Age | Commit message (Collapse) | Author | Files | Lines |
|
The brelse() function tests whether its argument is NULL
and then returns immediately.
Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Link: https://lore.kernel.org/r/a254c1d1-0109-ab51-c67a-edc5c1c4b4cd@web.de
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Move some functions to make forward declarations unnecessary.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
OSTA UDF standard defines that domain identifier in logical volume
descriptor and file set descriptor should contain a particular string
and the identifier suffix contains flags possibly making media
write-protected. Verify these constraints and allow only read-only mount
if they are not met.
Tested-by: Steven J. Magnani <steve@digidescorp.com>
Reviewed-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Windows presents files created within Linux as read-only, even when
permissions in Linux indicate the file should be writable.
UDF defines a slightly different set of basic file permissions than Linux.
Specifically, UDF has "delete" and "change attribute" permissions for each
access class (user/group/other). Linux has no equivalents for these.
When the Linux UDF driver creates a file (or directory), no UDF delete or
change attribute permissions are granted. The lack of delete permission
appears to cause Windows to mark an item read-only when its permissions
otherwise indicate that it should be read-write.
Fix this by having UDF delete permissions track Linux write permissions.
Also grant UDF change attribute permission to the owner when creating a
new inode.
Reported by: Ty Young
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Link: https://lore.kernel.org/r/20190827121359.9954-1-steve@digidescorp.com
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Instead of relying on UDFFS_DEBUG define for debug printing, just use
standard pr_debug() prints and rely on CONFIG_DYNAMIC_DEBUG
infrastructure for enabling or disabling prints.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Windows is capable of creating UDF files having named streams.
One example is the "Zone.Identifier" stream attached automatically
to files downloaded from a network. See:
https://msdn.microsoft.com/en-us/library/dn392609.aspx
Modification of a file having one or more named streams in Linux causes
the stream directory to become detached from the file, essentially leaking
all blocks pertaining to the file's streams.
Fix by saving off information about an inode's streams when reading it,
for later use when its on-disk data is updated.
Link: https://lore.kernel.org/r/20190814125002.10869-1-steve@digidescorp.com
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
The UDF bitmap allocation code assumes that a recorded
Unallocated Space Bitmap is compliant with ECMA-167 4/13,
which requires that pad bytes between the end of the bitmap
and the end of a logical block are all zero.
When a recorded bitmap does not comply with this requirement,
for example one padded with FF to the block boundary instead
of 00, the allocator may "allocate" blocks that are outside
the UDF partition extent. This can result in UDF volume descriptors
being overwritten by file data or by partition-level descriptors,
and in extreme cases, even in scribbling on a subsequent disk partition.
Add a check that the block selected by the allocator actually
resides within the UDF partition extent.
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Link: https://lore.kernel.org/r/1564341552-129750-1-git-send-email-steve@digidescorp.com
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Some UDF creators (specifically Microsoft, but perhaps others) mishandle
the ECMA-167 corner case that requires descriptors within a Volume
Recognition Sequence to be placed at 4096-byte intervals on media where
the block size is 4K. Instead, the descriptors are placed at the 2048-
byte interval mandated for media with smaller blocks. This nonconformity
currently prevents Linux from recognizing the filesystem as UDF.
Modify the driver to tolerate a misformatted VRS on 4K media.
[JK: Simplified descriptor checking]
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Tested-by: Steven J. Magnani <steve@digidescorp.com>
Link: https://lore.kernel.org/r/20190711133852.16887-2-steve@digidescorp.com
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Extract code that parses a Volume Recognition Sequence descriptor
(component), in preparation for calling it twice against different
locations in a block.
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Link: https://lore.kernel.org/r/20190711133852.16887-1-steve@digidescorp.com
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull ext2, udf and quota updates from Jan Kara:
- some ext2 fixes and cleanups
- a fix of udf bug when extending files
- a fix of quota Q_XGETQSTAT[V] handling
* tag 'for_v5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
udf: Fix incorrect final NOT_ALLOCATED (hole) extent length
ext2: Use kmemdup rather than duplicating its implementation
quota: honor quota type in Q_XGETQSTAT[V] calls
ext2: Always brelse bh on failure in ext2_iget()
ext2: add missing brelse() in ext2_iget()
ext2: Fix a typo in ext2_getattr argument
ext2: fix a typo in comment
ext2: add missing brelse() in ext2_new_inode()
ext2: optimize ext2_xattr_get()
ext2: introduce new helper for xattr entry comparison
ext2: merge xattr next entry check to ext2_xattr_entry_valid()
ext2: code cleanup for ext2_preread_inode()
ext2: code cleanup by using test_opt() and clear_opt()
doc: ext2: update description of quota options for ext2
ext2: Strengthen xattr block checks
ext2: Merge loops in ext2_xattr_set()
ext2: introduce helper for xattr entry validation
ext2: introduce helper for xattr header validation
quota: add dqi_dirty_list description to comment of Dquot List Management
|
|
In some cases, using the 'truncate' command to extend a UDF file results
in a mismatch between the length of the file's extents (specifically, due
to incorrect length of the final NOT_ALLOCATED extent) and the information
(file) length. The discrepancy can prevent other operating systems
(i.e., Windows 10) from opening the file.
Two particular errors have been observed when extending a file:
1. The final extent is larger than it should be, having been rounded up
to a multiple of the block size.
B. The final extent is not shorter than it should be, due to not having
been updated when the file's information length was increased.
[JK: simplified udf_do_extend_final_block(), fixed up some types]
Fixes: 2c948b3f86e5 ("udf: Avoid IO in udf_clear_inode")
CC: stable@vger.kernel.org
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Link: https://lore.kernel.org/r/1561948775-5878-1-git-send-email-steve@digidescorp.com
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Add SPDX license identifiers to all Make/Kconfig files which:
- Have no license information of any form
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull misc filesystem updates from Jan Kara:
"A couple of small bugfixes and cleanups for quota, udf, ext2, and
reiserfs"
* tag 'fs_for_v5.2-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
quota: check time limit when back out space/inode change
fs/quota: erase unused but set variable warning
quota: fix wrong indentation
udf: fix an uninitialized read bug and remove dead code
fs/reiserfs/journal.c: Make remove_journal_hash static
quota: remove trailing whitespaces
quota: code cleanup for __dquot_alloc_space()
ext2: Adjust the comment of function ext2_alloc_branch
udf: Explain handling of load_nls() failure
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
In udf_lookup(), the pointer 'fi' is a local variable initialized by the
return value of the function call udf_find_entry(). However, if the macro
'UDF_RECOVERY' is defined, this variable will become uninitialized if the
else branch is not taken, which can potentially cause incorrect results in
the following execution.
To fix this issue, this patch drops the whole code in the ifdef
'UDF_RECOVERY' region, as it is dead code.
Signed-off-by: Wenwen Wang <wang6495@umn.edu>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Add comment explaining that load_nls() failure gets handled back in
udf_fill_super() to avoid false impression that it is unhandled.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Make udf_truncate_extents() properly propagate errors to its callers and
let udf_setsize() handle the error properly as well. This lets userspace
know in case there's some error when truncating blocks.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
When truncate(2) hits IO error when reading indirect extent block the
code just bugs with:
kernel BUG at linux-4.15.0/fs/udf/truncate.c:249!
...
Fix the problem by bailing out cleanly in case of IO error.
CC: stable@vger.kernel.org
Reported-by: jean-luc malet <jeanluc.malet@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
The check if (bh) in udf_sync_fs() is pointless as we cannot have
sbi->s_lvid_dirty and !sbi->s_lvid_bh (as already asserted by
udf_updated_lvid()). So just drop the pointless check.
Reviewed-by: Steven J. Magnani <steve@digidescorp.com>
Reported-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Refuse to mount a volume read-write without a coherent Logical Volume
Integrity Descriptor, because we can't generate truly unique IDs without
one.
This fixes a bug where all inodes created on a UDF filesystem following
mount without a coherent LVID are assigned unique ID 0 which can then
confuse other UDF implementations.
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Make sure the CRC and tag checksum of the Logical Volume Integrity
Descriptor are valid before the structure is written out to disk.
Otherwise, unless the filesystem is unmounted gracefully, the on-disk
LVID will be invalid - which is unnecessary filesystem damage.
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Centralize timestamping and CRC/checksum updating of the in-core
Logical Volume Integrity Descriptor, in preparation for adding
a third site where this functionality is needed.
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull ext2, udf, and quota update from Jan Kara:
"Some ext2 cleanups, a fix for UDF crash on corrupted media, and one
quota locking fix"
* tag 'fs_for_4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
quota: Lock s_umount in exclusive mode for Q_XQUOTA{ON,OFF} quotactls.
udf: Fix BUG on corrupted inode
ext2: change reusable parameter to true when calling mb_cache_entry_create()
ext2: remove redundant condition check
ext2: avoid unnecessary operation in ext2_error()
|
|
When inode is corrupted so that extent type is invalid, some functions
(such as udf_truncate_extents()) will just BUG. Check that extent type
is valid when loading the inode to memory.
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Commit c26f6c615788 ("udf: Fix conversion of 'dstring' fields to UTF8")
started to be more strict when checking whether converted strings are
properly formatted. Sudip reports that there are DVDs where the volume
identification string is actually too long - UDF reports:
[ 632.309320] UDF-fs: incorrect dstring lengths (32/32)
during mount and fails the mount. This is mostly harmless failure as we
don't need volume identification (and even less volume set
identification) for anything. So just truncate the volume identification
string if it is too long and replace it with 'Invalid' if we just cannot
convert it for other reasons. This keeps slightly incorrect media still
mountable.
CC: stable@vger.kernel.org
Fixes: c26f6c615788 ("udf: Fix conversion of 'dstring' fields to UTF8")
Reported-and-tested-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Drop pack pragma. The header file defines only in-memory structures.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
We don't support Free Space Table and Free Space Bitmap as specified by
UDF standard for writing as we don't support erasing blocks before
overwriting them. Just drop the handling of these structures as
partition descriptor checking code already makes sure such filesystems
can be mounted only read-only.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Fix a crash during an attempt to mount a filesystem that has both
Unallocated Space Table and Unallocated Space Bitmap. Such filesystem
actually violates the UDF standard so we just have to properly detect
such situation and refuse to mount such filesystem read-write. When we
are at it, verify also other constraints on the allocation information
mandated by the standard.
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
There are certain filesystem features which we support for reading but
not for writing. We properly refuse to mount such filesystems read-write
however for some features (such as read-only partitions), we don't check
for these features when remounting the filesystem from read-only to
read-write. Thus such filesystems could be remounted read-write leading
to strange behavior (most likely crashes).
Fix the problem by marking in superblock whether the filesystem has some
features that are supported in read-only mode and check this flag during
remount.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Variables group_start and nr_groups are being assigned but are never used
hence they are redundant and can be removed.
Cleans up clang warning:
variable 'group_start' set but not used [-Wunused-but-set-variable]
variable 'nr_groups' set but not used [-Wunused-but-set-variable]
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Win7 is creating UDF filesystems with single partition with number 8192.
Current partition descriptor scanning code does not handle this well as
it incorrectly assumes that partition numbers will form mostly contiguous
space of small numbers. This results in unmountable media due to errors
like:
UDF-fs: error (device dm-1): udf_read_tagged: tag version 0x0000 != 0x0002 || 0x0003, block 0
UDF-fs: warning (device dm-1): udf_fill_super: No fileset found
Fix the problem by handling partition descriptors in a way that sparse
partition numbering does not matter.
Reported-and-tested-by: jean-luc malet <jeanluc.malet@gmail.com>
CC: stable@vger.kernel.org
Fixes: 7b78fd02fb19530fd101ae137a1f46aa466d9bb6
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Remove dead code and slightly simplify code in udf_find_fileset().
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull UDF and ext2 update from Jan Kara.
* tag 'for_v4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
ext2: use ktime_get_real_seconds for timestamps
udf: convert inode stamps to timespec64
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs icache updates from Al Viro:
- NFS mkdir/open_by_handle race fix
- analogous solution for FUSE, replacing the one currently in mainline
- new primitive to be used when discarding halfway set up inodes on
failed object creation; gives sane warranties re icache lookups not
returning such doomed by still not freed inodes. A bunch of
filesystems switched to that animal.
- Miklos' fix for last cycle regression in iget5_locked(); -stable will
need a slightly different variant, unfortunately.
- misc bits and pieces around things icache-related (in adfs and jfs).
* 'work.mkdir' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
jfs: don't bother with make_bad_inode() in ialloc()
adfs: don't put inodes into icache
new helper: inode_fake_hash()
vfs: don't evict uninitialized inode
jfs: switch to discard_new_inode()
ext2: make sure that partially set up inodes won't be returned by ext2_iget()
udf: switch to discard_new_inode()
ufs: switch to discard_new_inode()
btrfs: switch to discard_new_inode()
new primitive: discard_new_inode()
kill d_instantiate_no_diralias()
nfs_instantiate(): prevent multiple aliases for directory inode
|
|
we don't want open-by-handle to pick an in-core inode that
has failed setup halfway through.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
The VFS structures are finally converted to always use 64-bit timestamps,
and this file system can represent a long range of on-disk timestamps
already, so now let's fit in the missing bits for udf.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
udf_delete_aext() uses its last two arguments only as local variables.
Drop them.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Provide function for calculating directory entry length and use to
reduce code duplication.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Detect when a directory entry is (possibly partially) beyond directory
size and return EIO in that case since it means the filesystem is
corrupted. Otherwise directory operations can further corrupt the
directory and possibly also oops the kernel.
CC: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
CC: stable@vger.kernel.org
Reported-and-tested-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground
Pull inode timestamps conversion to timespec64 from Arnd Bergmann:
"This is a late set of changes from Deepa Dinamani doing an automated
treewide conversion of the inode and iattr structures from 'timespec'
to 'timespec64', to push the conversion from the VFS layer into the
individual file systems.
As Deepa writes:
'The series aims to switch vfs timestamps to use struct timespec64.
Currently vfs uses struct timespec, which is not y2038 safe.
The series involves the following:
1. Add vfs helper functions for supporting struct timepec64
timestamps.
2. Cast prints of vfs timestamps to avoid warnings after the switch.
3. Simplify code using vfs timestamps so that the actual replacement
becomes easy.
4. Convert vfs timestamps to use struct timespec64 using a script.
This is a flag day patch.
Next steps:
1. Convert APIs that can handle timespec64, instead of converting
timestamps at the boundaries.
2. Update internal data structures to avoid timestamp conversions'
Thomas Gleixner adds:
'I think there is no point to drag that out for the next merge
window. The whole thing needs to be done in one go for the core
changes which means that you're going to play that catchup game
forever. Let's get over with it towards the end of the merge window'"
* tag 'vfs-timespec64' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground:
pstore: Remove bogus format string definition
vfs: change inode times to use struct timespec64
pstore: Convert internal records to timespec64
udf: Simplify calls to udf_disk_stamp_to_time
fs: nfs: get rid of memcpys for inode times
ceph: make inode time prints to be long long
lustre: Use long long type to print inode time
fs: add timespec64_truncate()
|
|
vfs-timespec64
Pull the timespec64 conversion from Deepa Dinamani:
"The series aims to switch vfs timestamps to use
struct timespec64. Currently vfs uses struct timespec,
which is not y2038 safe.
The flag patch applies cleanly. I've not seen the timestamps
update logic change often. The series applies cleanly on 4.17-rc6
and linux-next tip (top commit: next-20180517).
I'm not sure how to merge this kind of a series with a flag patch.
We are targeting 4.18 for this.
Let me know if you have other suggestions.
The series involves the following:
1. Add vfs helper functions for supporting struct timepec64 timestamps.
2. Cast prints of vfs timestamps to avoid warnings after the switch.
3. Simplify code using vfs timestamps so that the actual
replacement becomes easy.
4. Convert vfs timestamps to use struct timespec64 using a script.
This is a flag day patch.
I've tried to keep the conversions with the script simple, to
aid in the reviews. I've kept all the internal filesystem data
structures and function signatures the same.
Next steps:
1. Convert APIs that can handle timespec64, instead of converting
timestamps at the boundaries.
2. Update internal data structures to avoid timestamp conversions."
I've pulled it into a branch based on top of the NFS changes that
are now in mainline, so I could resolve the non-obvious conflict
between the two while merging.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:
kzalloc(a * b, gfp)
with:
kcalloc(a * b, gfp)
as well as handling cases of:
kzalloc(a * b * c, gfp)
with:
kzalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kzalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kzalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull udf updates from Jan Kara:
"UDF support for UTF-16 characters in file names"
* tag 'udf_for_v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
udf: Add support for decoding UTF-16 characters
udf: Add support for encoding UTF-16 characters
udf: Push sb argument to udf_name_[to|from]_CS0()
udf: Convert ident strings to proper charset
udf: Use UTF-32 <-> UTF-8 conversion functions from NLS
udf: Always require NLS support
|
|
struct timespec is not y2038 safe. Transition vfs to use
y2038 safe struct timespec64 instead.
The change was made with the help of the following cocinelle
script. This catches about 80% of the changes.
All the header file and logic changes are included in the
first 5 rules. The rest are trivial substitutions.
I avoid changing any of the function signatures or any other
filesystem specific data structures to keep the patch simple
for review.
The script can be a little shorter by combining different cases.
But, this version was sufficient for my usecase.
virtual patch
@ depends on patch @
identifier now;
@@
- struct timespec
+ struct timespec64
current_time ( ... )
{
- struct timespec now = current_kernel_time();
+ struct timespec64 now = current_kernel_time64();
...
- return timespec_trunc(
+ return timespec64_trunc(
... );
}
@ depends on patch @
identifier xtime;
@@
struct \( iattr \| inode \| kstat \) {
...
- struct timespec xtime;
+ struct timespec64 xtime;
...
}
@ depends on patch @
identifier t;
@@
struct inode_operations {
...
int (*update_time) (...,
- struct timespec t,
+ struct timespec64 t,
...);
...
}
@ depends on patch @
identifier t;
identifier fn_update_time =~ "update_time$";
@@
fn_update_time (...,
- struct timespec *t,
+ struct timespec64 *t,
...) { ... }
@ depends on patch @
identifier t;
@@
lease_get_mtime( ... ,
- struct timespec *t
+ struct timespec64 *t
) { ... }
@te depends on patch forall@
identifier ts;
local idexpression struct inode *inode_node;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
identifier fn_update_time =~ "update_time$";
identifier fn;
expression e, E3;
local idexpression struct inode *node1;
local idexpression struct inode *node2;
local idexpression struct iattr *attr1;
local idexpression struct iattr *attr2;
local idexpression struct iattr attr;
identifier i_xtime1 =~ "^i_[acm]time$";
identifier i_xtime2 =~ "^i_[acm]time$";
identifier ia_xtime1 =~ "^ia_[acm]time$";
identifier ia_xtime2 =~ "^ia_[acm]time$";
@@
(
(
- struct timespec ts;
+ struct timespec64 ts;
|
- struct timespec ts = current_time(inode_node);
+ struct timespec64 ts = current_time(inode_node);
)
<+... when != ts
(
- timespec_equal(&inode_node->i_xtime, &ts)
+ timespec64_equal(&inode_node->i_xtime, &ts)
|
- timespec_equal(&ts, &inode_node->i_xtime)
+ timespec64_equal(&ts, &inode_node->i_xtime)
|
- timespec_compare(&inode_node->i_xtime, &ts)
+ timespec64_compare(&inode_node->i_xtime, &ts)
|
- timespec_compare(&ts, &inode_node->i_xtime)
+ timespec64_compare(&ts, &inode_node->i_xtime)
|
ts = current_time(e)
|
fn_update_time(..., &ts,...)
|
inode_node->i_xtime = ts
|
node1->i_xtime = ts
|
ts = inode_node->i_xtime
|
<+... attr1->ia_xtime ...+> = ts
|
ts = attr1->ia_xtime
|
ts.tv_sec
|
ts.tv_nsec
|
btrfs_set_stack_timespec_sec(..., ts.tv_sec)
|
btrfs_set_stack_timespec_nsec(..., ts.tv_nsec)
|
- ts = timespec64_to_timespec(
+ ts =
...
-)
|
- ts = ktime_to_timespec(
+ ts = ktime_to_timespec64(
...)
|
- ts = E3
+ ts = timespec_to_timespec64(E3)
|
- ktime_get_real_ts(&ts)
+ ktime_get_real_ts64(&ts)
|
fn(...,
- ts
+ timespec64_to_timespec(ts)
,...)
)
...+>
(
<... when != ts
- return ts;
+ return timespec64_to_timespec(ts);
...>
)
|
- timespec_equal(&node1->i_xtime1, &node2->i_xtime2)
+ timespec64_equal(&node1->i_xtime2, &node2->i_xtime2)
|
- timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2)
+ timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2)
|
- timespec_compare(&node1->i_xtime1, &node2->i_xtime2)
+ timespec64_compare(&node1->i_xtime1, &node2->i_xtime2)
|
node1->i_xtime1 =
- timespec_trunc(attr1->ia_xtime1,
+ timespec64_trunc(attr1->ia_xtime1,
...)
|
- attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2,
+ attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2,
...)
|
- ktime_get_real_ts(&attr1->ia_xtime1)
+ ktime_get_real_ts64(&attr1->ia_xtime1)
|
- ktime_get_real_ts(&attr.ia_xtime1)
+ ktime_get_real_ts64(&attr.ia_xtime1)
)
@ depends on patch @
struct inode *node;
struct iattr *attr;
identifier fn;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
expression e;
@@
(
- fn(node->i_xtime);
+ fn(timespec64_to_timespec(node->i_xtime));
|
fn(...,
- node->i_xtime);
+ timespec64_to_timespec(node->i_xtime));
|
- e = fn(attr->ia_xtime);
+ e = fn(timespec64_to_timespec(attr->ia_xtime));
)
@ depends on patch forall @
struct inode *node;
struct iattr *attr;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
identifier fn;
@@
{
+ struct timespec ts;
<+...
(
+ ts = timespec64_to_timespec(node->i_xtime);
fn (...,
- &node->i_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
fn (...,
- &attr->ia_xtime,
+ &ts,
...);
)
...+>
}
@ depends on patch forall @
struct inode *node;
struct iattr *attr;
struct kstat *stat;
identifier ia_xtime =~ "^ia_[acm]time$";
identifier i_xtime =~ "^i_[acm]time$";
identifier xtime =~ "^[acm]time$";
identifier fn, ret;
@@
{
+ struct timespec ts;
<+...
(
+ ts = timespec64_to_timespec(node->i_xtime);
ret = fn (...,
- &node->i_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(node->i_xtime);
ret = fn (...,
- &node->i_xtime);
+ &ts);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
ret = fn (...,
- &attr->ia_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
ret = fn (...,
- &attr->ia_xtime);
+ &ts);
|
+ ts = timespec64_to_timespec(stat->xtime);
ret = fn (...,
- &stat->xtime);
+ &ts);
)
...+>
}
@ depends on patch @
struct inode *node;
struct inode *node2;
identifier i_xtime1 =~ "^i_[acm]time$";
identifier i_xtime2 =~ "^i_[acm]time$";
identifier i_xtime3 =~ "^i_[acm]time$";
struct iattr *attrp;
struct iattr *attrp2;
struct iattr attr ;
identifier ia_xtime1 =~ "^ia_[acm]time$";
identifier ia_xtime2 =~ "^ia_[acm]time$";
struct kstat *stat;
struct kstat stat1;
struct timespec64 ts;
identifier xtime =~ "^[acmb]time$";
expression e;
@@
(
( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ;
|
node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \);
|
node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \);
|
node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \);
|
stat->xtime = node2->i_xtime1;
|
stat1.xtime = node2->i_xtime1;
|
( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ;
|
( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2;
|
- e = node->i_xtime1;
+ e = timespec64_to_timespec( node->i_xtime1 );
|
- e = attrp->ia_xtime1;
+ e = timespec64_to_timespec( attrp->ia_xtime1 );
|
node->i_xtime1 = current_time(...);
|
node->i_xtime2 = node->i_xtime1 = node->i_xtime3 =
- e;
+ timespec_to_timespec64(e);
|
node->i_xtime1 = node->i_xtime3 =
- e;
+ timespec_to_timespec64(e);
|
- node->i_xtime1 = e;
+ node->i_xtime1 = timespec_to_timespec64(e);
)
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: <anton@tuxera.com>
Cc: <balbi@kernel.org>
Cc: <bfields@fieldses.org>
Cc: <darrick.wong@oracle.com>
Cc: <dhowells@redhat.com>
Cc: <dsterba@suse.com>
Cc: <dwmw2@infradead.org>
Cc: <hch@lst.de>
Cc: <hirofumi@mail.parknet.co.jp>
Cc: <hubcap@omnibond.com>
Cc: <jack@suse.com>
Cc: <jaegeuk@kernel.org>
Cc: <jaharkes@cs.cmu.edu>
Cc: <jslaby@suse.com>
Cc: <keescook@chromium.org>
Cc: <mark@fasheh.com>
Cc: <miklos@szeredi.hu>
Cc: <nico@linaro.org>
Cc: <reiserfs-devel@vger.kernel.org>
Cc: <richard@nod.at>
Cc: <sage@redhat.com>
Cc: <sfrench@samba.org>
Cc: <swhiteho@redhat.com>
Cc: <tj@kernel.org>
Cc: <trond.myklebust@primarydata.com>
Cc: <tytso@mit.edu>
Cc: <viro@zeniv.linux.org.uk>
|
|
Subsequent patches in the series convert inode timestamps
to use struct timespec64 instead of struct timespec as
part of solving the y2038 problem.
commit fd3cfad374d4 ("udf: Convert udf_disk_stamp_to_time() to use mktime64()")
eliminated the NULL return condition from udf_disk_stamp_to_time().
udf_time_to_disk_time() is always called with a valid dest pointer and
the return value is ignored.
Further, caller can as well check the dest pointer being passed in rather
than return argument.
Make both the functions return void.
This will make the inode timestamp conversion simpler.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: jack@suse.com
----
Changes from v1:
* fixed the pointer error pointed by Jan
|
|
Pull vfs fixes from Al Viro:
"Assorted fixes all over the place"
* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
aio: fix io_destroy(2) vs. lookup_ioctx() race
ext2: fix a block leak
nfsd: vfs_mkdir() might succeed leaving dentry negative unhashed
cachefiles: vfs_mkdir() might succeed leaving dentry negative unhashed
unfuck sysfs_mount()
kernfs: deal with kernfs_fill_super() failures
cramfs: Fix IS_ENABLED typo
befs_lookup(): use d_splice_alias()
affs_lookup: switch to d_splice_alias()
affs_lookup(): close a race with affs_remove_link()
fix breakage caused by d_find_alias() semantics change
fs: don't scan the inode cache before SB_BORN is set
do d_instantiate/unlock_new_inode combinations safely
iov_iter: fix memory leak in pipe_get_pages_alloc()
iov_iter: fix return type of __pipe_get_pages()
|
|
For anything NFS-exported we do _not_ want to unlock new inode
before it has grown an alias; original set of fixes got the
ordering right, but missed the nasty complication in case of
lockdep being enabled - unlock_new_inode() does
lockdep_annotate_inode_mutex_key(inode)
which can only be done before anyone gets a chance to touch
->i_mutex. Unfortunately, flipping the order and doing
unlock_new_inode() before d_instantiate() opens a window when
mkdir can race with open-by-fhandle on a guessed fhandle, leading
to multiple aliases for a directory inode and all the breakage
that follows from that.
Correct solution: a new primitive (d_instantiate_new())
combining these two in the right order - lockdep annotate, then
d_instantiate(), then the rest of unlock_new_inode(). All
combinations of d_instantiate() with unlock_new_inode() should
be converted to that.
Cc: stable@kernel.org # 2.6.29 and later
Tested-by: Mike Marshall <hubcap@omnibond.com>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Add support to decode characters outside of Base Multilingual Plane of
UTF-16 encoded in CS0 charset of UDF.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Add support to store characters outside of Base Multilingual Plane of
UTF-16 in CS0 encoding of UDF.
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
Push superblock argument to udf_name_[to|from]_CS0() functions so that
we can decide about character conversion functions there.
Signed-off-by: Jan Kara <jack@suse.cz>
|