summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_mount.h
AgeCommit message (Collapse)AuthorFilesLines
2017-06-27xfs: convert drop_writes to use the errortag mechanismDarrick J. Wong1-24/+0
We now have enhanced error injection that can control the frequency with which errors happen, so convert drop_writes to use this. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
2017-06-27xfs: expose errortag knobs via sysfsDarrick J. Wong1-0/+1
Creates a /sys/fs/xfs/$dev/errortag/ directory to control the errortag values directly. This enables us to control the randomness values, rather than having to accept the defaults. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
2017-06-27xfs: make errortag a per-mountpoint structureDarrick J. Wong1-0/+7
Remove the xfs_etest structure in favor of a per-mountpoint structure. This will give us the flexibility to set as many error injection points as we want, and later enable us to set up sysfs knobs to set the trigger frequency as we wish. This comes at a cost of higher memory use, but unti we hit 1024 injection points (we're at 29) or a lot of mounts this shouldn't be a huge issue. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
2017-06-19xfs: remove double-underscore integer typesDarrick J. Wong1-17/+17
This is a purely mechanical patch that removes the private __{u,}int{8,16,32,64}_t typedefs in favor of using the system {u,}int{8,16,32,64}_t typedefs. This is the sed script used to perform the transformation and fix the resulting whitespace and indentation errors: s/typedef\t__uint8_t/typedef __uint8_t\t/g s/typedef\t__uint/typedef __uint/g s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g s/__uint8_t\t/__uint8_t\t\t/g s/__uint/uint/g s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g s/__int/int/g /^typedef.*int[0-9]*_t;$/d Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2017-04-25xfs: more do_div cleanupsEric Sandeen1-2/+2
On some architectures do_div does the pointer compare trick to make sure that we've sent it an unsigned 64-bit number. (Why unsigned? I don't know.) Fix up the few places that squawk about this; in xfs_bmap_wants_extents() we just used a bare int64_t so change that to unsigned. In xfs_adjust_extent_unmap_boundaries() all we wanted was the mod, and we have an xfs-specific function to handle that w/o side effects, which includes proper casting for do_div. In xfs_daddr_to_ag[b]no, we were using the wrong type anyway; XFS_BB_TO_FSBT returns a block in the filesystem, so use xfs_rfsblock_t not xfs_daddr_t, and gain the unsignedness from that type as a bonus. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-04-03xfs: use dedicated log worker wq to avoid deadlock with cil wqBrian Foster1-0/+1
The log covering background task used to be part of the xfssyncd workqueue. That workqueue was removed as of commit 5889608df ("xfs: syncd workqueue is no more") and the associated work item scheduled to the xfs-log wq. The latter is used for log buffer I/O completion. Since xfs_log_worker() can invoke a log flush, a deadlock is possible between the xfs-log and xfs-cil workqueues. Consider the following codepath from xfs_log_worker(): xfs_log_worker() xfs_log_force() _xfs_log_force() xlog_cil_force() xlog_cil_force_lsn() xlog_cil_push_now() flush_work() The above is in xfs-log wq context and blocked waiting on the completion of an xfs-cil work item. Concurrently, the cil push in progress can end up blocked here: xlog_cil_push_work() xlog_cil_push() xlog_write() xlog_state_get_iclog_space() xlog_wait(&log->l_flush_wait, ...) The above is in xfs-cil context waiting on log buffer I/O completion, which executes in xfs-log wq context. In this scenario both workqueues are deadlocked waiting on eachother. Add a new workqueue specifically for the high level log covering and ail pushing worker, as was the case prior to commit 5889608df. Diagnosed-by: David Jeffery <djeffery@redhat.com> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-02-16xfs: resurrect debug mode drop buffered writes mechanismBrian Foster1-7/+8
A debug mode write failure mechanism was introduced to XFS in commit 801cc4e17a ("xfs: debug mode forced buffered write failure") to facilitate targeted testing of delalloc indirect reservation management from userspace. This code was subsequently rendered ineffective by the move to iomap based buffered writes in commit 68a9f5e700 ("xfs: implement iomap based buffered write path"). This likely went unnoticed because the associated userspace code had not made it into xfstests. Resurrect this mechanism to facilitate effective indlen reservation testing from xfstests. The move to iomap based buffered writes relocated the hook this mechanism needs to return write failure from XFS to generic code. The failure trigger must remain in XFS. Given that limitation, convert this from a write failure mechanism to one that simply drops writes without returning failure to userspace. Rename all "fail_writes" references to "drop_writes" to illustrate the point. This is more hacky than preferred, but still triggers the XFS error handling behavior required to drive the indlen tests. This is only available in DEBUG mode and for testing purposes only. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-02-09xfs: improve handling of busy extents in the low-level allocatorChristoph Hellwig1-0/+2
Currently we force the log and simply try again if we hit a busy extent, but especially with online discard enabled it might take a while after the log force for the busy extents to disappear, and we might have already completed our second pass. So instead we add a new waitqueue and a generation counter to the pag structure so that we can do wakeups once we've removed busy extents, and we replace the single retry with an unconditional one - after all we hold the AGF buffer lock, so no other allocations or frees can be racing with us in this AG. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-01-25xfs: use per-AG reservations for the finobtChristoph Hellwig1-0/+1
Currently we try to rely on the global reserved block pool for block allocations for the free inode btree, but I have customer reports (fairly complex workload, need to find an easier reproducer) where that is not enough as the AG where we free an inode that requires a new finobt block is entirely full. This causes us to cancel a dirty transaction and thus a file system shutdown. I think the right way to guard against this is to treat the finot the same way as the refcount btree and have a per-AG reservations for the possible worst case size of it, and the patch below implements that. Note that this could increase mount times with large finobt trees. In an ideal world we would have added a field for the number of finobt fields to the AGI, similar to what we did for the refcount blocks. We should do add it next time we rev the AGI or AGF format by adding new fields. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2016-12-07xfs: use rhashtable to track buffer cacheLucas Stach1-2/+5
On filesystems with a lot of metadata and in metadata intensive workloads xfs_buf_find() is showing up at the top of the CPU cycles trace. Most of the CPU time is spent on CPU cache misses while traversing the rbtree. As the buffer cache does not need any kind of ordering, but fast lookups a hashtable is the natural data structure to use. The rhashtable infrastructure provides a self-scaling hashtable implementation and allows lookups to proceed while the table is going through a resize operation. This reduces the CPU-time spent for the lookups to 1/3 even for small filesystems with a relatively small number of cached buffers, with possibly much larger gains on higher loaded filesystems. [dchinner: reduce minimum hash size to an acceptable size for large filesystems with many AGs with no active use.] [dchinner: remove stale rbtree asserts.] [dchinner: use xfs_buf_map for compare function argument.] [dchinner: make functions static.] [dchinner: remove redundant comments.] Signed-off-by: Lucas Stach <dev@lynxeye.de> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-10-05xfs: garbage collect old cowextsz reservationsDarrick J. Wong1-0/+2
Trim CoW reservations made on behalf of a cowextsz hint if they get too old or we run low on quota, so long as we don't have dirty data awaiting writeback or directio operations in progress. Garbage collection of the cowextsize extents are kept separate from prealloc extent reaping because setting the CoW prealloc lifetime to a (much) higher value than the regular prealloc extent lifetime has been useful for combatting CoW fragmentation on VM hosts where the VMs experience bursty write behaviors and we can keep the utilization ratios low enough that we don't start to run out of space. IOWs, it benefits us to keep the CoW fork reservations around for as long as we can unless we run out of blocks or hit inode reclaim. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03xfs: define the on-disk refcount btree formatDarrick J. Wong1-0/+3
Start constructing the refcount btree implementation by establishing the on-disk format and everything needed to read, write, and manipulate the refcount btree blocks. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03xfs: introduce refcount btree definitionsDarrick J. Wong1-0/+3
Add new per-AG refcount btree definitions to the per-AG structures. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03Merge branch 'xfs-4.9-reflink-prep' into for-nextDave Chinner1-0/+36
2016-09-19xfs: set up per-AG free space reservationsDarrick J. Wong1-0/+36
One unfortunate quirk of the reference count and reverse mapping btrees -- they can expand in size when blocks are written to *other* allocation groups if, say, one large extent becomes a lot of tiny extents. Since we don't want to start throwing errors in the middle of CoWing, we need to reserve some blocks to handle future expansion. The transaction block reservation counters aren't sufficient here because we have to have a reserve of blocks in every AG, not just somewhere in the filesystem. Therefore, create two per-AG block reservation pools. One feeds the AGFL so that rmapbt expansion always succeeds, and the other feeds all other metadata so that refcountbt expansion never fails. Use the count of how many reserved blocks we need to have on hand to create a virtual reservation in the AG. Through selective clamping of the maximum length of allocation requests and of the length of the longest free extent, we can make it look like there's less free space in the AG unless the reservation owner is asking for blocks. In other words, play some accounting tricks in-core to make sure that we always have blocks available. On the plus side, there's nothing to clean up if we crash, which is contrast to the strategy that the rough draft used (actually removing extents from the freespace btrees). Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-14xfs: normalize "infinite" retries in error configsEric Sandeen1-1/+7
As it stands today, the "fail immediately" vs. "retry forever" values for max_retries and retry_timeout_seconds in the xfs metadata error configurations are not consistent. A retry_timeout_seconds of 0 means "retry forever," but a max_retries of 0 means "fail immediately." retry_timeout_seconds < 0 is disallowed, while max_retries == -1 means "retry forever." Make this consistent across the error configs, such that a value of 0 means "fail immediately" (i.e. wait 0 seconds, or retry 0 times), and a value of -1 always means "retry forever." This makes retry_timeout a signed long to accommodate the -1, even though it stores jiffies. Given our limit of a 1 day maximum timeout, this should be sufficient even at much higher HZ values than we have available today. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: rmap btree requires more reserved free spaceDarrick J. Wong1-0/+2
Originally-From: Dave Chinner <dchinner@redhat.com> The rmap btree is allocated from the AGFL, which means we have to ensure ENOSPC is reported to userspace before we run out of free space in each AG. The last allocation in an AG can cause a full height rmap btree split, and that means we have to reserve at least this many blocks *in each AG* to be placed on the AGFL at ENOSPC. Update the various space calculation functions to handle this. Also, because the macros are now executing conditional code and are called quite frequently, convert them to functions that initialise variables in the struct xfs_mount, use the new variables everywhere and document the calculations better. [darrick.wong@oracle.com: don't reserve blocks if !rmap] [dchinner@redhat.com: update m_ag_max_usable after growfs] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: define the on-disk rmap btree formatDarrick J. Wong1-0/+3
Originally-From: Dave Chinner <dchinner@redhat.com> Now we have all the surrounding call infrastructure in place, we can start filling out the rmap btree implementation. Start with the on-disk btree format; add everything needed to read, write and manipulate rmap btree blocks. This prepares the way for adding the btree operations implementation. [darrick: record owner and offset info in rmap btree] [darrick: fork, bmbt and unwritten state in rmap btree] [darrick: flags are a separate field in xfs_rmap_irec] [darrick: calculate maxlevels separately] [darrick: move the 'unwritten' bit into unused parts of rm_offset] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: rmap btree add more reserved blocksDarrick J. Wong1-0/+1
Originally-From: Dave Chinner <dchinner@redhat.com> XFS reserves a small amount of space in each AG for the minimum number of free blocks needed for operation. Adding the rmap btree increases the number of reserved blocks, but it also increases the complexity of the calculation as the free inode btree is optional (like the rmbt). Rather than calculate the prealloc blocks every time we need to check it, add a function to calculate it at mount time and store it in the struct xfs_mount, and convert the XFS_PREALLOC_BLOCKS macro just to use the xfs-mount variable directly. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-05-26Merge tag 'xfs-for-linus-4.7-rc1' of ↵Linus Torvalds1-0/+34
git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs Pull xfs updates from Dave Chinner: "A pretty average collection of fixes, cleanups and improvements in this request. Summary: - fixes for mount line parsing, sparse warnings, read-only compat feature remount behaviour - allow fast path symlink lookups for inline symlinks. - attribute listing cleanups - writeback goes direct to bios rather than indirecting through bufferheads - transaction allocation cleanup - optimised kmem_realloc - added configurable error handling for metadata write errors, changed default error handling behaviour from "retry forever" to "retry until unmount then fail" - fixed several inode cluster writeback lookup vs reclaim race conditions - fixed inode cluster writeback checking wrong inode after lookup - fixed bugs where struct xfs_inode freeing wasn't actually RCU safe - cleaned up inode reclaim tagging" * tag 'xfs-for-linus-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (39 commits) xfs: fix warning in xfs_finish_page_writeback for non-debug builds xfs: move reclaim tagging functions xfs: simplify inode reclaim tagging interfaces xfs: rename variables in xfs_iflush_cluster for clarity xfs: xfs_iflush_cluster has range issues xfs: mark reclaimed inodes invalid earlier xfs: xfs_inode_free() isn't RCU safe xfs: optimise xfs_iext_destroy xfs: skip stale inodes in xfs_iflush_cluster xfs: fix inode validity check in xfs_iflush_cluster xfs: xfs_iflush_cluster fails to abort on error xfs: remove xfs_fs_evict_inode() xfs: add "fail at unmount" error handling configuration xfs: add configuration handlers for specific errors xfs: add configuration of error failure speed xfs: introduce table-based init for error behaviors xfs: add configurable error support to metadata buffers xfs: introduce metadata IO error class xfs: configurable error behavior via sysfs xfs: buffer ->bi_end_io function requires irq-safe lock ...
2016-05-18xfs: add "fail at unmount" error handling configurationCarlos Maiolino1-0/+2
If we take "retry forever" literally on metadata IO errors, we can hang at unmount, once it retries those writes forever. This is the default behavior, unfortunately. Add an error configuration option for this behavior and default it to "fail" so that an unmount will trigger actuall errors, a shutdown and allow the unmount to succeed. It will be noisy, though, as it will log the errors and shutdown that occurs. To fix this, we need to mark the filesystem as being in the process of unmounting. Do this with a mount flag that is added at the appropriate time (i.e. before the blocking AIL sync). We also need to add this flag if mount fails after the initial phase of log recovery has been run. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-05-18xfs: add configuration handlers for specific errorsCarlos Maiolino1-0/+3
now most of the infrastructure is in place, we can start adding support for configuring specific errors such as ENODEV, ENOSPC, EIO, etc. Add these error configurations and configure them all to have appropriate behaviours. That is, all will be configured to retry forever by default, except for ENODEV, which is an unrecoverable error, so it will be configured to not retry on error Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-05-18xfs: add configuration of error failure speedCarlos Maiolino1-0/+3
On reception of an error, we can fail immediately, perform some bound amount of retries or retry indefinitely. The current behaviour we have is to retry forever. However, we'd like the ability to choose how long the filesystem should try after an error, it can either fail immediately, retry a few times, or retry forever. This is implemented by using max_retries sysfs attribute, to hold the amount of times we allow the filesystem to retry after an error. Being -1 a special case where the filesystem will retry indefinitely. Add both a maximum retry count and a retry timeout so that we can bound by time and/or physical IO attempts. Finally, plumb these into xfs_buf_iodone error processing so that the error behaviour follows the selected configuration. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-05-18xfs: add configurable error support to metadata buffersCarlos Maiolino1-0/+3
With the error configuration handle for async metadata write errors in place, we can now add initial support to the IO error processing in xfs_buf_iodone_error(). Add an infrastructure function to look up the configuration handle, and rearrange the error handling to prepare the way for different error handling conigurations to be used. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-05-18xfs: introduce metadata IO error classCarlos Maiolino1-0/+3
Now we have the basic infrastructure, add the first error class so we can build up the infrastructure in a meaningful way. Add the metadata async write IO error class and sysfs entry, and introduce a default configuration that matches the existing "retry forever" behavior for async write metadata buffers. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-05-18xfs: configurable error behavior via sysfsCarlos Maiolino1-0/+20
We need to be able to change the way XFS behaviours in error conditions depending on the type of underlying storage. This is necessary for handling non-traditional block devices with extended error cases, such as thin provisioned devices that can return ENOSPC as an IO error. Introduce the basic sysfs infrastructure needed to define and configure error behaviours. This is done to be generic enough to extend to configuring behaviour in other error conditions, such as ENOMEM, which also has different desired behaviours according to machine configuration. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-04-04mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macrosKirill A. Shutemov1-2/+2
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15Merge branch 'xfs-misc-fixes-4.6-4' into for-nextDave Chinner1-0/+25
2016-03-15xfs: debug mode forced buffered write failureBrian Foster1-0/+25
Add a DEBUG mode-only sysfs knob to enable forced buffered write failure. An additional side effect of this mode is brute force killing of delayed allocation blocks in the range of the write. The latter is the prime motiviation behind this patch, as userspace test infrastructure requires a reliable mechanism to create and split delalloc extents without causing extent conversion. Certain fallocate operations (i.e., zero range) were used for this in the past, but the implementations have changed such that delalloc extents are flushed and converted to real blocks, rendering the test useless. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-03-07Merge branch 'xfs-misc-fixes-4.6-2' into for-nextDave Chinner1-3/+2
2016-03-02xfs: fix up inode32/64 (re)mount handlingEric Sandeen1-3/+2
inode32/inode64 allocator behavior with respect to mount, remount and growfs is a little tricky. The inode32 mount option should only enable the inode32 allocator heuristics if the filesystem is large enough for 64-bit inodes to exist. Today, it has this behavior on the initial mount, but a remount with inode32 unconditionally changes the allocation heuristics, even for a small fs. Also, an inode32 mounted small filesystem should transition to the inode32 allocator if the filesystem is subsequently grown to a sufficient size. Today that does not happen. This patch consolidates xfs_set_inode32 and xfs_set_inode64 into a single new function, and moves the "is the maximum inode number big enough to matter" test into that function, so it doesn't rely on the caller to get it right - which remount did not do, previously. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-08xfs: remove unused function definitionsEric Sandeen1-1/+0
Old leftovers. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03Merge branch 'xfs-dax-updates' into for-nextDave Chinner1-0/+3
2015-11-03Merge branch 'xfs-misc-fixes-for-4.4-2' into for-nextDave Chinner1-0/+1
2015-11-03xfs: don't leak uuid table on rmmodDarrick J. Wong1-0/+1
Don't leak the UUID table when the module is unloaded. (Found with kmemleak.) Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03xfs: introduce BMAPI_ZERO for allocating zeroed extentsDave Chinner1-0/+3
To enable DAX to do atomic allocation of zeroed extents, we need to drive the block zeroing deep into the allocator. Because xfs_bmapi_write() can return merged extents on allocation that were only partially allocated (i.e. requested range spans allocated and hole regions, allocation into the hole was contiguous), we cannot zero the extent returned from xfs_bmapi_write() as that can overwrite existing data with zeros. Hence we have to drive the extent zeroing into the allocation code, prior to where we merge the extents into the BMBT and return the resultant map. This means we need to propagate this need down to the xfs_alloc_vextent() and issue the block zeroing at this point. While this functionality is being introduced for DAX, there is no reason why it is specific to DAX - we can per-zero blocks during the allocation transaction on any type of device. It's just slow (and usually slower than unwritten allocation and conversion) on traditional block devices so doesn't tend to get used. We can, however, hook hardware zeroing optimisations via sb_issue_zeroout() to this operation, so it may be useful in future and hence the "allocate zeroed blocks" API needs to be implementation neutral. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12xfs: per-filesystem stats in sysfsBill O'Donnell1-0/+1
This patch implements per-filesystem stats objects in sysfs. It depends on the application of the previous patch series that develops the infrastructure to support both xfs global stats and xfs per-fs stats in sysfs. Stats objects are instantiated when an xfs filesystem is mounted and deleted on unmount. With this patch, the stats directory is created and populated with the familiar stats and stats_clear files. Example: /sys/fs/xfs/sda9/stats/stats /sys/fs/xfs/sda9/stats/stats_clear With this patch, the individual counts within the new per-fs stats file(s) remain at zero. Functions that use the the macros to increment, decrement, and add-to the per-fs stats counts will be covered in a separate new patch to follow this one. Note that the counts within the global stats file (/sys/fs/xfs/stats/stats) advance normally and can be cleared as it was prior to this patch. [dchinner: move setup/teardown to xfs_fs_{fill|put}_super() so it is down before/after any path that uses the per-mount stats. ] Signed-off-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04Merge branch 'xfs-dax-support' into for-nextDave Chinner1-0/+2
2015-06-04xfs: add initial DAX supportDave Chinner1-0/+2
Add initial DAX support to XFS. To do this we need a new mount option to turn DAX on filesystem, and we need to propagate this into the inode flags whenever an inode is instantiated so that the per-inode checks throughout the code Do The Right Thing. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: use sparse chunk alignment for min. inode allocation requirementBrian Foster1-0/+2
xfs_ialloc_ag_select() iterates through the allocation groups looking for free inodes or free space to determine whether to allow an inode allocation to proceed. If no free inodes are available, it assumes that an AG must have an extent longer than mp->m_ialloc_blks. Sparse inode chunk support currently allows for allocations smaller than the traditional inode chunk size specified in m_ialloc_blks. The current minimum sparse allocation is set in the superblock sb_spino_align field at mkfs time. Create a new m_ialloc_min_blks field in xfs_mount and use this to represent the minimum supported allocation size for inode chunks. Initialize m_ialloc_min_blks at mount time based on whether sparse inodes are supported. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: remove xfs_mod_incore_sb APIDave Chinner1-2/+1
Now that there are no users of the bitfield based incore superblock modification API, just remove the whole damn lot of it, including all the bitfield definitions. This finally removes a lot of cruft that has been around for a long time. Credit goes to Christoph Hellwig for providing a great patch connecting all the dots to enale us to do this. This patch is derived from that work. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: replace xfs_mod_incore_sb_batchedDave Chinner1-11/+0
Introduce helper functions for modifying fields in the superblock into xfs_trans.c, the only caller of xfs_mod_incore_sb_batch(). We can then use these directly in xfs_trans_unreserve_and_mod_sb() and so remove another user of the xfs_mode_incore_sb() API without losing any functionality or scalability of the transaction commit code.. Based on a patch from Christoph Hellwig. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: introduce xfs_mod_frextentsDave Chinner1-0/+2
Add a new helper to modify the incore counter of free realtime extents. This matches the helpers used for inode and data block counters, and removes a significant users of the xfs_mod_incore_sb() interface. Based on a patch originally from Christoph Hellwig. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: Remove icsb infrastructureDave Chinner1-67/+0
Now that the in-core superblock infrastructure has been replaced with generic per-cpu counters, we don't need it anymore. Nuke it from orbit so we are sure that it won't haunt us again... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: use generic percpu counters for free block counterDave Chinner1-0/+3
XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. The free block counter is special in that it is used for ENOSPC detection outside transaction contexts for for delayed allocation. This means that the counter needs to be accurate at zero. The current per-cpu counter code jumps through lots of hoops to ensure we never run past zero, but we don't need to make all those jumps with the generic counter implementation. The generic counter implementation allows us to pass a "batch" threshold at which the addition/subtraction to the counter value will be folded back into global value under lock. We can use this feature to reduce the batch size as we approach 0 in a very similar manner to the existing counters and their rebalance algorithm. If we use a batch size of 1 as we approach 0, then every addition and subtraction will be done against the global value and hence allow accurate detection of zero threshold crossing. Hence we can replace the handrolled, accurate-at-zero counters with generic percpu counters. Note: this removes just enough of the icsb infrastructure to compile without warnings. The rest will go in subsequent commits. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: use generic percpu counters for free inode counterDave Chinner1-0/+2
XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. The free inode counter is not used for any limit enforcement - the per-AG free inode counters are used during allocation to determine if there are inode available for allocation. Hence we don't need any of the complexity of the hand-rolled counters and we can simply replace them with generic per-cpu counters similar to the inode counter. This version introduces a xfs_mod_ifree() helper function from Christoph Hellwig. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: use generic percpu counters for inode counterDave Chinner1-2/+5
XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. There are some warts around the use of them for the inode counter as the hand rolled counter is designed to be accurate at zero, but has no specific accurracy at any other value. This design causes problems for the maximum inode count threshold enforcement, as there is no trigger that balances the counters as they get close tothe maximum threshold. Instead of designing new triggers for balancing, just replace the handrolled per-cpu counter with a generic counter. This enables us to update the counter through the normal superblock modification funtions, but rather than do that we add a xfs_mod_icount() helper function (from Christoph Hellwig) and keep the percpu counter outside the superblock in the struct xfs_mount. This means we still need to initialise the per-cpu counter specifically when we read the superblock, and vice versa when we log/write it, but it does mean that we don't need to change any other code. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-16xfs: implement pNFS export operationsChristoph Hellwig1-0/+11
Add operations to export pNFS block layouts from an XFS filesystem. See the previous commit adding the operations for an explanation of them. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-22xfs: consolidate superblock logging functionsDave Chinner1-2/+1
We now have several superblock loggin functions that are identical except for the transaction reservation and whether it shoul dbe a synchronous transaction or not. Consolidate these all into a single function, a single reserveration and a sync flag and call it xfs_sync_sb(). Also, xfs_mod_sb() is not really a modification function - it's the operation of logging the superblock buffer. hence change the name of it to reflect this. Note that we have to change the mp->m_update_flags that are passed around at mount time to a boolean simply to indicate a superblock update is needed. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-22xfs: remove bitfield based superblock updatesDave Chinner1-1/+1
When we log changes to the superblock, we first have to write them to the on-disk buffer, and then log that. Right now we have a complex bitfield based arrangement to only write the modified field to the buffer before we log it. This used to be necessary as a performance optimisation because we logged the superblock buffer in every extent or inode allocation or freeing, and so performance was extremely important. We haven't done this for years, however, ever since the lazy superblock counters pulled the superblock logging out of the transaction commit fast path. Hence we have a bunch of complexity that is not necessary that makes writing the in-core superblock to disk much more complex than it needs to be. We only need to log the superblock now during management operations (e.g. during mount, unmount or quota control operations) so it is not a performance critical path anymore. As such, remove the complex field based logging mechanism and replace it with a simple conversion function similar to what we use for all other on-disk structures. This means we always log the entirity of the superblock, but again because we rarely modify the superblock this is not an issue for log bandwidth or CPU time. Indeed, if we do log the superblock frequently, delayed logging will minimise the impact of this overhead. [Fixed gquota/pquota inode sharing regression noticed by bfoster.] Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>