summaryrefslogtreecommitdiffstats
path: root/fs/ocfs2/stackglue.h
AgeCommit message (Collapse)AuthorFilesLines
2018-11-03ocfs2: remove ocfs2_is_o2cb_active()Gang He1-3/+0
Remove ocfs2_is_o2cb_active(). We have similar functions to identify which cluster stack is being used via osb->osb_cluster_stack. Secondly, the current implementation of ocfs2_is_o2cb_active() is not totally safe. Based on the design of stackglue, we need to get ocfs2_stack_lock before using ocfs2_stack related data structures, and that active_stack pointer can be NULL in the case of mount failure. Link: http://lkml.kernel.org/r/1495441079-11708-1-git-send-email-ghe@suse.com Signed-off-by: Gang He <ghe@suse.com> Reviewed-by: Joseph Qi <jiangqi903@gmail.com> Reviewed-by: Eric Ren <zren@suse.com> Acked-by: Changwei Ge <ge.changwei@h3c.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10ocfs2: fix crash caused by stale lvb with fsdlm pluginEric Ren1-0/+3
The crash happens rather often when we reset some cluster nodes while nodes contend fiercely to do truncate and append. The crash backtrace is below: dlm: C21CBDA5E0774F4BA5A9D4F317717495: dlm_recover_grant 1 locks on 971 resources dlm: C21CBDA5E0774F4BA5A9D4F317717495: dlm_recover 9 generation 5 done: 4 ms ocfs2: Begin replay journal (node 318952601, slot 2) on device (253,18) ocfs2: End replay journal (node 318952601, slot 2) on device (253,18) ocfs2: Beginning quota recovery on device (253,18) for slot 2 ocfs2: Finishing quota recovery on device (253,18) for slot 2 (truncate,30154,1):ocfs2_truncate_file:470 ERROR: bug expression: le64_to_cpu(fe->i_size) != i_size_read(inode) (truncate,30154,1):ocfs2_truncate_file:470 ERROR: Inode 290321, inode i_size = 732 != di i_size = 937, i_flags = 0x1 ------------[ cut here ]------------ kernel BUG at /usr/src/linux/fs/ocfs2/file.c:470! invalid opcode: 0000 [#1] SMP Modules linked in: ocfs2_stack_user(OEN) ocfs2(OEN) ocfs2_nodemanager ocfs2_stackglue(OEN) quota_tree dlm(OEN) configfs fuse sd_mod iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi af_packet iscsi_ibft iscsi_boot_sysfs softdog xfs libcrc32c ppdev parport_pc pcspkr parport joydev virtio_balloon virtio_net i2c_piix4 acpi_cpufreq button processor ext4 crc16 jbd2 mbcache ata_generic cirrus virtio_blk ata_piix drm_kms_helper ahci syscopyarea libahci sysfillrect sysimgblt fb_sys_fops ttm floppy libata drm virtio_pci virtio_ring uhci_hcd virtio ehci_hcd usbcore serio_raw usb_common sg dm_multipath dm_mod scsi_dh_rdac scsi_dh_emc scsi_dh_alua scsi_mod autofs4 Supported: No, Unsupported modules are loaded CPU: 1 PID: 30154 Comm: truncate Tainted: G OE N 4.4.21-69-default #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20151112_172657-sheep25 04/01/2014 task: ffff88004ff6d240 ti: ffff880074e68000 task.ti: ffff880074e68000 RIP: 0010:[<ffffffffa05c8c30>] [<ffffffffa05c8c30>] ocfs2_truncate_file+0x640/0x6c0 [ocfs2] RSP: 0018:ffff880074e6bd50 EFLAGS: 00010282 RAX: 0000000000000074 RBX: 000000000000029e RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000246 RDI: 0000000000000246 RBP: ffff880074e6bda8 R08: 000000003675dc7a R09: ffffffff82013414 R10: 0000000000034c50 R11: 0000000000000000 R12: ffff88003aab3448 R13: 00000000000002dc R14: 0000000000046e11 R15: 0000000000000020 FS: 00007f839f965700(0000) GS:ffff88007fc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007f839f97e000 CR3: 0000000036723000 CR4: 00000000000006e0 Call Trace: ocfs2_setattr+0x698/0xa90 [ocfs2] notify_change+0x1ae/0x380 do_truncate+0x5e/0x90 do_sys_ftruncate.constprop.11+0x108/0x160 entry_SYSCALL_64_fastpath+0x12/0x6d Code: 24 28 ba d6 01 00 00 48 c7 c6 30 43 62 a0 8b 41 2c 89 44 24 08 48 8b 41 20 48 c7 c1 78 a3 62 a0 48 89 04 24 31 c0 e8 a0 97 f9 ff <0f> 0b 3d 00 fe ff ff 0f 84 ab fd ff ff 83 f8 fc 0f 84 a2 fd ff RIP [<ffffffffa05c8c30>] ocfs2_truncate_file+0x640/0x6c0 [ocfs2] It's because ocfs2_inode_lock() get us stale LVB in which the i_size is not equal to the disk i_size. We mistakenly trust the LVB because the underlaying fsdlm dlm_lock() doesn't set lkb_sbflags with DLM_SBF_VALNOTVALID properly for us. But, why? The current code tries to downconvert lock without DLM_LKF_VALBLK flag to tell o2cb don't update RSB's LVB if it's a PR->NULL conversion, even if the lock resource type needs LVB. This is not the right way for fsdlm. The fsdlm plugin behaves different on DLM_LKF_VALBLK, it depends on DLM_LKF_VALBLK to decide if we care about the LVB in the LKB. If DLM_LKF_VALBLK is not set, fsdlm will skip recovering RSB's LVB from this lkb and set the right DLM_SBF_VALNOTVALID appropriately when node failure happens. The following diagram briefly illustrates how this crash happens: RSB1 is inode metadata lock resource with LOCK_TYPE_USES_LVB; The 1st round: Node1 Node2 RSB1: PR RSB1(master): NULL->EX ocfs2_downconvert_lock(PR->NULL, set_lvb==0) ocfs2_dlm_lock(no DLM_LKF_VALBLK) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - dlm_lock(no DLM_LKF_VALBLK) convert_lock(overwrite lkb->lkb_exflags with no DLM_LKF_VALBLK) RSB1: NULL RSB1: EX reset Node2 dlm_recover_rsbs() recover_lvb() /* The LVB is not trustable if the node with EX fails and * no lock >= PR is left. We should set RSB_VALNOTVALID for RSB1. */ if(!(kb_exflags & DLM_LKF_VALBLK)) /* This means we miss the chance to return; * to invalid the LVB here. */ The 2nd round: Node 1 Node2 RSB1(become master from recovery) ocfs2_setattr() ocfs2_inode_lock(NULL->EX) /* dlm_lock() return the stale lvb without setting DLM_SBF_VALNOTVALID */ ocfs2_meta_lvb_is_trustable() return 1 /* so we don't refresh inode from disk */ ocfs2_truncate_file() mlog_bug_on_msg(disk isize != i_size_read(inode)) /* crash! */ The fix is quite straightforward. We keep to set DLM_LKF_VALBLK flag for dlm_lock() if the lock resource type needs LVB and the fsdlm plugin is uesed. Link: http://lkml.kernel.org/r/1481275846-6604-1-git-send-email-zren@suse.com Signed-off-by: Eric Ren <zren@suse.com> Reviewed-by: Joseph Qi <jiangqi903@gmail.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22ocfs2: export ocfs2_kset for online file checkGang He1-0/+2
When there are errors in the ocfs2 filesystem, they are usually accompanied by the inode number which caused the error. This inode number would be the input to fixing the file. One of these options could be considered: A file in the sys filesytem which would accept inode numbers. This could be used to communication back what has to be fixed or is fixed. You could write: $# echo "<inode>" > /sys/fs/ocfs2/devname/filecheck/check or $# echo "<inode>" > /sys/fs/ocfs2/devname/filecheck/fix Compare with second version, I re-design filecheck sysfs interfaces, there are three sysfs files (check, fix and set) under filecheck directory (see above), sysfs will accept only one argument <inode>. Second, I adjust some code in ocfs2_filecheck_repair_inode_block() function according to upstream feedback, we cannot just add VALID_FL flag back as a inode block fix, then we will not fix this field corruption currently until having a complete solution. Compare with first version, I use strncasecmp instead of double strncmp functions. Second, update the source file contribution vendor. This patch (of 4): Export ocfs2_kset object from ocfs2_stackglue kernel module, then online file check code will create the related sysfiles under ocfs2_kset object. We're exporting this because it's built in ocfs2_stackglue.ko. Signed-off-by: Gang He <ghe@suse.com> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Joseph Qi <joseph.qi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21ocfs2: pass ocfs2_cluster_connection to ocfs2_this_nodeGoldwyn Rodrigues1-2/+4
This is done to differentiate between using and not using controld and use the connection information accordingly. We need to be backward compatible. So, we use a new enum ocfs2_connection_type to identify when controld is used and when it is not. Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21ocfs2: add clustername to cluster connectionGoldwyn Rodrigues1-1/+8
This is an effort of removing ocfs2_controld.pcmk and getting ocfs2 DLM handling up to the times with respect to DLM (>=4.0.1) and corosync (2.3.x). AFAIK, cman also is being phased out for a unified corosync cluster stack. fs/dlm performs all the functions with respect to fencing and node management and provides the API's to do so for ocfs2. For all future references, DLM stands for fs/dlm code. The advantages are: + No need to run an additional userspace daemon (ocfs2_controld) + No controld device handling and controld protocol + Shifting responsibilities of node management to DLM layer For backward compatibility, we are keeping the controld handling code. Once enough time has passed we can remove a significant portion of the code. This was tested by using the kernel with changes on older unmodified tools. The kernel used ocfs2_controld as expected, and displayed the appropriate warning message. This feature requires modification in the userspace ocfs2-tools. The changes can be found at: https://github.com/goldwynr/ocfs2-tools branch: nocontrold Currently, not many checks are present in the userspace code, but that would change soon. This patch (of 6): Add clustername to cluster connection. Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-31Fix common misspellingsLucas De Marchi1-1/+1
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
2010-02-26ocfs2_dlmfs: Enable the use of user cluster stacks.Joel Becker1-0/+11
Unlike ocfs2, dlmfs has no permanent storage. It can't store off a cluster stack it is supposed to be using. So it can't specify the stack name in ocfs2_cluster_connect(). Instead, we create ocfs2_cluster_connect_agnostic(), which simply uses the stack that is currently enabled. This is find for dlmfs, which will rely on the stack initialization. We add the "stackglue" capability to dlmfs's capability list. This lets userspace know dlmfs can be used with all cluster stacks. Signed-off-by: Joel Becker <joel.becker@oracle.com>
2010-02-26ocfs2: Pass the locking protocol into ocfs2_cluster_connect().Joel Becker1-1/+2
Inside the stackglue, the locking protocol structure is hanging off of the ocfs2_cluster_connection. This takes it one further; the locking protocol is passed into ocfs2_cluster_connect(). Now different cluster connections can have different locking protocols with distinct asts. Note that all locking protocols have to keep their maximum protocol version in lock-step. With the protocol structure set in ocfs2_cluster_connect(), there is no need for the stackglue to have a static pointer to a specific protocol structure. We can change initialization to only pass in the maximum protocol version. Signed-off-by: Joel Becker <joel.becker@oracle.com>
2010-02-26ocfs2: Remove the ast pointers from ocfs2_stack_pluginsJoel Becker1-1/+1
With the full ocfs2_locking_protocol hanging off of the ocfs2_cluster_connection, ast wrappers can get the ast/bast pointers there. They don't need to get them from their plugin structure. The user plugin still needs the maximum locking protocol version, though. This changes the plugin structure so that it only holds the max version, not the entire ocfs2_locking_protocol pointer. Signed-off-by: Joel Becker <joel.becker@oracle.com>
2010-02-26ocfs2: Hang the locking proto on the cluster conn and use it in asts.Joel Becker1-0/+1
With the ocfs2_cluster_connection hanging off of the ocfs2_dlm_lksb, we have access to it in the ast and bast wrapper functions. Attach the ocfs2_locking_protocol to the conn. Now, instead of refering to a static variable for ast/bast pointers, the wrappers can look at the connection. This means different connections can have different ast/bast pointers, and it reduces the need for the static pointer. Signed-off-by: Joel Becker <joel.becker@oracle.com>
2010-02-26ocfs2: Attach the connection to the lksbJoel Becker1-19/+23
We're going to want it in the ast functions, so we convert union ocfs2_dlm_lksb to struct ocfs2_dlm_lksb and let it carry the connection. Signed-off-by: Joel Becker <joel.becker@oracle.com>
2010-02-26ocfs2: Pass lksbs back from stackglue ast/bast functions.Joel Becker1-21/+21
The stackglue ast and bast functions tried to maintain the fiction that their arguments were void pointers. In reality, stack_user.c had to know that the argument was an ocfs2_lock_res in order to get the status off of the lksb. That's ugly. This changes stackglue to always pass the lksb as the argument to ast and bast functions. The caller can always use container_of() to get the ocfs2_lock_res or user_dlm_lock_res. The net effect to the caller is zero. They still get back the lockres in their ast. stackglue gets cleaner, and now can use the lksb itself. Signed-off-by: Joel Becker <joel.becker@oracle.com>
2009-06-22ocfs2: Provide the ocfs2_dlm_lvb_valid() stack API.Joel Becker1-0/+6
The Lock Value Block (LVB) of a DLM lock can be lost when nodes die and the DLM cannot reconstruct its state. Clients of the DLM need to know this. ocfs2's internal DLM, o2dlm, explicitly zeroes out the LVB when it loses track of the state. This is not a standard behavior, but ocfs2 has always relied on it. Thus, an o2dlm LVB is always "valid". ocfs2 now supports both o2dlm and fs/dlm via the stack glue. When fs/dlm loses track of an LVBs state, it sets a flag (DLM_SBF_VALNOTVALID) on the Lock Status Block (LKSB). The contents of the LVB may be garbage or merely stale. ocfs2 doesn't want to try to guess at the validity of the stale LVB. Instead, it should be checking the VALNOTVALID flag. As this is the 'standard' way of treating LVBs, we will promote this behavior. We add a stack glue API ocfs2_dlm_lvb_valid(). It returns non-zero when the LVB is valid. o2dlm will always return valid, while fs/dlm will check VALNOTVALID. Signed-off-by: Joel Becker <joel.becker@oracle.com> Acked-by: Mark Fasheh <mfasheh@suse.com>
2008-10-13ocfs2: POSIX file locks supportMark Fasheh1-0/+19
This is actually pretty easy since fs/dlm already handles the bulk of the work. The Ocfs2 userspace cluster stack module already uses fs/dlm as the underlying lock manager, so I only had to add the right calls. Cluster-aware POSIX locks ("plocks") can be turned off by the same means at UNIX locks - mount with 'noflocks', or create a local-only Ocfs2 volume. Internally, the file system uses two sets of file_operations, depending on whether cluster aware plocks is required. This turns out to be easier than implementing local-only versions of ->lock. Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-06-16ocfs2: Remove ->hangup() from stack glue operations.Joel Becker1-15/+3
The ->hangup() call was only used to execute ocfs2_hb_ctl. Now that the generic stack glue code handles this, the underlying stack drivers don't need to know about it. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-06-16ocfs2: Move the call of ocfs2_hb_ctl into the stack glue.Joel Becker1-1/+0
Take o2hb_stop() out of the o2cb code and make it part of the generic stack glue as ocfs2_leave_group(). This also allows us to remove the ocfs2_get_hb_ctl_path() function - everything to do with hb_ctl is now part of stackglue.c. o2cb no longer needs a ->hangup() function. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-06-16ocfs2: Move the hb_ctl_path sysctl into the stack glue.Joel Becker1-0/+2
ocfs2 needs to call out to the hb_ctl program at unmount for all cluster stacks. The first step is to move the hb_ctl_path sysctl out of the o2cb code and into the generic stack glue. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: add fsdlm to stackglueDavid Teigland1-2/+17
Add code to use fs/dlm. [ Modified to be part of the stack_user module -- Joel ] Signed-off-by: David Teigland <teigland@redhat.com> Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Add the 'cluster_stack' sysfs file.Joel Becker1-1/+2
Userspace can now query and specify the cluster stack in use via the /sys/fs/ocfs2/cluster_stack file. By default, it is 'o2cb', which is the classic stack. Thus, old tools that do not know how to modify this file will work just fine. The stack cannot be modified if there is a live filesystem. ocfs2_cluster_connect() now takes the expected cluster stack as an argument. This way, the filesystem and the stack glue ensure they are speaking to the same backend. If the stack is 'o2cb', the o2cb stack plugin is used. For any other value, the fsdlm stack plugin is selected. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Break out stackglue into modules.Joel Becker1-4/+32
We define the ocfs2_stack_plugin structure to represent a stack driver. The o2cb stack code is split into stack_o2cb.c. This becomes the ocfs2_stack_o2cb.ko module. The stackglue generic functions are similarly split into the ocfs2_stackglue.ko module. This module now provides an interface to register drivers. The ocfs2_stack_o2cb driver registers itself. As part of this interface, ocfs2_stackglue can load drivers on demand. This is accomplished in ocfs2_cluster_connect(). ocfs2_cluster_disconnect() is now notified when a _hangup() is pending. If a hangup is pending, it will not release the driver module and will let _hangup() do that. Signed-off-by: Joel Becker <joel.becker@oracle.com>
2008-04-18ocfs2: Create ocfs2_stack_operations and split out the o2cb stack.Joel Becker1-2/+121
Define the ocfs2_stack_operations structure. Build o2cb_stack_ops from all of the o2cb-specific stack functions. Change the generic stack glue functions to call the stack_ops instead of the o2cb functions directly. The o2cb functions are moved to stack_o2cb.c. The headers are cleaned up to where only needed headers are included. In this code, stackglue.c and stack_o2cb.c refer to some shared extern variables. When they become modules, that will change. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Clean up stackglue initializationJoel Becker1-2/+1
The stack glue initialization function needs a better name so that it can be used cleanly when stackglue becomes a module. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Abstract out a debugging function for underlying dlms.Joel Becker1-0/+1
dlmglue.c was still referencing a raw o2dlm lksb in one instance. Let's create a generic ocfs2_dlm_dump_lksb() function. This allows underlying DLMs to print whatever they want about their lock. We then move the o2dlm dump into stackglue.c where it belongs. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Move o2hb functionality into the stack glue.Joel Becker1-0/+1
The last bit of classic stack used directly in ocfs2 code is o2hb. Specifically, the check for heartbeat during mount and the call to ocfs2_hb_ctl during unmount. We create an extra API, ocfs2_cluster_hangup(), to encapsulate the call to ocfs2_hb_ctl. Other stacks will just leave hangup() empty. The check for heartbeat is moved into ocfs2_cluster_connect(). It will be matched by a similar check for other stacks. With this change, only stackglue.c includes cluster/ headers. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Abstract out node number queries.Joel Becker1-0/+1
ocfs2 asks the cluster stack for the local node's node number for two reasons; to fill the slot map and to print it. While the slot map isn't necessary for userspace cluster stacks, the printing is very nice for debugging. Thus we add ocfs2_cluster_this_node() as a generic API to get this value. It is anticipated that the slot map will not be used under a userspace cluster stack, so validity checks of the node num only need to exist in the slot map code. Otherwise, it just gets used and printed as an opaque value. [ Fixed up some "int" versus "unsigned int" issues and made osb->node_num truly opaque. --Mark ] Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Introduce the new ocfs2_cluster_connect/disconnect() API.Joel Becker1-2/+33
This step introduces a cluster stack agnostic API for initializing and exiting. fs/ocfs2/dlmglue.c no longer uses o2cb/o2dlm knowledge to connect to the stack. It is all handled in stackglue.c. heartbeat.c no longer needs to know how it gets called. ocfs2_do_node_down() is now a clean recovery trigger. The big gotcha is the ordering of initializations and de-initializations done underneath ocfs2_cluster_connect(). ocfs2_dlm_init() used to do all o2dlm initialization in one block. Thus, the o2dlm functionality of ocfs2_cluster_connect() is very straightforward. ocfs2_dlm_shutdown(), however, did a few things between de-registration of the eviction callback and actually shutting down the domain. Now de-registration and shutdown of the domain are wrapped within the single ocfs2_cluster_disconnect() call. I've checked the code paths to make sure we can safely tear down things in ocfs2_dlm_shutdown() before calling ocfs2_cluster_disconnect(). The filesystem has already set itself to ignore the callback. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Create the lock status block union.Joel Becker1-2/+9
Wrap the lock status block (lksb) in a union. Later we will add a union element for the fs/dlm lksb. Create accessors for the status and lvb fields. Other than a debugging function, dlmglue.c does not directly reference the o2dlm locking path anymore. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Use -errno instead of dlm_status for ocfs2_dlm_lock/unlock() API.Joel Becker1-3/+3
Change the ocfs2_dlm_lock/unlock() functions to return -errno values. This is the first step towards elminiating dlm_status in fs/ocfs2/dlmglue.c. The change also passes -errno values to ->unlock_ast(). [ Fix a return code in dlmglue.c and change the error translation table into an array of ints. --Mark ] Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Use global DLM_ constants in generic code.Joel Becker1-0/+13
The ocfs2 generic code should use the values in <linux/dlmconstants.h>. stackglue.c will convert them to o2dlm values. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
2008-04-18ocfs2: Separate out dlm lock functions.Joel Becker1-0/+45
This is the first in a series of patches to isolate ocfs2 from the underlying cluster stack. Here we wrap the dlm locking functions with ocfs2-specific calls. Because ocfs2 always uses the same dlm lock status callbacks, we can eliminate the callbacks from the filesystem visible functions. Signed-off-by: Joel Becker <joel.becker@oracle.com> Signed-off-by: Mark Fasheh <mfasheh@suse.com>