Age | Commit message (Collapse) | Author | Files | Lines |
|
64-bit time is a signed quantity in the kernel, so the bulkstat
structure should reflect that. Note that the structure size stays
the same and that we have not yet published userspace headers for this
new ioctl so there are no users to break.
Fixes: 7035f9724f84 ("xfs: introduce new v5 bulkstat structure")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
The callers of xfs_bmap_local_to_extents_empty() log the inode
external to the function, yet this function is where the on-disk
format value is updated. Push the inode logging down into the
function itself to help prevent future mistakes.
Note that internal bmap callers track the inode logging flags
independently and thus may log the inode core twice due to this
change. This is harmless, so leave this code around for consistency
with the other attr fork conversion functions.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
xfs_attr_shortform_to_leaf() attempts to put the shortform fork back
together after a failed attempt to convert from shortform to leaf
format. While this code reallocates and copies back the shortform
attr fork data, it never resets the inode format field back to local
format. Further, now that the inode is properly logged after the
initial switch from local format, any error that triggers the
recovery code will eventually abort the transaction and shutdown the
fs. Therefore, remove the broken and unnecessary error handling
code.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
When a directory changes from shortform (sf) to block format, the sf
format is copied to a temporary buffer, the inode format is modified
and the updated format filled with the dentries from the temporary
buffer. If the inode format is modified and attempt to grow the
inode fails (due to I/O error, for example), it is possible to
return an error while leaving the directory in an inconsistent state
and with an otherwise clean transaction. This results in corruption
of the associated directory and leads to xfs_dabuf_map() errors as
subsequent lookups cannot accurately determine the format of the
directory. This problem is reproduced occasionally by generic/475.
The fundamental problem is that xfs_dir2_sf_to_block() changes the
on-disk inode format without logging the inode. The inode is
eventually logged by the bmapi layer in the common case, but error
checking introduces the possibility of failing the high level
request before this happens.
Update both of the dir2 and attr callers of
xfs_bmap_local_to_extents_empty() to log the inode core as
consistent with the bmap local to extent format change codepath.
This ensures that any subsequent errors after the format has changed
cause the transaction to abort.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Guarantee zeroed memory buffers for cases where potential memory
leak to disk can occur. In these cases, kmem_alloc is used and
doesn't zero the buffer, opening the possibility of information
leakage to disk.
Use existing infrastucture (xfs_buf_allocate_memory) to obtain
the already zeroed buffer from kernel memory.
This solution avoids the performance issue that would occur if a
wholesale change to replace kmem_alloc with kmem_zalloc was done.
Signed-off-by: Bill O'Donnell <billodo@redhat.com>
[darrick: fix bitwise complaint about kmflag_mask]
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Removed unused error variable. Instead of using error variable,
returned the value directly as it wasn't updated.
Signed-off-by: Aliasgar Surti <aliasgar.surti500@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
The flags arg is always passed as zero, so remove it.
(xfs_buf_get_uncached takes flags to support XBF_NO_IOACCT for
the sb, but that should never be relevant for xfs_get_aghdr_buf)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
To ensure that all blocks touched by the range [offset, offset + count)
are allocated, we need to calculate the block count from the difference
of the range end (rounded up) and the range start (rounded down).
Before this patch, we just round up the byte count, which may lead to
unaligned ranges not being fully allocated:
$ touch test_file
$ block_size=$(stat -fc '%S' test_file)
$ fallocate -o $((block_size / 2)) -l $block_size test_file
$ xfs_bmap test_file
test_file:
0: [0..7]: 1396264..1396271
1: [8..15]: hole
There should not be a hole there. Instead, the first two blocks should
be fully allocated.
With this patch applied, the result is something like this:
$ touch test_file
$ block_size=$(stat -fc '%S' test_file)
$ fallocate -o $((block_size / 2)) -l $block_size test_file
$ xfs_bmap test_file
test_file:
0: [0..15]: 11024..11039
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Pull xfs fixes from Darrick Wong:
"There are a couple of bug fixes and some small code cleanups that came
in recently:
- Minor code cleanups
- Fix a superblock logging error
- Ensure that collapse range converts the data fork to extents format
when necessary
- Revert the ALLOC_USERDATA cleanup because it caused subtle behavior
regressions"
* tag 'xfs-5.4-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: avoid unused to_mp() function warning
xfs: log proper length of superblock
xfs: revert 1baa2800e62d ("xfs: remove the unused XFS_ALLOC_USERDATA flag")
xfs: removed unneeded variable
xfs: convert inode to extent format after extent merge due to shift
|
|
Merge more updates from Andrew Morton:
- almost all of the rest of -mm
- various other subsystems
Subsystems affected by this patch series:
memcg, misc, core-kernel, lib, checkpatch, reiserfs, fat, fork,
cpumask, kexec, uaccess, kconfig, kgdb, bug, ipc, lzo, kasan, madvise,
cleanups, pagemap
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (77 commits)
arch/sparc/include/asm/pgtable_64.h: fix build
mm: treewide: clarify pgtable_page_{ctor,dtor}() naming
ntfs: remove (un)?likely() from IS_ERR() conditions
IB/hfi1: remove unlikely() from IS_ERR*() condition
xfs: remove unlikely() from WARN_ON() condition
wimax/i2400m: remove unlikely() from WARN*() condition
fs: remove unlikely() from WARN_ON() condition
xen/events: remove unlikely() from WARN() condition
checkpatch: check for nested (un)?likely() calls
hexagon: drop empty and unused free_initrd_mem
mm: factor out common parts between MADV_COLD and MADV_PAGEOUT
mm: introduce MADV_PAGEOUT
mm: change PAGEREF_RECLAIM_CLEAN with PAGE_REFRECLAIM
mm: introduce MADV_COLD
mm: untag user pointers in mmap/munmap/mremap/brk
vfio/type1: untag user pointers in vaddr_get_pfn
tee/shm: untag user pointers in tee_shm_register
media/v4l2-core: untag user pointers in videobuf_dma_contig_user_get
drm/radeon: untag user pointers in radeon_gem_userptr_ioctl
drm/amdgpu: untag user pointers
...
|
|
"unlikely(WARN_ON(x))" is excessive. WARN_ON() already uses unlikely()
internally.
Link: http://lkml.kernel.org/r/20190829165025.15750-7-efremov@linux.com
Signed-off-by: Denis Efremov <efremov@linux.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull iomap updates from Darrick Wong:
"After last week's failed pull request attempt, I scuttled everything
in the branch except for the directio endio api changes, which were
trivial. Everything else will simply have to wait for the next cycle.
Summary:
- Report both io errors and short io results to the directio endio
handler.
- Allow directio callers to pass an ops structure to iomap_dio_rw"
* tag 'iomap-5.4-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
iomap: move the iomap_dio_rw ->end_io callback into a structure
iomap: split size and error for iomap_dio_rw ->end_io
|
|
to_mp() was first introduced with the following commit:
'commit 801cc4e17a34c ("xfs: debug mode forced buffered write failure")'
But the user of to_mp() was removed by below commit:
'commit f8c47250ba46e ("xfs: convert drop_writes to use the errortag
mechanism")'
So kernel build with clang throws below warning message:
fs/xfs/xfs_sysfs.c:72:1: warning: unused function 'to_mp' [-Wunused-function]
to_mp(struct kobject *kobject)
Hence to_mp() might be removed safely to get rid of warning message.
Signed-off-by: Austin Kim <austindh.kim@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
xfs_trans_log_buf takes first byte, last byte as args. In this
case, it should be from 0 to sizeof() - 1.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Revert this commit, as it caused periodic regressions in xfs/173 w/
1k blocks.
[1] https://lore.kernel.org/lkml/20190919014602.GN15734@shao2-debian/
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
Returned value directly instead of using variable as it wasn't updated.
Signed-off-by: Aliasgar Surti <aliasgar.surti500@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
The collapse range operation can merge extents if two newly adjacent
extents are physically contiguous. If the extent count is reduced on
a btree format inode, a change to extent format might be necessary.
This format change currently occurs as a side effect of the file
size update after extents have been shifted for the collapse. This
codepath ultimately calls xfs_bunmapi(), which happens to check for
and execute the format conversion even if there were no blocks
removed from the mapping.
While this ultimately puts the inode into the correct state, the
fact the format conversion occurs in a separate transaction from the
change that called for it is a problem. If an extent shift
transaction commits and the filesystem happens to crash before the
format conversion, the inode fork is left in a corrupted state after
log recovery. The inode fork verifier fails and xfs_repair
ultimately nukes the inode. This problem was originally reproduced
by generic/388.
Similar to how the insert range extent split code handles extent to
btree conversion, update the collapse range extent merge code to
handle btree to extent format conversion in the same transaction
that merges the extents. This ensures that the inode fork format
remains consistent if the filesystem happens to crash in the middle
of a collapse range operation that changes the inode fork format.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Add a new iomap_dio_ops structure that for now just contains the end_io
handler. This avoid storing the function pointer in a mutable structure,
which is a possible exploit vector for kernel code execution, and prepares
for adding a submit_io handler that btrfs needs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Modify the calling convention for the iomap_dio_rw ->end_io() callback.
Rather than passing either dio->error or dio->size as the 'size' argument,
instead pass both the dio->error and the dio->size value separately.
In the instance that an error occurred during a write, we currently cannot
determine whether any blocks have been allocated beyond the current EOF and
data has subsequently been written to these blocks within the ->end_io()
callback. As a result, we cannot judge whether we should take the truncate
failed write path. Having both dio->error and dio->size will allow us to
perform such checks within this callback.
Signed-off-by: Matthew Bobrowski <mbobrowski@mbobrowski.org>
[hch: minor cleanups]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground
Pull y2038 vfs updates from Arnd Bergmann:
"Add inode timestamp clamping.
This series from Deepa Dinamani adds a per-superblock minimum/maximum
timestamp limit for a file system, and clamps timestamps as they are
written, to avoid random behavior from integer overflow as well as
having different time stamps on disk vs in memory.
At mount time, a warning is now printed for any file system that can
represent current timestamps but not future timestamps more than 30
years into the future, similar to the arbitrary 30 year limit that was
added to settimeofday().
This was picked as a compromise to warn users to migrate to other file
systems (e.g. ext4 instead of ext3) when they need the file system to
survive beyond 2038 (or similar limits in other file systems), but not
get in the way of normal usage"
* tag 'y2038-vfs' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground:
ext4: Reduce ext4 timestamp warnings
isofs: Initialize filesystem timestamp ranges
pstore: fs superblock limits
fs: omfs: Initialize filesystem timestamp ranges
fs: hpfs: Initialize filesystem timestamp ranges
fs: ceph: Initialize filesystem timestamp ranges
fs: sysv: Initialize filesystem timestamp ranges
fs: affs: Initialize filesystem timestamp ranges
fs: fat: Initialize filesystem timestamp ranges
fs: cifs: Initialize filesystem timestamp ranges
fs: nfs: Initialize filesystem timestamp ranges
ext4: Initialize timestamps limits
9p: Fill min and max timestamps in sb
fs: Fill in max and min timestamps in superblock
utimes: Clamp the timestamps before update
mount: Add mount warning for impending timestamp expiry
timestamp_truncate: Replace users of timespec64_trunc
vfs: Add timestamp_truncate() api
vfs: Add file timestamp range support
|
|
Pull xfs updates from Darrick Wong:
"For this cycle we have the usual pile of cleanups and bug fixes, some
performance improvements for online metadata scrubbing, massive
speedups in the directory entry creation code, some performance
improvement in the file ACL lookup code, a fix for a logging stall
during mount, and fixes for concurrency problems.
It has survived a couple of weeks of xfstests runs and merges cleanly.
Summary:
- Remove KM_SLEEP/KM_NOSLEEP.
- Ensure that memory buffers for IO are properly sector-aligned to
avoid problems that the block layer doesn't check.
- Make the bmap scrubber more efficient in its record checking.
- Don't crash xfs_db when superblock inode geometry is corrupt.
- Fix btree key helper functions.
- Remove unneeded error returns for things that can't fail.
- Fix buffer logging bugs in repair.
- Clean up iterator return values.
- Speed up directory entry creation.
- Enable allocation of xattr value memory buffer during lookup.
- Fix readahead racing with truncate/punch hole.
- Other minor cleanups.
- Fix one AGI/AGF deadlock with RENAME_WHITEOUT.
- More BUG -> WARN whackamole.
- Fix various problems with the log failing to advance under certain
circumstances, which results in stalls during mount"
* tag 'xfs-5.4-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (45 commits)
xfs: push the grant head when the log head moves forward
xfs: push iclog state cleaning into xlog_state_clean_log
xfs: factor iclog state processing out of xlog_state_do_callback()
xfs: factor callbacks out of xlog_state_do_callback()
xfs: factor debug code out of xlog_state_do_callback()
xfs: prevent CIL push holdoff in log recovery
xfs: fix missed wakeup on l_flush_wait
xfs: push the AIL in xlog_grant_head_wake
xfs: Use WARN_ON_ONCE for bailout mount-operation
xfs: Fix deadlock between AGI and AGF with RENAME_WHITEOUT
xfs: define a flags field for the AG geometry ioctl structure
xfs: add a xfs_valid_startblock helper
xfs: remove the unused XFS_ALLOC_USERDATA flag
xfs: cleanup xfs_fsb_to_db
xfs: fix the dax supported check in xfs_ioctl_setattr_dax_invalidate
xfs: Fix stale data exposure when readahead races with hole punch
fs: Export generic_fadvise()
mm: Handle MADV_WILLNEED through vfs_fadvise()
xfs: allocate xattr buffer on demand
xfs: consolidate attribute value copying
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs namei updates from Al Viro:
"Pathwalk-related stuff"
[ Audit-related cleanups, misc simplifications, and easier to follow
nd->root refcounts - Linus ]
* 'work.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
devpts_pty_kill(): don't bother with d_delete()
infiniband: don't bother with d_delete()
hypfs: don't bother with d_delete()
fs/namei.c: keep track of nd->root refcount status
fs/namei.c: new helper - legitimize_root()
kill the last users of user_{path,lpath,path_dir}()
namei.h: get the comments on LOOKUP_... in sync with reality
kill LOOKUP_NO_EVAL, don't bother including namei.h from audit.h
audit_inode(): switch to passing AUDIT_INODE_...
filename_mountpoint(): make LOOKUP_NO_EVAL unconditional there
filename_lookup(): audit_inode() argument is always 0
|
|
When the log fills up, we can get into the state where the
outstanding items in the CIL being committed and aggregated are
larger than the range that the reservation grant head tail pushing
will attempt to clean. This can result in the tail pushing range
being trimmed back to the the log head (l_last_sync_lsn) and so
may not actually move the push target at all.
When the iclogs associated with the CIL commit finally land, the
log head moves forward, and this removes the restriction on the AIL
push target. However, if we already have transactions sleeping on
the grant head, and there's nothing in the AIL still to flush from
the current push target, then nothing will move the tail of the log
and trigger a log reservation wakeup.
Hence the there is nothing that will trigger xlog_grant_push_ail()
to recalculate the AIL push target and start pushing on the AIL
again to write back the metadata objects that pin the tail of the
log and hence free up space and allow the transaction reservations
to be woken and make progress.
Hence we need to push on the grant head when we move the log head
forward, as this may be the only trigger we have that can move the
AIL push target forwards in this situation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
xlog_state_clean_log() is only called from one place, and it occurs
when an iclog is transitioning back to ACTIVE. Prior to calling
xlog_state_clean_log, the iclog we are processing has a hard coded
state check to DIRTY so that xlog_state_clean_log() processes it
correctly. We also have a hard coded wakeup after
xlog_state_clean_log() to enfore log force waiters on that iclog
are woken correctly.
Both of these things are operations required to finish processing an
iclog and return it to the ACTIVE state again, so they make little
sense to be separated from the rest of the clean state transition
code.
Hence push these things inside xlog_state_clean_log(), document the
behaviour and rename it xlog_state_clean_iclog() to indicate that
it's being driven by an iclog state change and does the iclog state
change work itself.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
The iclog IO completion state processing is somewhat complex, and
because it's inside two nested loops it is highly indented and very
hard to read. Factor it out, flatten the logic flow and clean up the
comments so that it much easier to see what the code is doing both
in processing the individual iclogs and in the over
xlog_state_do_callback() operation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Simplify the code flow by lifting the iclog callback work out of
the main iclog iteration loop. This isolates the log juggling and
callbacks from the iclog state change logic in the loop.
Note that the loopdidcallbacks variable is not actually tracking
whether callbacks are actually run - it is tracking whether the
icloglock was dropped during the loop and so determines if we
completed the entire iclog scan loop atomically. Hence we know for
certain there are either no more ordered completions to run or
that the next completion will run the remaining ordered iclog
completions. Hence rename that variable appropriately for it's
function.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Start making this function readable by lifting the debug code into
a conditional function.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
generic/530 on a machine with enough ram and a non-preemptible
kernel can run the AGI processing phase of log recovery enitrely out
of cache. This means it never blocks on locks, never waits for IO
and runs entirely through the unlinked lists until it either
completes or blocks and hangs because it has run out of log space.
It runs out of log space because the background CIL push is
scheduled but never runs. queue_work() queues the CIL work on the
current CPU that is busy, and the workqueue code will not run it on
any other CPU. Hence if the unlinked list processing never yields
the CPU voluntarily, the push work is delayed indefinitely. This
results in the CIL aggregating changes until all the log space is
consumed.
When the log recoveyr processing evenutally blocks, the CIL flushes
but because the last iclog isn't submitted for IO because it isn't
full, the CIL flush never completes and nothing ever moves the log
head forwards, or indeed inserts anything into the tail of the log,
and hence nothing is able to get the log moving again and recovery
hangs.
There are several problems here, but the two obvious ones from
the trace are that:
a) log recovery does not yield the CPU for over 4 seconds,
b) binding CIL pushes to a single CPU is a really bad idea.
This patch addresses just these two aspects of the problem, and are
suitable for backporting to work around any issues in older kernels.
The more fundamental problem of preventing the CIL from consuming
more than 50% of the log without committing will take more invasive
and complex work, so will be done as followup work.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
The code in xlog_wait uses the spinlock to make adding the task to
the wait queue, and setting the task state to UNINTERRUPTIBLE atomic
with respect to the waker.
Doing the wakeup after releasing the spinlock opens up the following
race condition:
Task 1 task 2
add task to wait queue
wake up task
set task state to UNINTERRUPTIBLE
This issue was found through code inspection as a result of kworkers
being observed stuck in UNINTERRUPTIBLE state with an empty
wait queue. It is rare and largely unreproducable.
Simply moving the spin_unlock to after the wake_up_all results
in the waker not being able to see a task on the waitqueue before
it has set its state to UNINTERRUPTIBLE.
This bug dates back to the conversion of this code to generic
waitqueue infrastructure from a counting semaphore back in 2008
which didn't place the wakeups consistently w.r.t. to the relevant
spin locks.
[dchinner: Also fix a similar issue in the shutdown path on
xc_commit_wait. Update commit log with more details of the issue.]
Fixes: d748c62367eb ("[XFS] Convert l_flushsema to a sv_t")
Reported-by: Chris Mason <clm@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
In the situation where the log is full and the CIL has not recently
flushed, the AIL push threshold is throttled back to the where the
last write of the head of the log was completed. This is stored in
log->l_last_sync_lsn. Hence if the CIL holds > 25% of the log space
pinned by flushes and/or aggregation in progress, we can get the
situation where the head of the log lags a long way behind the
reservation grant head.
When this happens, the AIL push target is trimmed back from where
the reservation grant head wants to push the log tail to, back to
where the head of the log currently is. This means the push target
doesn't reach far enough into the log to actually move the tail
before the transaction reservation goes to sleep.
When the CIL push completes, it moves the log head forward such that
the AIL push target can now be moved, but that has no mechanism for
puhsing the log tail. Further, if the next tail movement of the log
is not large enough wake the waiter (i.e. still not enough space for
it to have a reservation granted), we don't wake anything up, and
hence we do not update the AIL push target to take into account the
head of the log moving and allowing the push target to be moved
forwards.
To avoid this particular condition, if we fail to wake the first
waiter on the grant head because we don't have enough space,
push on the AIL again. This will pick up any movement of the log
head and allow the push target to move forward due to completion of
CIL pushing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
If the CONFIG_BUG is enabled, BUG is executed and then system is crashed.
However, the bailout for mount is no longer proceeding.
Using WARN_ON_ONCE rather than BUG can prevent this situation.
Signed-off-by: Austin Kim <austindh.kim@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
When performing rename operation with RENAME_WHITEOUT flag, we will
hold AGF lock to allocate or free extents in manipulating the dirents
firstly, and then doing the xfs_iunlink_remove() call last to hold
AGI lock to modify the tmpfile info, so we the lock order AGI->AGF.
The big problem here is that we have an ordering constraint on AGF
and AGI locking - inode allocation locks the AGI, then can allocate
a new extent for new inodes, locking the AGF after the AGI. Hence
the ordering that is imposed by other parts of the code is AGI before
AGF. So we get an ABBA deadlock between the AGI and AGF here.
Process A:
Call trace:
? __schedule+0x2bd/0x620
schedule+0x33/0x90
schedule_timeout+0x17d/0x290
__down_common+0xef/0x125
? xfs_buf_find+0x215/0x6c0 [xfs]
down+0x3b/0x50
xfs_buf_lock+0x34/0xf0 [xfs]
xfs_buf_find+0x215/0x6c0 [xfs]
xfs_buf_get_map+0x37/0x230 [xfs]
xfs_buf_read_map+0x29/0x190 [xfs]
xfs_trans_read_buf_map+0x13d/0x520 [xfs]
xfs_read_agf+0xa6/0x180 [xfs]
? schedule_timeout+0x17d/0x290
xfs_alloc_read_agf+0x52/0x1f0 [xfs]
xfs_alloc_fix_freelist+0x432/0x590 [xfs]
? down+0x3b/0x50
? xfs_buf_lock+0x34/0xf0 [xfs]
? xfs_buf_find+0x215/0x6c0 [xfs]
xfs_alloc_vextent+0x301/0x6c0 [xfs]
xfs_ialloc_ag_alloc+0x182/0x700 [xfs]
? _xfs_trans_bjoin+0x72/0xf0 [xfs]
xfs_dialloc+0x116/0x290 [xfs]
xfs_ialloc+0x6d/0x5e0 [xfs]
? xfs_log_reserve+0x165/0x280 [xfs]
xfs_dir_ialloc+0x8c/0x240 [xfs]
xfs_create+0x35a/0x610 [xfs]
xfs_generic_create+0x1f1/0x2f0 [xfs]
...
Process B:
Call trace:
? __schedule+0x2bd/0x620
? xfs_bmapi_allocate+0x245/0x380 [xfs]
schedule+0x33/0x90
schedule_timeout+0x17d/0x290
? xfs_buf_find+0x1fd/0x6c0 [xfs]
__down_common+0xef/0x125
? xfs_buf_get_map+0x37/0x230 [xfs]
? xfs_buf_find+0x215/0x6c0 [xfs]
down+0x3b/0x50
xfs_buf_lock+0x34/0xf0 [xfs]
xfs_buf_find+0x215/0x6c0 [xfs]
xfs_buf_get_map+0x37/0x230 [xfs]
xfs_buf_read_map+0x29/0x190 [xfs]
xfs_trans_read_buf_map+0x13d/0x520 [xfs]
xfs_read_agi+0xa8/0x160 [xfs]
xfs_iunlink_remove+0x6f/0x2a0 [xfs]
? current_time+0x46/0x80
? xfs_trans_ichgtime+0x39/0xb0 [xfs]
xfs_rename+0x57a/0xae0 [xfs]
xfs_vn_rename+0xe4/0x150 [xfs]
...
In this patch we move the xfs_iunlink_remove() call to
before acquiring the AGF lock to preserve correct AGI/AGF locking
order.
Signed-off-by: kaixuxia <kaixuxia@tencent.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Define a flags field for the AG geometry ioctl structure.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Add a helper that validates the startblock is valid. This checks for a
non-zero block on the main device, but skips that check for blocks on
the realtime device.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
This function isn't a macro anymore, so remove various superflous braces,
and explicit cast that is done implicitly due to the return value, use
a normal if statement instead of trying to squeeze everything together.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Setting the DAX flag on the directory of a file system that is not on a
DAX capable device makes as little sense as setting it on a regular file
on the same file system.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Hole puching currently evicts pages from page cache and then goes on to
remove blocks from the inode. This happens under both XFS_IOLOCK_EXCL
and XFS_MMAPLOCK_EXCL which provides appropriate serialization with
racing reads or page faults. However there is currently nothing that
prevents readahead triggered by fadvise() or madvise() from racing with
the hole punch and instantiating page cache page after hole punching has
evicted page cache in xfs_flush_unmap_range() but before it has removed
blocks from the inode. This page cache page will be mapping soon to be
freed block and that can lead to returning stale data to userspace or
even filesystem corruption.
Fix the problem by protecting handling of readahead requests by
XFS_IOLOCK_SHARED similarly as we protect reads.
CC: stable@vger.kernel.org
Link: https://lore.kernel.org/linux-fsdevel/CAOQ4uxjQNmxqmtA_VbYW0Su9rKRk2zobJmahcyeaEVOFKVQ5dw@mail.gmail.com/
Reported-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
When doing file lookups and checking for permissions, we end up in
xfs_get_acl() to see if there are any ACLs on the inode. This
requires and xattr lookup, and to do that we have to supply a buffer
large enough to hold an maximum sized xattr.
On workloads were we are accessing a wide range of cache cold files
under memory pressure (e.g. NFS fileservers) we end up spending a
lot of time allocating the buffer. The buffer is 64k in length, so
is a contiguous multi-page allocation, and if that then fails we
fall back to vmalloc(). Hence the allocation here is /expensive/
when we are looking up hundreds of thousands of files a second.
Initial numbers from a bpf trace show average time in xfs_get_acl()
is ~32us, with ~19us of that in the memory allocation. Note these
are average times, so there are going to be affected by the worst
case allocations more than the common fast case...
To avoid this, we could just do a "null" lookup to see if the ACL
xattr exists and then only do the allocation if it exists. This,
however, optimises the path for the "no ACL present" case at the
expense of the "acl present" case. i.e. we can halve the time in
xfs_get_acl() for the no acl case (i.e down to ~10-15us), but that
then increases the ACL case by 30% (i.e. up to 40-45us).
To solve this and speed up both cases, drive the xattr buffer
allocation into the attribute code once we know what the actual
xattr length is. For the no-xattr case, we avoid the allocation
completely, speeding up that case. For the common ACL case, we'll
end up with a fast heap allocation (because it'll be smaller than a
page), and only for the rarer "we have a remote xattr" will we have
a multi-page allocation occur. Hence the common ACL case will be
much faster, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
The same code is used to copy do the attribute copying in three
different places. Consolidate them into a single function in
preparation from on-demand buffer allocation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Because we repeat exactly the same code to get the remote attribute
value after both calls to xfs_attr3_leaf_getvalue() if it's a remote
attr. Just do it in xfs_attr3_leaf_getvalue() so the callers don't
have to care about it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Shortform, leaf and remote value attr value retrieval return
different values for success. This makes it more complex to handle
actual errors xfs_attr_get() as some errors mean success and some
mean failure. Make the return values consistent for success and
failure consistent for all attribute formats.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
When a directory is growing rapidly, new blocks tend to get added at
the end of the directory. These end up at the end of the freespace
index, and when the directory gets large finding these new
freespaces gets expensive. The code does a linear search across the
frespace index from the first block in the directory to the last,
hence meaning the newly added space is the last index searched.
Instead, do a reverse order index search, starting from the last
block and index in the freespace index. This makes most lookups for
free space on rapidly growing directories O(1) instead of O(N), but
should not have any impact on random insert workloads because the
average search length is the same regardless of which end of the
array we start at.
The result is a major improvement in large directory grow rates:
create time(sec) / rate (files/s)
File count vanilla Prev commit Patched
10k 0.41 / 24.3k 0.42 / 23.8k 0.41 / 24.3k
20k 0.74 / 27.0k 0.76 / 26.3k 0.75 / 26.7k
100k 3.81 / 26.4k 3.47 / 28.8k 3.27 / 30.6k
200k 8.58 / 23.3k 7.19 / 27.8k 6.71 / 29.8k
1M 85.69 / 11.7k 48.53 / 20.6k 37.67 / 26.5k
2M 280.31 / 7.1k 130.14 / 15.3k 79.55 / 25.2k
10M 3913.26 / 2.5k 552.89 / 18.1k
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
When running a "create millions inodes in a directory" test
recently, I noticed we were spending a huge amount of time
converting freespace block headers from disk format to in-memory
format:
31.47% [kernel] [k] xfs_dir2_node_addname
17.86% [kernel] [k] xfs_dir3_free_hdr_from_disk
3.55% [kernel] [k] xfs_dir3_free_bests_p
We shouldn't be hitting the best free block scanning code so hard
when doing sequential directory creates, and it turns out there's
a highly suboptimal loop searching the the best free array in
the freespace block - it decodes the block header before checking
each entry inside a loop, instead of decoding the header once before
running the entry search loop.
This makes a massive difference to create rates. Profile now looks
like this:
13.15% [kernel] [k] xfs_dir2_node_addname
3.52% [kernel] [k] xfs_dir3_leaf_check_int
3.11% [kernel] [k] xfs_log_commit_cil
And the wall time/average file create rate differences are
just as stark:
create time(sec) / rate (files/s)
File count vanilla patched
10k 0.41 / 24.3k 0.42 / 23.8k
20k 0.74 / 27.0k 0.76 / 26.3k
100k 3.81 / 26.4k 3.47 / 28.8k
200k 8.58 / 23.3k 7.19 / 27.8k
1M 85.69 / 11.7k 48.53 / 20.6k
2M 280.31 / 7.1k 130.14 / 15.3k
The larger the directory, the bigger the performance improvement.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Simplify the logic in xfs_dir2_node_addname_int() by factoring out
the free block index lookup code that finds a block with enough free
space for the entry to be added. The code that is moved gets a major
cleanup at the same time, but there is no algorithm change here.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Factor out the code that adds a data block to a directory from
xfs_dir2_node_addname_int(). This makes the code flow cleaner and
more obvious and provides clear isolation of upcoming optimsations.
Signed-off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
This gets rid of the need for a forward declaration of the static
function xfs_dir2_addname_int() and readies the code for factoring
of xfs_dir2_addname_int().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Iterator functions already use 0 to signal "continue iterating", so get
rid of the #defines and just do it directly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
old wrappers with few callers remaining; put them out of their misery...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|