f-bc18603440a6@physik.fu-berlin.de
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
- rtla (Real-Time Linux Analysis tool):
- fix typo in man page
- Update API -e to -E before it is released
- Error message fix and memory leak fix
- Partially uninline trace event soft disable to shrink text
- Fix function graph start up test
- Have triggers affect the trace instance they are in and not top level
- Have osnoise sleep in the units it says it uses
- Remove unused ftrace stub function
- Remove event probe redundant info from event in the buffer
- Fix group ownership setting in tracefs
- Ensure trace buffer is minimum size to prevent crashes
* tag 'trace-v5.17-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
rtla/osnoise: Fix error message when failing to enable trace instance
rtla/osnoise: Free params at the exit
rtla/hist: Make -E the short version of --entries
tracing: Fix selftest config check for function graph start up test
tracefs: Set the group ownership in apply_options() not parse_options()
tracing/osnoise: Make osnoise_main to sleep for microseconds
ftrace: Remove unused ftrace_startup_enable() stub
tracing: Ensure trace buffer is at least 4096 bytes large
tracing: Uninline trace_trigger_soft_disabled() partly
eprobes: Remove redundant event type information
tracing: Have traceon and traceoff trigger honor the instance
tracing: Dump stacktrace trigger to the corresponding instance
rtla: Fix systme -> system typo on man page
|
|
Pull xfs fixes from Darrick Wong:
"Nothing exciting, just more fixes for not returning sync_filesystem
error values (and eliding it when it's not necessary).
Summary:
- Only call sync_filesystem when we're remounting the filesystem
readonly readonly, and actually check its return value"
* tag 'xfs-5.17-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: only bother with sync_filesystem during readonly remount
|
|
Al Viro brought it to my attention that the dentries may not be filled
when the parse_options() is called, causing the call to set_gid() to
possibly crash. It should only be called if parse_options() succeeds
totally anyway.
He suggested the logical place to do the update is in apply_options().
Link: https://lore.kernel.org/all/20220225165219.737025658@goodmis.org/
Link: https://lkml.kernel.org/r/20220225153426.1c4cab6b@gandalf.local.home
Cc: stable@vger.kernel.org
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Fixes: 48b27b6b5191 ("tracefs: Set all files to the same group ownership as the mount option")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
git://git.infradead.org/users/hch/configfs
Pull configfs fix from Christoph Hellwig:
- fix a race in configfs_{,un}register_subsystem (ChenXiaoSong)
* tag 'configfs-5.17-2022-02-25' of git://git.infradead.org/users/hch/configfs:
configfs: fix a race in configfs_{,un}register_subsystem()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"This is a hopefully last batch of fixes for defrag that got broken in
5.16, all stable material.
The remaining reported problem is excessive IO with autodefrag due to
various conditions in the defrag code not met or missing"
* tag 'for-5.17-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: reduce extent threshold for autodefrag
btrfs: autodefrag: only scan one inode once
btrfs: defrag: don't use merged extent map for their generation check
btrfs: defrag: bring back the old file extent search behavior
btrfs: defrag: remove an ambiguous condition for rejection
btrfs: defrag: don't defrag extents which are already at max capacity
btrfs: defrag: don't try to merge regular extents with preallocated extents
btrfs: defrag: allow defrag_one_cluster() to skip large extent which is not a target
btrfs: prevent copying too big compressed lzo segment
|
|
Pull io_uring fixes from Jens Axboe:
- Add a conditional schedule point in io_add_buffers() (Eric)
- Fix for a quiesce speedup merged in this release (Dylan)
- Don't convert to jiffies for event timeout waiting, it's way too
coarse when we accept a timespec as input (me)
* tag 'io_uring-5.17-2022-02-23' of git://git.kernel.dk/linux-block:
io_uring: disallow modification of rsrc_data during quiesce
io_uring: don't convert to jiffies for waiting on timeouts
io_uring: add a schedule point in io_add_buffers()
|
|
There is a big gap between inode_should_defrag() and autodefrag extent
size threshold. For inode_should_defrag() it has a flexible
@small_write value. For compressed extent is 16K, and for non-compressed
extent it's 64K.
However for autodefrag extent size threshold, it's always fixed to the
default value (256K).
This means, the following write sequence will trigger autodefrag to
defrag ranges which didn't trigger autodefrag:
pwrite 0 8k
sync
pwrite 8k 128K
sync
The latter 128K write will also be considered as a defrag target (if
other conditions are met). While only that 8K write is really
triggering autodefrag.
Such behavior can cause extra IO for autodefrag.
Close the gap, by copying the @small_write value into inode_defrag, so
that later autodefrag can use the same @small_write value which
triggered autodefrag.
With the existing transid value, this allows autodefrag really to scan
the ranges which triggered autodefrag.
Although this behavior change is mostly reducing the extent_thresh value
for autodefrag, I believe in the future we should allow users to specify
the autodefrag extent threshold through mount options, but that's an
other problem to consider in the future.
CC: stable@vger.kernel.org # 5.16+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Although we have btrfs_requeue_inode_defrag(), for autodefrag we are
still just exhausting all inode_defrag items in the tree.
This means, it doesn't make much difference to requeue an inode_defrag,
other than scan the inode from the beginning till its end.
Change the behaviour to always scan from offset 0 of an inode, and till
the end.
By this we get the following benefit:
- Straight-forward code
- No more re-queue related check
- Fewer members in inode_defrag
We still keep the same btrfs_get_fs_root() and btrfs_iget() check for
each loop, and added extra should_auto_defrag() check per-loop.
Note: the patch needs to be backported and is intentionally written
to minimize the diff size, code will be cleaned up later.
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
For extent maps, if they are not compressed extents and are adjacent by
logical addresses and file offsets, they can be merged into one larger
extent map.
Such merged extent map will have the higher generation of all the
original ones.
But this brings a problem for autodefrag, as it relies on accurate
extent_map::generation to determine if one extent should be defragged.
For merged extent maps, their higher generation can mark some older
extents to be defragged while the original extent map doesn't meet the
minimal generation threshold.
Thus this will cause extra IO.
So solve the problem, here we introduce a new flag, EXTENT_FLAG_MERGED,
to indicate if the extent map is merged from one or more ems.
And for autodefrag, if we find a merged extent map, and its generation
meets the generation requirement, we just don't use this one, and go
back to defrag_get_extent() to read extent maps from subvolume trees.
This could cause more read IO, but should result less defrag data write,
so in the long run it should be a win for autodefrag.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
For defrag, we don't really want to use btrfs_get_extent() to iterate
all extent maps of an inode.
The reasons are:
- btrfs_get_extent() can merge extent maps
And the result em has the higher generation of the two, causing defrag
to mark unnecessary part of such merged large extent map.
This in fact can result extra IO for autodefrag in v5.16+ kernels.
However this patch is not going to completely solve the problem, as
one can still using read() to trigger extent map reading, and got
them merged.
The completely solution for the extent map merging generation problem
will come as an standalone fix.
- btrfs_get_extent() caches the extent map result
Normally it's fine, but for defrag the target range may not get
another read/write for a long long time.
Such cache would only increase the memory usage.
- btrfs_get_extent() doesn't skip older extent map
Unlike the old find_new_extent() which uses btrfs_search_forward() to
skip the older subtree, thus it will pick up unnecessary extent maps.
This patch will fix the regression by introducing defrag_get_extent() to
replace the btrfs_get_extent() call.
This helper will:
- Not cache the file extent we found
It will search the file extent and manually convert it to em.
- Use btrfs_search_forward() to skip entire ranges which is modified in
the past
This should reduce the IO for autodefrag.
Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 7b508037d4ca ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
From the very beginning of btrfs defrag, there is a check to reject
extents which meet both conditions:
- Physically adjacent
We may want to defrag physically adjacent extents to reduce the number
of extents or the size of subvolume tree.
- Larger than 128K
This may be there for compressed extents, but unfortunately 128K is
exactly the max capacity for compressed extents.
And the check is > 128K, thus it never rejects compressed extents.
Furthermore, the compressed extent capacity bug is fixed by previous
patch, there is no reason for that check anymore.
The original check has a very small ranges to reject (the target extent
size is > 128K, and default extent threshold is 256K), and for
compressed extent it doesn't work at all.
So it's better just to remove the rejection, and allow us to defrag
physically adjacent extents.
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
For compressed extents, defrag ioctl will always try to defrag any
compressed extents, wasting not only IO but also CPU time to
compress/decompress:
mkfs.btrfs -f $DEV
mount -o compress $DEV $MNT
xfs_io -f -c "pwrite -S 0xab 0 128K" $MNT/foobar
sync
xfs_io -f -c "pwrite -S 0xcd 128K 128K" $MNT/foobar
sync
echo "=== before ==="
xfs_io -c "fiemap -v" $MNT/foobar
btrfs filesystem defrag $MNT/foobar
sync
echo "=== after ==="
xfs_io -c "fiemap -v" $MNT/foobar
Then it shows the 2 128K extents just get COW for no extra benefit, with
extra IO/CPU spent:
=== before ===
/mnt/btrfs/file1:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..255]: 26624..26879 256 0x8
1: [256..511]: 26632..26887 256 0x9
=== after ===
/mnt/btrfs/file1:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..255]: 26640..26895 256 0x8
1: [256..511]: 26648..26903 256 0x9
This affects not only v5.16 (after the defrag rework), but also v5.15
(before the defrag rework).
[CAUSE]
From the very beginning, btrfs defrag never checks if one extent is
already at its max capacity (128K for compressed extents, 128M
otherwise).
And the default extent size threshold is 256K, which is already beyond
the compressed extent max size.
This means, by default btrfs defrag ioctl will mark all compressed
extent which is not adjacent to a hole/preallocated range for defrag.
[FIX]
Introduce a helper to grab the maximum extent size, and then in
defrag_collect_targets() and defrag_check_next_extent(), reject extents
which are already at their max capacity.
Reported-by: Filipe Manana <fdmanana@suse.com>
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
With older kernels (before v5.16), btrfs will defrag preallocated extents.
While with newer kernels (v5.16 and newer) btrfs will not defrag
preallocated extents, but it will defrag the extent just before the
preallocated extent, even it's just a single sector.
This can be exposed by the following small script:
mkfs.btrfs -f $dev > /dev/null
mount $dev $mnt
xfs_io -f -c "pwrite 0 4k" -c sync -c "falloc 4k 16K" $mnt/file
xfs_io -c "fiemap -v" $mnt/file
btrfs fi defrag $mnt/file
sync
xfs_io -c "fiemap -v" $mnt/file
The output looks like this on older kernels:
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 26624..26631 8 0x0
1: [8..39]: 26632..26663 32 0x801
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..39]: 26664..26703 40 0x1
Which defrags the single sector along with the preallocated extent, and
replace them with an regular extent into a new location (caused by data
COW).
This wastes most of the data IO just for the preallocated range.
On the other hand, v5.16 is slightly better:
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 26624..26631 8 0x0
1: [8..39]: 26632..26663 32 0x801
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 26664..26671 8 0x0
1: [8..39]: 26632..26663 32 0x801
The preallocated range is not defragged, but the sector before it still
gets defragged, which has no need for it.
[CAUSE]
One of the function reused by the old and new behavior is
defrag_check_next_extent(), it will determine if we should defrag
current extent by checking the next one.
It only checks if the next extent is a hole or inlined, but it doesn't
check if it's preallocated.
On the other hand, out of the function, both old and new kernel will
reject preallocated extents.
Such inconsistent behavior causes above behavior.
[FIX]
- Also check if next extent is preallocated
If so, don't defrag current extent.
- Add comments for each branch why we reject the extent
This will reduce the IO caused by defrag ioctl and autodefrag.
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When configfs_register_subsystem() or configfs_unregister_subsystem()
is executing link_group() or unlink_group(),
it is possible that two processes add or delete list concurrently.
Some unfortunate interleavings of them can cause kernel panic.
One of cases is:
A --> B --> C --> D
A <-- B <-- C <-- D
delete list_head *B | delete list_head *C
--------------------------------|-----------------------------------
configfs_unregister_subsystem | configfs_unregister_subsystem
unlink_group | unlink_group
unlink_obj | unlink_obj
list_del_init | list_del_init
__list_del_entry | __list_del_entry
__list_del | __list_del
// next == C |
next->prev = prev |
| next->prev = prev
prev->next = next |
| // prev == B
| prev->next = next
Fix this by adding mutex when calling link_group() or unlink_group(),
but parent configfs_subsystem is NULL when config_item is root.
So I create a mutex configfs_subsystem_mutex.
Fixes: 7063fbf22611 ("[PATCH] configfs: User-driven configuration filesystem")
Signed-off-by: ChenXiaoSong <chenxiaosong2@huawei.com>
Signed-off-by: Laibin Qiu <qiulaibin@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
io_rsrc_ref_quiesce will unlock the uring while it waits for references to
the io_rsrc_data to be killed.
There are other places to the data that might add references to data via
calls to io_rsrc_node_switch.
There is a race condition where this reference can be added after the
completion has been signalled. At this point the io_rsrc_ref_quiesce call
will wake up and relock the uring, assuming the data is unused and can be
freed - although it is actually being used.
To fix this check in io_rsrc_ref_quiesce if a resource has been revived.
Reported-by: syzbot+ca8bf833622a1662745b@syzkaller.appspotmail.com
Cc: stable@vger.kernel.org
Signed-off-by: Dylan Yudaken <dylany@fb.com>
Link: https://lore.kernel.org/r/20220222161751.995746-1-dylany@fb.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
If an application calls io_uring_enter(2) with a timespec passed in,
convert that timespec to ktime_t rather than jiffies. The latter does
not provide the granularity the application may expect, and may in
fact provided different granularity on different systems, depending
on what the HZ value is configured at.
Turn the timespec into an absolute ktime_t, and use that with
schedule_hrtimeout() instead.
Link: https://github.com/axboe/liburing/issues/531
Cc: stable@vger.kernel.org
Reported-by: Bob Chen <chenbo.chen@alibaba-inc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull mount_setattr test/doc fixes from Christian Brauner:
"This contains a fix for one of the selftests for the mount_setattr
syscall to create idmapped mounts, an entry for idmapped mounts for
maintainers, and missing kernel documentation for the helper we split
out some time ago to get and yield write access to a mount when
changing mount properties"
* tag 'fs.mount_setattr.v5.17-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
fs: add kernel doc for mnt_{hold,unhold}_writers()
MAINTAINERS: add entry for idmapped mounts
tests: fix idmapped mount_setattr test
|
|
Pull NFS client bugfixes from Anna Schumaker:
- Fix unnecessary changeattr revalidations
- Fix resolving symlinks during directory lookups
- Don't report writeback errors in nfs_getattr()
* tag 'nfs-for-5.17-3' of git://git.linux-nfs.org/projects/anna/linux-nfs:
NFS: Do not report writeback errors in nfs_getattr()
NFS: LOOKUP_DIRECTORY is also ok with symlinks
NFS: Remove an incorrect revalidation in nfs4_update_changeattr_locked()
|
|
Pull cifs fixes from Steve French:
"Six small smb3 client fixes, three for stable:
- fix for snapshot mount option
- two ACL related fixes
- use after free race fix
- fix for confusing warning message logged with older dialects"
* tag '5.17-rc5-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6:
cifs: fix confusing unneeded warning message on smb2.1 and earlier
cifs: modefromsids must add an ACE for authenticated users
cifs: fix double free race when mount fails in cifs_get_root()
cifs: do not use uninitialized data in the owner/group sid
cifs: fix set of group SID via NTSD xattrs
smb3: fix snapshot mount option
|
|
Commit b42bc9a3c511 ("Fix regression due to "fs: move binfmt_misc sysctl
to its own file") fixed a regression, however it failed to add a
kmemleak_not_leak().
Fixes: b42bc9a3c511 ("Fix regression due to "fs: move binfmt_misc sysctl to its own file")
Reported-by: Tong Zhang <ztong0001@gmail.com>
Cc: Tong Zhang <ztong0001@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When mounting with SMB2.1 or earlier, even with nomultichannel, we
log the confusing warning message:
"CIFS: VFS: multichannel is not supported on this protocol version, use 3.0 or above"
Fix this so that we don't log this unless they really are trying
to mount with multichannel.
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=215608
Reported-by: Kim Scarborough <kim@scarborough.kim>
Cc: stable@vger.kernel.org # 5.11+
Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
The result of the writeback, whether it is an ENOSPC or an EIO, or
anything else, does not inhibit the NFS client from reporting the
correct file timestamps.
Fixes: 79566ef018f5 ("NFS: Getattr doesn't require data sync semantics")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
a target
In the rework of btrfs_defrag_file(), we always call
defrag_one_cluster() and increase the offset by cluster size, which is
only 256K.
But there are cases where we have a large extent (e.g. 128M) which
doesn't need to be defragged at all.
Before the refactor, we can directly skip the range, but now we have to
scan that extent map again and again until the cluster moves after the
non-target extent.
Fix the problem by allow defrag_one_cluster() to increase
btrfs_defrag_ctrl::last_scanned to the end of an extent, if and only if
the last extent of the cluster is not a target.
The test script looks like this:
mkfs.btrfs -f $dev > /dev/null
mount $dev $mnt
# As btrfs ioctl uses 32M as extent_threshold
xfs_io -f -c "pwrite 0 64M" $mnt/file1
sync
# Some fragemented range to defrag
xfs_io -s -c "pwrite 65548k 4k" \
-c "pwrite 65544k 4k" \
-c "pwrite 65540k 4k" \
-c "pwrite 65536k 4k" \
$mnt/file1
sync
echo "=== before ==="
xfs_io -c "fiemap -v" $mnt/file1
echo "=== after ==="
btrfs fi defrag $mnt/file1
sync
xfs_io -c "fiemap -v" $mnt/file1
umount $mnt
With extra ftrace put into defrag_one_cluster(), before the patch it
would result tons of loops:
(As defrag_one_cluster() is inlined, the function name is its caller)
btrfs-126062 [005] ..... 4682.816026: btrfs_defrag_file: r/i=5/257 start=0 len=262144
btrfs-126062 [005] ..... 4682.816027: btrfs_defrag_file: r/i=5/257 start=262144 len=262144
btrfs-126062 [005] ..... 4682.816028: btrfs_defrag_file: r/i=5/257 start=524288 len=262144
btrfs-126062 [005] ..... 4682.816028: btrfs_defrag_file: r/i=5/257 start=786432 len=262144
btrfs-126062 [005] ..... 4682.816028: btrfs_defrag_file: r/i=5/257 start=1048576 len=262144
...
btrfs-126062 [005] ..... 4682.816043: btrfs_defrag_file: r/i=5/257 start=67108864 len=262144
But with this patch there will be just one loop, then directly to the
end of the extent:
btrfs-130471 [014] ..... 5434.029558: defrag_one_cluster: r/i=5/257 start=0 len=262144
btrfs-130471 [014] ..... 5434.029559: defrag_one_cluster: r/i=5/257 start=67108864 len=16384
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Compressed length can be corrupted to be a lot larger than memory
we have allocated for buffer.
This will cause memcpy in copy_compressed_segment to write outside
of allocated memory.
This mostly results in stuck read syscall but sometimes when using
btrfs send can get #GP
kernel: general protection fault, probably for non-canonical address 0x841551d5c1000: 0000 [#1] PREEMPT SMP NOPTI
kernel: CPU: 17 PID: 264 Comm: kworker/u256:7 Tainted: P OE 5.17.0-rc2-1 #12
kernel: Workqueue: btrfs-endio btrfs_work_helper [btrfs]
kernel: RIP: 0010:lzo_decompress_bio (./include/linux/fortify-string.h:225 fs/btrfs/lzo.c:322 fs/btrfs/lzo.c:394) btrfs
Code starting with the faulting instruction
===========================================
0:* 48 8b 06 mov (%rsi),%rax <-- trapping instruction
3: 48 8d 79 08 lea 0x8(%rcx),%rdi
7: 48 83 e7 f8 and $0xfffffffffffffff8,%rdi
b: 48 89 01 mov %rax,(%rcx)
e: 44 89 f0 mov %r14d,%eax
11: 48 8b 54 06 f8 mov -0x8(%rsi,%rax,1),%rdx
kernel: RSP: 0018:ffffb110812efd50 EFLAGS: 00010212
kernel: RAX: 0000000000001000 RBX: 000000009ca264c8 RCX: ffff98996e6d8ff8
kernel: RDX: 0000000000000064 RSI: 000841551d5c1000 RDI: ffffffff9500435d
kernel: RBP: ffff989a3be856c0 R08: 0000000000000000 R09: 0000000000000000
kernel: R10: 0000000000000000 R11: 0000000000001000 R12: ffff98996e6d8000
kernel: R13: 0000000000000008 R14: 0000000000001000 R15: 000841551d5c1000
kernel: FS: 0000000000000000(0000) GS:ffff98a09d640000(0000) knlGS:0000000000000000
kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 00001e9f984d9ea8 CR3: 000000014971a000 CR4: 00000000003506e0
kernel: Call Trace:
kernel: <TASK>
kernel: end_compressed_bio_read (fs/btrfs/compression.c:104 fs/btrfs/compression.c:1363 fs/btrfs/compression.c:323) btrfs
kernel: end_workqueue_fn (fs/btrfs/disk-io.c:1923) btrfs
kernel: btrfs_work_helper (fs/btrfs/async-thread.c:326) btrfs
kernel: process_one_work (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:212 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2312)
kernel: worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2455)
kernel: ? process_one_work (kernel/workqueue.c:2397)
kernel: kthread (kernel/kthread.c:377)
kernel: ? kthread_complete_and_exit (kernel/kthread.c:332)
kernel: ret_from_fork (arch/x86/entry/entry_64.S:301)
kernel: </TASK>
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Dāvis Mosāns <davispuh@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- yield CPU more often when defragmenting a large file
- skip defragmenting extents already under writeback
- improve error message when send fails to write file data
- get rid of warning when mounted with 'flushoncommit'
* tag 'for-5.17-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: send: in case of IO error log it
btrfs: get rid of warning on transaction commit when using flushoncommit
btrfs: defrag: don't try to defrag extents which are under writeback
btrfs: don't hold CPU for too long when defragging a file
|
|
Looping ~65535 times doing kmalloc() calls can trigger soft lockups,
especially with DEBUG features (like KASAN).
[ 253.536212] watchdog: BUG: soft lockup - CPU#64 stuck for 26s! [b219417889:12575]
[ 253.544433] Modules linked in: vfat fat i2c_mux_pca954x i2c_mux spidev cdc_acm xhci_pci xhci_hcd sha3_generic gq(O)
[ 253.544451] CPU: 64 PID: 12575 Comm: b219417889 Tainted: G S O 5.17.0-smp-DEV #801
[ 253.544457] RIP: 0010:kernel_text_address (./include/asm-generic/sections.h:192 ./include/linux/kallsyms.h:29 kernel/extable.c:67 kernel/extable.c:98)
[ 253.544464] Code: 0f 93 c0 48 c7 c1 e0 63 d7 a4 48 39 cb 0f 92 c1 20 c1 0f b6 c1 5b 5d c3 90 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 53 48 89 fb <48> c7 c0 00 00 80 a0 41 be 01 00 00 00 48 39 c7 72 0c 48 c7 c0 40
[ 253.544468] RSP: 0018:ffff8882d8baf4c0 EFLAGS: 00000246
[ 253.544471] RAX: 1ffff1105b175e00 RBX: ffffffffa13ef09a RCX: 00000000a13ef001
[ 253.544474] RDX: ffffffffa13ef09a RSI: ffff8882d8baf558 RDI: ffffffffa13ef09a
[ 253.544476] RBP: ffff8882d8baf4d8 R08: ffff8882d8baf5e0 R09: 0000000000000004
[ 253.544479] R10: ffff8882d8baf5e8 R11: ffffffffa0d59a50 R12: ffff8882eab20380
[ 253.544481] R13: ffffffffa0d59a50 R14: dffffc0000000000 R15: 1ffff1105b175eb0
[ 253.544483] FS: 00000000016d3380(0000) GS:ffff88af48c00000(0000) knlGS:0000000000000000
[ 253.544486] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 253.544488] CR2: 00000000004af0f0 CR3: 00000002eabfa004 CR4: 00000000003706e0
[ 253.544491] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 253.544492] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 253.544494] Call Trace:
[ 253.544496] <TASK>
[ 253.544498] ? io_queue_sqe (fs/io_uring.c:7143)
[ 253.544505] __kernel_text_address (kernel/extable.c:78)
[ 253.544508] unwind_get_return_address (arch/x86/kernel/unwind_frame.c:19)
[ 253.544514] arch_stack_walk (arch/x86/kernel/stacktrace.c:27)
[ 253.544517] ? io_queue_sqe (fs/io_uring.c:7143)
[ 253.544521] stack_trace_save (kernel/stacktrace.c:123)
[ 253.544527] ____kasan_kmalloc (mm/kasan/common.c:39 mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:515)
[ 253.544531] ? ____kasan_kmalloc (mm/kasan/common.c:39 mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:515)
[ 253.544533] ? __kasan_kmalloc (mm/kasan/common.c:524)
[ 253.544535] ? kmem_cache_alloc_trace (./include/linux/kasan.h:270 mm/slab.c:3567)
[ 253.544541] ? io_issue_sqe (fs/io_uring.c:4556 fs/io_uring.c:4589 fs/io_uring.c:6828)
[ 253.544544] ? __io_queue_sqe (fs/io_uring.c:?)
[ 253.544551] __kasan_kmalloc (mm/kasan/common.c:524)
[ 253.544553] kmem_cache_alloc_trace (./include/linux/kasan.h:270 mm/slab.c:3567)
[ 253.544556] ? io_issue_sqe (fs/io_uring.c:4556 fs/io_uring.c:4589 fs/io_uring.c:6828)
[ 253.544560] io_issue_sqe (fs/io_uring.c:4556 fs/io_uring.c:4589 fs/io_uring.c:6828)
[ 253.544564] ? __kasan_slab_alloc (mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469)
[ 253.544567] ? __kasan_slab_alloc (mm/kasan/common.c:39 mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469)
[ 253.544569] ? kmem_cache_alloc_bulk (mm/slab.h:732 mm/slab.c:3546)
[ 253.544573] ? __io_alloc_req_refill (fs/io_uring.c:2078)
[ 253.544578] ? io_submit_sqes (fs/io_uring.c:7441)
[ 253.544581] ? __se_sys_io_uring_enter (fs/io_uring.c:10154 fs/io_uring.c:10096)
[ 253.544584] ? __x64_sys_io_uring_enter (fs/io_uring.c:10096)
[ 253.544587] ? do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
[ 253.544590] ? entry_SYSCALL_64_after_hwframe (??:?)
[ 253.544596] __io_queue_sqe (fs/io_uring.c:?)
[ 253.544600] io_queue_sqe (fs/io_uring.c:7143)
[ 253.544603] io_submit_sqe (fs/io_uring.c:?)
[ 253.544608] io_submit_sqes (fs/io_uring.c:?)
[ 253.544612] __se_sys_io_uring_enter (fs/io_uring.c:10154 fs/io_uring.c:10096)
[ 253.544616] __x64_sys_io_uring_enter (fs/io_uring.c:10096)
[ 253.544619] do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
[ 253.544623] entry_SYSCALL_64_after_hwframe (??:?)
Fixes: ddf0322db79c ("io_uring: add IORING_OP_PROVIDE_BUFFERS")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: io-uring <io-uring@vger.kernel.org>
Reported-by: syzbot <syzkaller@googlegroups.com>
Link: https://lore.kernel.org/r/20220215041003.2394784-1-eric.dumazet@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Commit ac795161c936 (NFSv4: Handle case where the lookup of a directory
fails) [1], part of Linux since 5.17-rc2, introduced a regression, where
a symbolic link on an NFS mount to a directory on another NFS does not
resolve(?) the first time it is accessed:
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Fixes: ac795161c936 ("NFSv4: Handle case where the lookup of a directory fails")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Tested-by: Donald Buczek <buczek@molgen.mpg.de>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
In nfs4_update_changeattr_locked(), we don't need to set the
NFS_INO_REVAL_PAGECACHE flag, because we already know the value of the
change attribute, and we're already flagging the size. In fact, this
forces us to revalidate the change attribute a second time for no good
reason.
This extra flag appears to have been introduced as part of the xattr
feature, when update_changeattr_locked() was converted for use by the
xattr code.
Fixes: 1b523ca972ed ("nfs: modify update_changeattr to deal with regular files")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
When we create a file with modefromsids we set an ACL that
has one ACE for the magic modefromsid as well as a second ACE that
grants full access to all authenticated users.
When later we chante the mode on the file we strip away this, and other,
ACE for authenticated users in set_chmod_dacl() and then just add back/update
the modefromsid ACE.
Thus leaving the file with a single ACE that is for the mode and no ACE
to grant any user any rights to access the file.
Fix this by always adding back also the modefromsid ACE so that we do not
drop the rights to access the file.
Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com>
Reviewed-by: Shyam Prasad N <sprasad@microsoft.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
When I introduced mnt_{hold,unhold}_writers() in commit fbdc2f6c40f6
("fs: split out functions to hold writers") I did not add kernel doc for
them. Fix this and introduce proper documentation.
Link: https://lore.kernel.org/r/20220203131411.3093040-4-brauner@kernel.org
Fixes: fbdc2f6c40f6 ("fs: split out functions to hold writers")
Cc: Seth Forshee <seth.forshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
When cifs_get_root() fails during cifs_smb3_do_mount() we call
deactivate_locked_super() which eventually will call delayed_free() which
will free the context.
In this situation we should not proceed to enter the out: section in
cifs_smb3_do_mount() and free the same resources a second time.
[Thu Feb 10 12:59:06 2022] BUG: KASAN: use-after-free in rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] Read of size 8 at addr ffff888364f4d110 by task swapper/1/0
[Thu Feb 10 12:59:06 2022] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G OE 5.17.0-rc3+ #4
[Thu Feb 10 12:59:06 2022] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.0 12/17/2019
[Thu Feb 10 12:59:06 2022] Call Trace:
[Thu Feb 10 12:59:06 2022] <IRQ>
[Thu Feb 10 12:59:06 2022] dump_stack_lvl+0x5d/0x78
[Thu Feb 10 12:59:06 2022] print_address_description.constprop.0+0x24/0x150
[Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] kasan_report.cold+0x7d/0x117
[Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] __asan_load8+0x86/0xa0
[Thu Feb 10 12:59:06 2022] rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] rcu_core+0x547/0xca0
[Thu Feb 10 12:59:06 2022] ? call_rcu+0x3c0/0x3c0
[Thu Feb 10 12:59:06 2022] ? __this_cpu_preempt_check+0x13/0x20
[Thu Feb 10 12:59:06 2022] ? lock_is_held_type+0xea/0x140
[Thu Feb 10 12:59:06 2022] rcu_core_si+0xe/0x10
[Thu Feb 10 12:59:06 2022] __do_softirq+0x1d4/0x67b
[Thu Feb 10 12:59:06 2022] __irq_exit_rcu+0x100/0x150
[Thu Feb 10 12:59:06 2022] irq_exit_rcu+0xe/0x30
[Thu Feb 10 12:59:06 2022] sysvec_hyperv_stimer0+0x9d/0xc0
...
[Thu Feb 10 12:59:07 2022] Freed by task 58179:
[Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50
[Thu Feb 10 12:59:07 2022] kasan_set_track+0x25/0x30
[Thu Feb 10 12:59:07 2022] kasan_set_free_info+0x24/0x40
[Thu Feb 10 12:59:07 2022] ____kasan_slab_free+0x137/0x170
[Thu Feb 10 12:59:07 2022] __kasan_slab_free+0x12/0x20
[Thu Feb 10 12:59:07 2022] slab_free_freelist_hook+0xb3/0x1d0
[Thu Feb 10 12:59:07 2022] kfree+0xcd/0x520
[Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0x149/0xbe0 [cifs]
[Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs]
[Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140
[Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0
[Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210
[Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0
[Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae
[Thu Feb 10 12:59:07 2022] Last potentially related work creation:
[Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50
[Thu Feb 10 12:59:07 2022] __kasan_record_aux_stack+0xb6/0xc0
[Thu Feb 10 12:59:07 2022] kasan_record_aux_stack_noalloc+0xb/0x10
[Thu Feb 10 12:59:07 2022] call_rcu+0x76/0x3c0
[Thu Feb 10 12:59:07 2022] cifs_umount+0xce/0xe0 [cifs]
[Thu Feb 10 12:59:07 2022] cifs_kill_sb+0xc8/0xe0 [cifs]
[Thu Feb 10 12:59:07 2022] deactivate_locked_super+0x5d/0xd0
[Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0xab9/0xbe0 [cifs]
[Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs]
[Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140
[Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0
[Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210
[Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0
[Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae
Reported-by: Shyam Prasad N <sprasad@microsoft.com>
Reviewed-by: Shyam Prasad N <sprasad@microsoft.com>
Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
When idsfromsid is used we create a special SID for owner/group.
This structure must be initialized or else the first 5 bytes
of the Authority field of the SID will contain uninitialized data
and thus not be a valid SID.
Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
'setcifsacl -g <SID>' silently fails to set the group SID on server.
Actually, the bug existed since commit 438471b67963 ("CIFS: Add support
for setting owner info, dos attributes, and create time"), but this fix
will not apply cleanly to kernel versions <= v5.10.
Fixes: 3970acf7ddb9 ("SMB3: Add support for getting and setting SACLs")
Cc: stable@vger.kernel.org # 5.11+
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
|