summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_mount.c
AgeCommit message (Collapse)AuthorFilesLines
2016-10-20xfs: unset MS_ACTIVE if mount failsDarrick J. Wong1-0/+1
As part of the inode block map intent log item recovery process, we had to set the IRECOVERY flag to prevent an unlinked inode from being truncated during the first iput call. This required us to set MS_ACTIVE so that iput puts the inode on the lru instead of immediately evicting the inode. Unfortunately, if the mount fails later on, the inodes that have been loaded (root dir and realtime) actually need to be evicted since we're aborting the mount. If we don't clear MS_ACTIVE in the failure step, those inodes are not evicted and therefore leak. The leak was found by running xfs/130 and rmmoding xfs immediately after the test. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-10-05xfs: garbage collect old cowextsz reservationsDarrick J. Wong1-0/+1
Trim CoW reservations made on behalf of a cowextsz hint if they get too old or we run low on quota, so long as we don't have dirty data awaiting writeback or directio operations in progress. Garbage collection of the cowextsize extents are kept separate from prealloc extent reaping because setting the CoW prealloc lifetime to a (much) higher value than the regular prealloc extent lifetime has been useful for combatting CoW fragmentation on VM hosts where the VMs experience bursty write behaviors and we can keep the utilization ratios low enough that we don't start to run out of space. IOWs, it benefits us to keep the CoW fork reservations around for as long as we can unless we run out of blocks or hit inode reclaim. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-05xfs: preallocate blocks for worst-case btree expansionDarrick J. Wong1-0/+8
To gracefully handle the situation where a CoW operation turns a single refcount extent into a lot of tiny ones and then run out of space when a tree split has to happen, use the per-AG reserved block pool to pre-allocate all the space we'll ever need for a maximal btree. For a 4K block size, this only costs an overhead of 0.3% of available disk space. When reflink is enabled, we have an unfortunate problem with rmap -- since we can share a block billions of times, this means that the reverse mapping btree can expand basically infinitely. When an AG is so full that there are no free blocks with which to expand the rmapbt, the filesystem will shut down hard. This is rather annoying to the user, so use the AG reservation code to reserve a "reasonable" amount of space for rmap. We'll prevent reflinks and CoW operations if we think we're getting close to exhausting an AG's free space rather than shutting down, but this permanent reservation should be enough for "most" users. Hopefully. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> [hch@lst.de: ensure that we invalidate the freed btree buffer] Signed-off-by: Christoph Hellwig <hch@lst.de>
2016-10-05xfs: store in-progress CoW allocations in the refcount btreeDarrick J. Wong1-0/+12
Due to the way the CoW algorithm in XFS works, there's an interval during which blocks allocated to handle a CoW can be lost -- if the FS goes down after the blocks are allocated but before the block remapping takes place. This is exacerbated by the cowextsz hint -- allocated reservations can sit around for a while, waiting to get used. Since the refcount btree doesn't normally store records with refcount of 1, we can use it to record these in-progress extents. In-progress blocks cannot be shared because they're not user-visible, so there shouldn't be any conflicts with other programs. This is a better solution than holding EFIs during writeback because (a) EFIs can't be relogged currently, (b) even if they could, EFIs are bound by available log space, which puts an unnecessary upper bound on how much CoW we can have in flight, and (c) we already have a mechanism to track blocks. At mount time, read the refcount records and free anything we find with a refcount of 1 because those were in-progress when the FS went down. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04xfs: when replaying bmap operations, don't let unlinked inodes get reapedDarrick J. Wong1-0/+9
Log recovery will iget an inode to replay BUI items and iput the inode when it's done. Unfortunately, if the inode was unlinked, the iput will see that i_nlink == 0 and decide to truncate & free the inode, which prevents us from replaying subsequent BUIs. We can't skip the BUIs because we have to replay all the redo items to ensure that atomic operations complete. Since unlinked inode recovery will reap the inode anyway, we can safely introduce a new inode flag to indicate that an inode is in this 'unlinked recovery' state and should not be auto-reaped in the drop_inode path. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03xfs: define the on-disk refcount btree formatDarrick J. Wong1-0/+2
Start constructing the refcount btree implementation by establishing the on-disk format and everything needed to read, write, and manipulate the refcount btree blocks. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-09-26xfs: quiesce the filesystem after recovery on readonly mountDave Chinner1-0/+14
Recently we've had a number of reports where log recovery on a v5 filesystem has reported corruptions that looked to be caused by recovery being re-run over the top of an already-recovered metadata. This has uncovered a bug in recovery (fixed elsewhere) but the vector that caused this was largely unknown. A kdump test started tripping over this problem - the system would be crashed, the kdump kernel and environment would boot and dump the kernel core image, and then the system would reboot. After reboot, the root filesystem was triggering log recovery and corruptions were being detected. The metadumps indicated the above log recovery issue. What is happening is that the kdump kernel and environment is mounting the root device read-only to find the binaries needed to do it's work. The result of this is that it is running log recovery. However, because there were unlinked files and EFIs to be processed by recovery, the completion of phase 1 of log recovery could not mark the log clean. And because it's a read-only mount, the unmount process does not write records to the log to mark it clean, either. Hence on the next mount of the filesystem, log recovery was run again across all the metadata that had already been recovered and this is what triggered corruption warnings. To avoid this problem, we need to ensure that a read-only mount always updates the log when it completes the second phase of recovery. We already handle this sort of issue with rw->ro remount transitions, so the solution is as simple as quiescing the filesystem at the appropriate time during the mount process. This results in the log being marked clean so the mount behaviour recorded in the logs on repeated RO mounts will change (i.e. log recovery will no longer be run on every mount until a RW mount is done). This is a user visible change in behaviour, but it is harmless. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: rmap btree requires more reserved free spaceDarrick J. Wong1-1/+1
Originally-From: Dave Chinner <dchinner@redhat.com> The rmap btree is allocated from the AGFL, which means we have to ensure ENOSPC is reported to userspace before we run out of free space in each AG. The last allocation in an AG can cause a full height rmap btree split, and that means we have to reserve at least this many blocks *in each AG* to be placed on the AGFL at ENOSPC. Update the various space calculation functions to handle this. Also, because the macros are now executing conditional code and are called quite frequently, convert them to functions that initialise variables in the struct xfs_mount, use the new variables everywhere and document the calculations better. [darrick.wong@oracle.com: don't reserve blocks if !rmap] [dchinner@redhat.com: update m_ag_max_usable after growfs] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: define the on-disk rmap btree formatDarrick J. Wong1-0/+2
Originally-From: Dave Chinner <dchinner@redhat.com> Now we have all the surrounding call infrastructure in place, we can start filling out the rmap btree implementation. Start with the on-disk btree format; add everything needed to read, write and manipulate rmap btree blocks. This prepares the way for adding the btree operations implementation. [darrick: record owner and offset info in rmap btree] [darrick: fork, bmbt and unwritten state in rmap btree] [darrick: flags are a separate field in xfs_rmap_irec] [darrick: calculate maxlevels separately] [darrick: move the 'unwritten' bit into unused parts of rm_offset] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: rmap btree add more reserved blocksDarrick J. Wong1-0/+2
Originally-From: Dave Chinner <dchinner@redhat.com> XFS reserves a small amount of space in each AG for the minimum number of free blocks needed for operation. Adding the rmap btree increases the number of reserved blocks, but it also increases the complexity of the calculation as the free inode btree is optional (like the rmbt). Rather than calculate the prealloc blocks every time we need to check it, add a function to calculate it at mount time and store it in the struct xfs_mount, and convert the XFS_PREALLOC_BLOCKS macro just to use the xfs-mount variable directly. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: rework xfs_bmap_free callers to use xfs_defer_opsDarrick J. Wong1-0/+1
Restructure everything that used xfs_bmap_free to use xfs_defer_ops instead. For now we'll just remove the old symbols and play some cpp magic to make it work; in the next patch we'll actually rename everything. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-07-20xfs: exclude never-released buffers from buftarg I/O accountingBrian Foster1-4/+6
The upcoming buftarg I/O accounting mechanism maintains a count of all buffers that have undergone I/O in the current hold-release cycle. Certain buffers associated with core infrastructure (e.g., the xfs_mount superblock buffer, log buffers) are never released, however. This means that accounting I/O submission on such buffers elevates the buftarg count indefinitely and could lead to lockup on unmount. Define a new buffer flag to explicitly exclude buffers from buftarg I/O accounting. Set the flag on the superblock and associated log buffers. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-05-26Merge tag 'xfs-for-linus-4.7-rc1' of ↵Linus Torvalds1-2/+21
git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs Pull xfs updates from Dave Chinner: "A pretty average collection of fixes, cleanups and improvements in this request. Summary: - fixes for mount line parsing, sparse warnings, read-only compat feature remount behaviour - allow fast path symlink lookups for inline symlinks. - attribute listing cleanups - writeback goes direct to bios rather than indirecting through bufferheads - transaction allocation cleanup - optimised kmem_realloc - added configurable error handling for metadata write errors, changed default error handling behaviour from "retry forever" to "retry until unmount then fail" - fixed several inode cluster writeback lookup vs reclaim race conditions - fixed inode cluster writeback checking wrong inode after lookup - fixed bugs where struct xfs_inode freeing wasn't actually RCU safe - cleaned up inode reclaim tagging" * tag 'xfs-for-linus-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (39 commits) xfs: fix warning in xfs_finish_page_writeback for non-debug builds xfs: move reclaim tagging functions xfs: simplify inode reclaim tagging interfaces xfs: rename variables in xfs_iflush_cluster for clarity xfs: xfs_iflush_cluster has range issues xfs: mark reclaimed inodes invalid earlier xfs: xfs_inode_free() isn't RCU safe xfs: optimise xfs_iext_destroy xfs: skip stale inodes in xfs_iflush_cluster xfs: fix inode validity check in xfs_iflush_cluster xfs: xfs_iflush_cluster fails to abort on error xfs: remove xfs_fs_evict_inode() xfs: add "fail at unmount" error handling configuration xfs: add configuration handlers for specific errors xfs: add configuration of error failure speed xfs: introduce table-based init for error behaviors xfs: add configurable error support to metadata buffers xfs: introduce metadata IO error class xfs: configurable error behavior via sysfs xfs: buffer ->bi_end_io function requires irq-safe lock ...
2016-05-20Merge branch 'xfs-4.7-error-cfg' into for-nextDave Chinner1-1/+21
2016-05-18xfs: add "fail at unmount" error handling configurationCarlos Maiolino1-0/+12
If we take "retry forever" literally on metadata IO errors, we can hang at unmount, once it retries those writes forever. This is the default behavior, unfortunately. Add an error configuration option for this behavior and default it to "fail" so that an unmount will trigger actuall errors, a shutdown and allow the unmount to succeed. It will be noisy, though, as it will log the errors and shutdown that occurs. To fix this, we need to mark the filesystem as being in the process of unmounting. Do this with a mount flag that is added at the appropriate time (i.e. before the blocking AIL sync). We also need to add this flag if mount fails after the initial phase of log recovery has been run. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-05-18xfs: configurable error behavior via sysfsCarlos Maiolino1-1/+9
We need to be able to change the way XFS behaviours in error conditions depending on the type of underlying storage. This is necessary for handling non-traditional block devices with extended error cases, such as thin provisioned devices that can return ENOSPC as an IO error. Introduce the basic sysfs infrastructure needed to define and configure error behaviours. This is done to be generic enough to extend to configuring behaviour in other error conditions, such as ENOMEM, which also has different desired behaviours according to machine configuration. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-04-06xfs: improve kmem_reallocChristoph Hellwig1-1/+0
Use krealloc to implement our realloc function. This helps to avoid new allocations if we are still in the slab bucket. At least for the bmap btree root that's actually the common case. This also allows removing the now unused oldsize argument. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-04-04mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macrosKirill A. Shutemov1-1/+1
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-07Merge branch 'xfs-misc-fixes-4.6-2' into for-nextDave Chinner1-19/+1
2016-03-07Merge branch 'xfs-buf-macro-cleanup-4.6' into for-nextDave Chinner1-1/+1
2016-03-02xfs: fix up inode32/64 (re)mount handlingEric Sandeen1-19/+1
inode32/inode64 allocator behavior with respect to mount, remount and growfs is a little tricky. The inode32 mount option should only enable the inode32 allocator heuristics if the filesystem is large enough for 64-bit inodes to exist. Today, it has this behavior on the initial mount, but a remount with inode32 unconditionally changes the allocation heuristics, even for a small fs. Also, an inode32 mounted small filesystem should transition to the inode32 allocator if the filesystem is subsequently grown to a sufficient size. Today that does not happen. This patch consolidates xfs_set_inode32 and xfs_set_inode64 into a single new function, and moves the "is the maximum inode number big enough to matter" test into that function, so it doesn't rely on the caller to get it right - which remount did not do, previously. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-10xfs: remove XBF_DONE flag wrapper macrosDave Chinner1-1/+1
They only set/clear/check a flag, no need for obfuscating this with a macro. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-09xfs: mode di_mode to vfs inodeDave Chinner1-1/+1
Move the di_mode value from the xfs_icdinode to the VFS inode, reducing the xfs_icdinode byte another 2 bytes and collapsing another 2 byte hole in the structure. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03Merge branch 'xfs-misc-fixes-for-4.4-2' into for-nextDave Chinner1-0/+10
2015-11-03xfs: don't leak uuid table on rmmodDarrick J. Wong1-0/+10
Don't leak the UUID table when the module is unloaded. (Found with kmemleak.) Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12xfs: per-filesystem stats in sysfsBill O'Donnell1-1/+10
This patch implements per-filesystem stats objects in sysfs. It depends on the application of the previous patch series that develops the infrastructure to support both xfs global stats and xfs per-fs stats in sysfs. Stats objects are instantiated when an xfs filesystem is mounted and deleted on unmount. With this patch, the stats directory is created and populated with the familiar stats and stats_clear files. Example: /sys/fs/xfs/sda9/stats/stats /sys/fs/xfs/sda9/stats/stats_clear With this patch, the individual counts within the new per-fs stats file(s) remain at zero. Functions that use the the macros to increment, decrement, and add-to the per-fs stats counts will be covered in a separate new patch to follow this one. Note that the counts within the global stats file (/sys/fs/xfs/stats/stats) advance normally and can be cleared as it was prior to this patch. [dchinner: move setup/teardown to xfs_fs_{fill|put}_super() so it is down before/after any path that uses the per-mount stats. ] Signed-off-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-08-19xfs: clean up root inode properly on mount failureBrian Foster1-0/+2
The root inode is read as part of the xfs_mountfs() sequence and the reference is dropped in the event of failure after we grab the inode. The reference drop doesn't necessarily free the inode, however. It marks it for reclaim and potentially kicks off the reclaim workqueue. The workqueue is destroyed further up the error path, which means we are subject to crash if the workqueue job runs after this point or a memory leak which is identified if the xfs_inode_zone is destroyed (e.g., on module removal). Both of these outcomes are reproducible via manual instrumentation of a mount error after the root inode xfs_iget() call in xfs_mountfs(). Update the xfs_mountfs() error path to cancel any potential reclaim work items and to run a synchronous inode reclaim if the root inode is marked for reclaim. This ensures that no jobs remain on the queue before it is destroyed and that the root inode is freed before the reclaim mechanism is torn down. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-08-19xfs: don't leave EFIs on AIL on mount failureBrian Foster1-12/+14
Log recovery occurs in two phases at mount time. In the first phase, EFIs and EFDs are processed and potentially cancelled out. EFIs without EFD objects are inserted into the AIL for processing and recovery in the second phase. xfs_mountfs() runs various other operations between the phases and is thus subject to failure. If failure occurs after the first phase but before the second, pending EFIs sit on the AIL, pin it and cause the mount to hang. Update the mount sequence to ensure that pending EFIs are cancelled in the event of failure. Add a recovery cancellation mechanism to iterate the AIL and cancel all EFI items when requested. Plumb cancellation support through the log mount finish helper and update xfs_mountfs() to invoke cancellation in the event of failure after recovery has started. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-01Merge branch 'xfs-sparse-inode' into for-nextDave Chinner1-0/+16
2015-05-29xfs: sparse inode chunks feature helpers and mount requirementsBrian Foster1-0/+16
The sparse inode chunks feature uses the helper function to enable the allocation of sparse inode chunks. The incompatible feature bit is set on disk at mkfs time to prevent mount from unsupported kernels. Also, enforce the inode alignment requirements required for sparse inode chunks at mount time. When enabled, full inode chunks (and all inode record) alignment is increased from cluster size to inode chunk size. Sparse inode alignment must match the cluster size of the fs. Both superblock alignment fields are set as such by mkfs when sparse inode support is enabled. Finally, warn that sparse inode chunks is an experimental feature until further notice. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: inode and free block counters need to use __percpu_counter_compareDave Chinner1-14/+20
Because the counters use a custom batch size, the comparison functions need to be aware of that batch size otherwise the comparison does not work correctly. This leads to ASSERT failures on generic/027 like this: XFS: Assertion failed: 0, file: fs/xfs/xfs_mount.c, line: 1099 ------------[ cut here ]------------ .... Call Trace: [<ffffffff81522a39>] xfs_mod_icount+0x99/0xc0 [<ffffffff815285cb>] xfs_trans_unreserve_and_mod_sb+0x28b/0x5b0 [<ffffffff8152f941>] xfs_log_commit_cil+0x321/0x580 [<ffffffff81528e17>] xfs_trans_commit+0xb7/0x260 [<ffffffff81503d4d>] xfs_bmap_finish+0xcd/0x1b0 [<ffffffff8151da41>] xfs_inactive_ifree+0x1e1/0x250 [<ffffffff8151dbe0>] xfs_inactive+0x130/0x200 [<ffffffff81523a21>] xfs_fs_evict_inode+0x91/0xf0 [<ffffffff811f3958>] evict+0xb8/0x190 [<ffffffff811f433b>] iput+0x18b/0x1f0 [<ffffffff811e8853>] do_unlinkat+0x1f3/0x320 [<ffffffff811d548a>] ? filp_close+0x5a/0x80 [<ffffffff811e999b>] SyS_unlinkat+0x1b/0x40 [<ffffffff81e0892e>] system_call_fastpath+0x12/0x71 This is a regression introduced by commit 501ab32 ("xfs: use generic percpu counters for inode counter"). This patch fixes the same problem for both the inode counter and the free block counter in the superblocks. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: remove xfs_mod_incore_sb APIDave Chinner1-136/+0
Now that there are no users of the bitfield based incore superblock modification API, just remove the whole damn lot of it, including all the bitfield definitions. This finally removes a lot of cruft that has been around for a long time. Credit goes to Christoph Hellwig for providing a great patch connecting all the dots to enale us to do this. This patch is derived from that work. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: replace xfs_mod_incore_sb_batchedDave Chinner1-51/+0
Introduce helper functions for modifying fields in the superblock into xfs_trans.c, the only caller of xfs_mod_incore_sb_batch(). We can then use these directly in xfs_trans_unreserve_and_mod_sb() and so remove another user of the xfs_mode_incore_sb() API without losing any functionality or scalability of the transaction commit code.. Based on a patch from Christoph Hellwig. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: introduce xfs_mod_frextentsDave Chinner1-8/+19
Add a new helper to modify the incore counter of free realtime extents. This matches the helpers used for inode and data block counters, and removes a significant users of the xfs_mod_incore_sb() interface. Based on a patch originally from Christoph Hellwig. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: Remove icsb infrastructureDave Chinner1-515/+1
Now that the in-core superblock infrastructure has been replaced with generic per-cpu counters, we don't need it anymore. Nuke it from orbit so we are sure that it won't haunt us again... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: use generic percpu counters for free block counterDave Chinner1-94/+98
XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. The free block counter is special in that it is used for ENOSPC detection outside transaction contexts for for delayed allocation. This means that the counter needs to be accurate at zero. The current per-cpu counter code jumps through lots of hoops to ensure we never run past zero, but we don't need to make all those jumps with the generic counter implementation. The generic counter implementation allows us to pass a "batch" threshold at which the addition/subtraction to the counter value will be folded back into global value under lock. We can use this feature to reduce the batch size as we approach 0 in a very similar manner to the existing counters and their rebalance algorithm. If we use a batch size of 1 as we approach 0, then every addition and subtraction will be done against the global value and hence allow accurate detection of zero threshold crossing. Hence we can replace the handrolled, accurate-at-zero counters with generic percpu counters. Note: this removes just enough of the icsb infrastructure to compile without warnings. The rest will go in subsequent commits. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: use generic percpu counters for free inode counterDave Chinner1-43/+33
XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. The free inode counter is not used for any limit enforcement - the per-AG free inode counters are used during allocation to determine if there are inode available for allocation. Hence we don't need any of the complexity of the hand-rolled counters and we can simply replace them with generic per-cpu counters similar to the inode counter. This version introduces a xfs_mod_ifree() helper function from Christoph Hellwig. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-02-23xfs: use generic percpu counters for inode counterDave Chinner1-41/+35
XFS has hand-rolled per-cpu counters for the superblock since before there was any generic implementation. There are some warts around the use of them for the inode counter as the hand rolled counter is designed to be accurate at zero, but has no specific accurracy at any other value. This design causes problems for the maximum inode count threshold enforcement, as there is no trigger that balances the counters as they get close tothe maximum threshold. Instead of designing new triggers for balancing, just replace the handrolled per-cpu counter with a generic counter. This enables us to update the counter through the normal superblock modification funtions, but rather than do that we add a xfs_mod_icount() helper function (from Christoph Hellwig) and keep the percpu counter outside the superblock in the struct xfs_mount. This means we still need to initialise the per-cpu counter specifically when we read the superblock, and vice versa when we log/write it, but it does mean that we don't need to change any other code. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-22xfs: sanitise sb_bad_features2 handlingDave Chinner1-12/+11
We currently have to ensure that every time we update sb_features2 that we update sb_bad_features2. Now that we log and format the superblock in it's entirety we actually don't have to care because we can simply update the sb_bad_features2 when we format it into the buffer. This removes the need for anything but the mount and superblock formatting code to care about sb_bad_features2, and hence removes the possibility that we forget to update bad_features2 when necessary in the future. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-22xfs: consolidate superblock logging functionsDave Chinner1-66/+12
We now have several superblock loggin functions that are identical except for the transaction reservation and whether it shoul dbe a synchronous transaction or not. Consolidate these all into a single function, a single reserveration and a sync flag and call it xfs_sync_sb(). Also, xfs_mod_sb() is not really a modification function - it's the operation of logging the superblock buffer. hence change the name of it to reflect this. Note that we have to change the mp->m_update_flags that are passed around at mount time to a boolean simply to indicate a superblock update is needed. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-01-22xfs: remove bitfield based superblock updatesDave Chinner1-14/+8
When we log changes to the superblock, we first have to write them to the on-disk buffer, and then log that. Right now we have a complex bitfield based arrangement to only write the modified field to the buffer before we log it. This used to be necessary as a performance optimisation because we logged the superblock buffer in every extent or inode allocation or freeing, and so performance was extremely important. We haven't done this for years, however, ever since the lazy superblock counters pulled the superblock logging out of the transaction commit fast path. Hence we have a bunch of complexity that is not necessary that makes writing the in-core superblock to disk much more complex than it needs to be. We only need to log the superblock now during management operations (e.g. during mount, unmount or quota control operations) so it is not a performance critical path anymore. As such, remove the complex field based logging mechanism and replace it with a simple conversion function similar to what we use for all other on-disk structures. This means we always log the entirity of the superblock, but again because we rarely modify the superblock this is not an issue for log bandwidth or CPU time. Indeed, if we do log the superblock frequently, delayed logging will minimise the impact of this overhead. [Fixed gquota/pquota inode sharing regression noticed by bfoster.] Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-12-04Merge branch 'xfs-misc-fixes-for-3.19-2' into for-nextDave Chinner1-0/+1
Conflicts: fs/xfs/xfs_iops.c
2014-12-04xfs: move type conversion functions to xfs_dir.hDave Chinner1-0/+1
These are currently considered private to libxfs, but they are widely used by the userspace code to decode, walk and check directory structures. Hence they really form part of the external API and as such need to bemoved to xfs_dir2.h. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28Merge branch 'xfs-consolidate-format-defs' into for-nextDave Chinner1-3/+0
2014-11-28xfs: merge xfs_inum.h into xfs_format.hChristoph Hellwig1-1/+0
Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28xfs: merge xfs_ag.h into xfs_format.hChristoph Hellwig1-1/+0
More on-disk format consolidation. A few declarations that weren't on-disk format related move into better suitable spots. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28xfs: merge xfs_dinode.h into xfs_format.hChristoph Hellwig1-1/+0
More consolidatation for the on-disk format defintions. Note that the XFS_IS_REALTIME_INODE moves to xfs_linux.h instead as it is not related to the on disk format, but depends on a CONFIG_ option. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28xfs: allow lazy sb counter sync during filesystem freeze sequenceBrian Foster1-8/+21
The expectation since the introduction the lazy superblock counters is that the counters are synced and superblock logged appropriately as part of the filesystem freeze sequence. This does not occur, however, due to the logic in xfs_fs_writable() that prevents progress when the fs is in any state other than SB_UNFROZEN. While this is a bug, it has not been exposed to date because the last thing XFS does during freeze is dirty the log. The log recovery process recalculates the counters from AGI/AGF metadata to ensure everything is correct. Therefore should a crash occur while an fs is frozen, the subsequent log recovery puts everything back in order. See the following commit for reference: 92821e2b [XFS] Lazy Superblock Counters We might not always want to rely on dirtying the log on a frozen fs. Modify xfs_log_sbcount() to proceed when the filesystem is freezing but not once the freeze process has completed. Modify xfs_fs_writable() to accept the minimum freeze level for which modifications should be blocked to support various codepaths. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-10-02Merge branch 'xfs-buf-iosubmit' into for-nextDave Chinner1-29/+26
2014-10-02xfs: check xfs_buf_read_uncached returns correctlyDave Chinner1-29/+26
xfs_buf_read_uncached() has two failure modes. If can either return NULL or bp->b_error != 0 depending on the type of failure, and not all callers check for both. Fix it so that xfs_buf_read_uncached() always returns the error status, and the buffer is returned as a function parameter. The buffer will only be returned on success. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>