Age | Commit message (Collapse) | Author | Files | Lines |
|
When scheduling writeback of dirty file data in the page cache, XFS uses
IO completion workqueue items to ensure that filesystem metadata only
updates after the write completes successfully. This is essential for
converting unwritten extents to real extents at the right time and
performing COW remappings.
Unfortunately, XFS queues each IO completion work item to an unbounded
workqueue, which means that the kernel can spawn dozens of threads to
try to handle the items quickly. These threads need to take the ILOCK
to update file metadata, which results in heavy ILOCK contention if a
large number of the work items target a single file, which is
inefficient.
Worse yet, the writeback completion threads get stuck waiting for the
ILOCK while holding transaction reservations, which can use up all
available log reservation space. When that happens, metadata updates to
other parts of the filesystem grind to a halt, even if the filesystem
could otherwise have handled it.
Even worse, if one of the things grinding to a halt happens to be a
thread in the middle of a defer-ops finish holding the same ILOCK and
trying to obtain more log reservation having exhausted the permanent
reservation, we now have an ABBA deadlock - writeback completion has a
transaction reserved and wants the ILOCK, and someone else has the ILOCK
and wants a transaction reservation.
Therefore, we create a per-inode writeback io completion queue + work
item. When writeback finishes, it can add the ioend to the per-inode
queue and let the single worker item process that queue. This
dramatically cuts down on the number of kworkers and ILOCK contention in
the system, and seems to have eliminated an occasional deadlock I was
seeing while running generic/476.
Testing with a program that simulates a heavy random-write workload to a
single file demonstrates that the number of kworkers drops from
approximately 120 threads per file to 1, without dramatically changing
write bandwidth or pagecache access latency.
Note that we leave the xfs-conv workqueue's max_active alone because we
still want to be able to run ioend processing for as many inodes as the
system can handle.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
The io_type field contains what is basically a summary of information
from the inode fork and the imap. But we can just as easily use that
information directly, simplifying a few bits here and there and
improving the trace points.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
ftrace's __print_symbolic() has a (very poorly documented) requirement
that any enum values used in the symbol to string translation table be
wrapped in a TRACE_DEFINE_ENUM so that the enum value can be encoded in
the ftrace ring buffer. Fix this unsatisfied requirement.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
|
|
The invalid state isn't any different from a hole, so merge the two
states. Use the more descriptive hole name, but keep it as the first
value of the enum to catch uninitialized fields.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
We can handle the existing cow mapping case as a special case directly
in xfs_writepage_map, and share code for allocating delalloc blocks
with regular I/O in xfs_map_blocks. This means we need to always
call xfs_map_blocks for reflink inodes, but we can still skip most of
the work if it turns out that there is no COW mapping overlapping the
current block.
As a subtle detail we need to start caching holes in the wpc to deal
with the case of COW reservations between EOF. But we'll need that
infrastructure later anyway, so this is no big deal.
Based on a patch from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Pull more xfs updates from Darrick Wong:
"Here's the second round of patches for XFS for 4.18. Most of the
commits are small cleanups, bug fixes, and continued strengthening of
metadata verifiers; the bulk of the diff is the conversion of the
fs/xfs/ tree to use SPDX tags.
This series has been run through a full xfstests run over the weekend
and through a quick xfstests run against this morning's master, with
no major failures reported.
Summary:
- Strengthen metadata checking to avoid ASSERTing on bad disk
contents
- Validate btree records that are being retrieved for clients
- Strengthen root inode verification
- Convert license blurbs to SPDX tags
- Enable changing DAX flag on directories
- Fix some writeback deadlocks in reflink
- Refactor out some old xfs helpers
- Move type verifiers to a separate file
- Fix some fuzzer crashes
- Various other bug fixes"
* tag 'xfs-4.18-merge-10' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (31 commits)
xfs: update incore per-AG inode count
xfs: replace do_mod with native operations
xfs: don't call xfs_da_shrink_inode with NULL bp
xfs: clean up MIN/MAX
xfs: move various type verifiers to common file
xfs: xfs_reflink_convert_cow() memory allocation deadlock
xfs: setup VFS i_rwsem lockdep state correctly
xfs: fix string handling in label get/set functions
xfs: convert to SPDX license tags
xfs: validate btree records on retrieval
xfs: push corruption -> ESTALE conversion to xfs_nfs_get_inode()
xfs: verify root inode more thoroughly
xfs: verify COW extent size hint is valid in inode verifier
xfs: verify extent size hint is valid in inode verifier
xfs: catch bad stripe alignment configurations
iomap: fsync swap files before iterating mappings
xfs: use xfs_trans_getsb in xfs_sync_sb_buf
xfs: don't assert on corrupted unlinked inode list
xfs: explicitly pass buffer size to xfs_corruption_error
xfs: don't assert when on-disk btree pointers are garbage
...
|
|
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Convert XFS to embedded bio sets.
Acked-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In preparation for the dax implementation to start associating dax pages
to inodes via page->mapping, we need to provide a 'struct
address_space_operations' instance for dax. Otherwise, direct-I/O
triggers incorrect page cache assumptions and warnings like the
following:
WARNING: CPU: 27 PID: 1783 at fs/xfs/xfs_aops.c:1468
xfs_vm_set_page_dirty+0xf3/0x1b0 [xfs]
[..]
CPU: 27 PID: 1783 Comm: dma-collision Tainted: G O 4.15.0-rc2+ #984
[..]
Call Trace:
set_page_dirty_lock+0x40/0x60
bio_set_pages_dirty+0x37/0x50
iomap_dio_actor+0x2b7/0x3b0
? iomap_dio_zero+0x110/0x110
iomap_apply+0xa4/0x110
iomap_dio_rw+0x29e/0x3b0
? iomap_dio_zero+0x110/0x110
? xfs_file_dio_aio_read+0x7c/0x1a0 [xfs]
xfs_file_dio_aio_read+0x7c/0x1a0 [xfs]
xfs_file_read_iter+0xa0/0xc0 [xfs]
__vfs_read+0xf9/0x170
vfs_read+0xa6/0x150
SyS_pread64+0x93/0xb0
entry_SYSCALL_64_fastpath+0x1f/0x96
...where the default set_page_dirty() handler assumes that dirty state
is being tracked in 'struct page' flags.
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Jan Kara <jack@suse.cz>
Suggested-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The ->iomap_begin() operation is a hot path, so cache the
fs_dax_get_by_host() result at mount time to avoid the incurring the
hash lookup overhead on a per-i/o basis.
Reported-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Straight switch over to using iomap for direct I/O - we already have the
non-COW dio path in write_begin for DAX and files with extent size hints,
so nothing to add there. The COW path is ported over from the old
get_blocks version and a bit of a mess, but I have some work in progress
to make it look more like the buffered I/O COW path.
This gets rid of xfs_get_blocks_direct and the last caller of
xfs_get_blocks with the create flag set, so all that code can be removed.
Last but not least I've removed a comment in xfs_filemap_fault that
refers to xfs_get_blocks entirely instead of updating it - while the
reference is correct, the whole DAX fault path looks different than
the non-DAX one, so it seems rather pointless.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Jens Axboe <axboe@fb.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Switch xfs_filemap_pmd_fault() from using dax_pmd_fault() to the new and
improved dax_iomap_pmd_fault(). Also, now that it has no more users,
remove xfs_get_blocks_dax_fault().
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Modify the writepage handler to find and convert pending delalloc
extents to real allocations. Furthermore, when we're doing non-cow
writes to a part of a file that already has a CoW reservation (the
cowextsz hint that we set up in a subsequent patch facilitates this),
promote the write to copy-on-write so that the entire extent can get
written out as a single extent on disk, thereby reducing post-CoW
fragmentation.
Christoph moved the CoW support code in _map_blocks to a separate helper
function, refactored other functions, and reduced the number of CoW fork
lookups, so I merged those changes here to reduce churn.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Rename the current function to __xfs_setfilesize and add a non-static
wrapper that also takes care of creating the transaction. This new
helper will be used by the new iomap-based DAX path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
We control both the callers and callees of ->direct_IO, so remove the
indirect calls.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
This patch implements two closely related changes: First it embeds
a bio the ioend structure so that we don't have to allocate one
separately. Second it uses the block layer bio chaining mechanism
to chain additional bios off this first one if needed instead of
manually accounting for multiple bio completions in the ioend
structure. Together this removes a memory allocation per ioend and
greatly simplifies the ioend setup and I/O completion path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Completion of an ioend requires us to walk the bufferhead list to
end writback on all the bufferheads. This, in turn, is needed so
that we can end writeback on all the pages we just did IO on.
To remove our dependency on bufferheads in writeback, we need to
turn this around the other way - we need to walk the pages we've
just completed IO on, and then walk the buffers attached to the
pages and complete their IO. In doing this, we remove the
requirement for the ioend to track bufferheads directly.
To enable IO completion to walk all the pages we've submitted IO on,
we need to keep the bios that we used for IO around until the ioend
has been completed. We can do this simply by chaining the bios to
the ioend at completion time, and then walking their pages directly
just before destroying the ioend.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: changed the xfs_finish_page_writeback calling convention]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Currently adding a buffer to the ioend and then building a bio from
the buffer list are two separate operations. We don't build the bios
and submit them until the ioend is submitted, and this places a
fixed dependency on bufferhead chaining in the ioend.
The first step to removing the bufferhead chaining in the ioend is
on the IO submission side. We can build the bio directly as we add
the buffers to the ioend chain, thereby removing the need for a
latter "buffer-to-bio" submission loop. This allows us to submit
bios on large ioends as soon as we cannot add more data to the bio.
These bios then get captured by the active plug, and hence will be
dispatched as soon as either the plug overflows or we schedule away
from the writeback context. This will reduce submission latency for
large IOs, but will also allow more timely request queue based
writeback blocking when the device becomes congested.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: various small updates]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pull xfs updates from Dave Chinner:
"There's quite a lot in this request, and there's some cross-over with
ext4, dax and quota code due to the nature of the changes being made.
As for the rest of the XFS changes, there are lots of little things
all over the place, which add up to a lot of changes in the end.
The major changes are that we've reduced the size of the struct
xfs_inode by ~100 bytes (gives an inode cache footprint reduction of
>10%), the writepage code now only does a single set of mapping tree
lockups so uses less CPU, delayed allocation reservations won't
overrun under random write loads anymore, and we added compile time
verification for on-disk structure sizes so we find out when a commit
or platform/compiler change breaks the on disk structure as early as
possible.
Change summary:
- error propagation for direct IO failures fixes for both XFS and
ext4
- new quota interfaces and XFS implementation for iterating all the
quota IDs in the filesystem
- locking fixes for real-time device extent allocation
- reduction of duplicate information in the xfs and vfs inode, saving
roughly 100 bytes of memory per cached inode.
- buffer flag cleanup
- rework of the writepage code to use the generic write clustering
mechanisms
- several fixes for inode flag based DAX enablement
- rework of remount option parsing
- compile time verification of on-disk format structure sizes
- delayed allocation reservation overrun fixes
- lots of little error handling fixes
- small memory leak fixes
- enable xfsaild freezing again"
* tag 'xfs-for-linus-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (66 commits)
xfs: always set rvalp in xfs_dir2_node_trim_free
xfs: ensure committed is initialized in xfs_trans_roll
xfs: borrow indirect blocks from freed extent when available
xfs: refactor delalloc indlen reservation split into helper
xfs: update freeblocks counter after extent deletion
xfs: debug mode forced buffered write failure
xfs: remove impossible condition
xfs: check sizes of XFS on-disk structures at compile time
xfs: ioends require logically contiguous file offsets
xfs: use named array initializers for log item dumping
xfs: fix computation of inode btree maxlevels
xfs: reinitialise per-AG structures if geometry changes during recovery
xfs: remove xfs_trans_get_block_res
xfs: fix up inode32/64 (re)mount handling
xfs: fix format specifier , should be %llx and not %llu
xfs: sanitize remount options
xfs: convert mount option parsing to tokens
xfs: fix two memory leaks in xfs_attr_list.c error paths
xfs: XFS_DIFLAG2_DAX limited by PAGE_SIZE
xfs: dynamically switch modes when XFS_DIFLAG2_DAX is set/cleared
...
|
|
dax_clear_blocks() needs a valid struct block_device and previously it
was using inode->i_sb->s_bdev in all cases. This is correct for normal
inodes on mounted ext2, ext4 and XFS filesystems, but is incorrect for
DAX raw block devices and for XFS real-time devices.
Instead, rename dax_clear_blocks() to dax_clear_sectors(), and change
its arguments to take a bdev and a sector instead of an inode and a
block. This better reflects what the function does, and it allows the
filesystem and raw block device code to pass in an appropriate struct
block_device.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Al Viro <viro@ftp.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently we can build a long ioend chain during ->writepages that
gets attached to the writepage context. IO submission only then
occurs when we finish all the writepage processing. This means we
can have many ioends allocated and pending, and this violates the
mempool guarantees that we need to give about forwards progress.
i.e. we really should only have one ioend being built at a time,
otherwise we may drain the mempool trying to allocate a new ioend
and that blocks submission, completion and freeing of ioends that
are already in progress.
To prevent this situation from happening, we need to submit ioends
for IO as soon as they are ready for dispatch rather than queuing
them for later submission. This means the ioends have bios built
immediately and they get queued on any plug that is current active.
Hence if we schedule away from writeback, the ioends that have been
built will make forwards progress due to the plug flushing on
context switch. This will also prevent context switches from
creating unnecessary IO submission latency.
We can't completely avoid having nested IO allocation - when we have
a block size smaller than a page size, we still need to hold the
ioend submission until after we have marked the current page dirty.
Hence we may need multiple ioends to be held while the current page
is completely mapped and made ready for IO dispatch. We cannot avoid
this problem - the current code already has this ioend chaining
within a page so we can mostly ignore that it occurs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
xfs_vm_writepages() calls generic_writepages to writeback a range of
a file, but then xfs_vm_writepage() clusters pages itself as it does
not have any context it can pass between->writepage calls from
__write_cache_pages().
Introduce a writeback context for xfs_vm_writepages() and call
__write_cache_pages directly with our own writepage callback so that
we can pass that context to each writepage invocation. This
encapsulates the current mapping, whether it is valid or not, the
current ioend and it's IO type and the ioend chain being built.
This requires us to move the ioend submission up to the level where
the writepage context is declared. This does mean we do not submit
IO until we packaged the entire writeback range, but with the block
plugging in the writepages call this is the way IO is submitted,
anyway.
It also means that we need to handle discontiguous page ranges. If
the pages sent down by write_cache_pages to the writepage callback
are discontiguous, we need to detect this and put each discontiguous
page range into individual ioends. This is needed to ensure that the
ioend accurately represents the range of the file that it covers so
that file size updates during IO completion set the size correctly.
Failure to take into account the discontiguous ranges results in
files being too small when writeback patterns are non-sequential.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
For DAX, we are now doing block zeroing during allocation. This
means we no longer need a special DAX fault IO completion callback
to do unwritten extent conversion. Because mmap never extends the
file size (it SEGVs the process) we don't need a callback to update
the file size, either. Hence we can remove the completion callbacks
from the __dax_fault and __dax_mkwrite calls.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Both direct IO and DAX pass an offset and count into get_blocks that
will overflow a s64 variable when an IO goes into the last supported
block in a file (i.e. at offset 2^63 - 1FSB bytes). This can be seen
from the tracing:
xfs_get_blocks_alloc: [...] offset 0x7ffffffffffff000 count 4096
xfs_gbmap_direct: [...] offset 0x7ffffffffffff000 count 4096
xfs_gbmap_direct_none:[...] offset 0x7ffffffffffff000 count 4096
0x7ffffffffffff000 + 4096 = 0x8000000000000000, and hence that
overflows the s64 offset and we fail to detect the need for a
filesize update and an ioend is not allocated.
This is *mostly* avoided for direct IO because such extending IOs
occur with full block allocation, and so the "IS_UNWRITTEN()" check
still evaluates as true and we get an ioend that way. However, doing
single sector extending IOs to this last block will expose the fact
that file size updates will not occur after the first allocating
direct IO as the overflow will then be exposed.
There is one further complexity: the DAX page fault path also
exposes the same issue in block allocation. However, page faults
cannot extend the file size, so in this case we want to allocate the
block but do not want to allocate an ioend to enable file size
update at IO completion. Hence we now need to distinguish between
the direct IO patch allocation and dax fault path allocation to
avoid leaking ioend structures.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Add the initial support for DAX file operations to XFS. This
includes the necessary block allocation and mmap page fault hooks
for DAX to function.
Note that there are changes to the splice interfaces to ensure that
for DAX splice avoids direct page cache manipulations and instead
takes the DAX IO paths for read/write operations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Back in the days when the direct I/O ->end_io callback could be called
from interrupt context for AIO we needed a structure to hand off to the
workqueue, and reused the ioend structure for this purpose. These days
->end_io is always called from user or workqueue context, which allows us
to avoid this memory allocation and simplify the code significantly.
[dchinner: removed now unused xfs_finish_ioend_sync() function after
Brian Foster did an initial review. ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Add support to the core direct-io code to defer AIO completions to user
context using a workqueue. This replaces opencoded and less efficient
code in XFS and ext4 (we save a memory allocation for each direct IO)
and will be needed to properly support O_(D)SYNC for AIO.
The communication between the filesystem and the direct I/O code requires
a new buffer head flag, which is a bit ugly but not avoidable until the
direct I/O code stops abusing the buffer_head structure for communicating
with the filesystems.
Currently this creates a per-superblock unbound workqueue for these
completions, which is taken from an earlier patch by Jan Kara. I'm
not really convinced about this use and would prefer a "normal" global
workqueue with a high concurrency limit, but this needs further discussion.
JK: Fixed ext4 part, dynamic allocation of the workqueue.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Add a XFS_ prefix to IO_DIRECT,XFS_IO_DELALLOC, XFS_IO_UNWRITTEN and
XFS_IO_OVERWRITE. This to avoid namespace conflict with other modules.
Signed-off-by: Alain Renaud <arenaud@sgi.com>
Reviewed-by: Rich Johnston <rjohnston@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Do not use unlogged metadata updates and the VFS dirty bit for updating
the file size after writeback. In addition to causing various problems
with updates getting delayed for far too long this also drags in the
unscalable VFS dirty tracking, and is one of the few remaining unlogged
metadata updates.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The new concurrency managed workqueues are cheap enough that we can create
per-filesystem instead of global workqueues. This allows us to remove the
trylock or defer scheme on the ilock, which is not helpful once we have
outstanding log reservations until finishing a size update.
Also allow the default concurrency on this workqueues so that I/O completions
blocking on the ilock for one inode do not block process for another inode.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
We now have an i_dio_count filed and surrounding infrastructure to wait
for direct I/O completion instead of i_icount, and we have never needed
to iocount waits for buffered I/O given that we only set the page uptodate
after finishing all required work. Thus remove i_iocount, and replace
the actually needed waits with calls to inode_dio_wait.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
We really shouldn't complete AIO or DIO requests until we have finished
the unwritten extent conversion and size update. This means fsync never
has to pick up any ioends as all work has been completed when signalling
I/O completion.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the
annoying subdirectories in the XFS source code. Besides the large
amount of file rename the only changes are to the Makefile, a few
files including headers with the subdirectory prefix, and the binary
sysctl compat code that includes a header under fs/xfs/ from
kernel/.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|