Age | Commit message (Collapse) | Author | Files | Lines |
|
We always mixed in the parent pointer into the dentry name hash, but we
did it late at lookup time. It turns out that we can simplify that
lookup-time action by salting the hash with the parent pointer early
instead of late.
A few other users of our string hashes also wanted to mix in their own
pointers into the hash, and those are updated to use the same mechanism.
Hash users that don't have any particular initial salt can just use the
NULL pointer as a no-salt.
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here's the "big" driver core update for 4.7-rc1.
Mostly just debugfs changes, the long-known and messy races with
removing debugfs files should be fixed thanks to the great work of
Nicolai Stange. We also have some isa updates in here (the x86
maintainers told me to take it through this tree), a new warning when
we run out of dynamic char major numbers, and a few other assorted
changes, details in the shortlog.
All have been in linux-next for some time with no reported issues"
* tag 'driver-core-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (32 commits)
Revert "base: dd: don't remove driver_data in -EPROBE_DEFER case"
gpio: ws16c48: Utilize the ISA bus driver
gpio: 104-idio-16: Utilize the ISA bus driver
gpio: 104-idi-48: Utilize the ISA bus driver
gpio: 104-dio-48e: Utilize the ISA bus driver
watchdog: ebc-c384_wdt: Utilize the ISA bus driver
iio: stx104: Utilize the module_isa_driver and max_num_isa_dev macros
iio: stx104: Add X86 dependency to STX104 Kconfig option
Documentation: Add ISA bus driver documentation
isa: Implement the max_num_isa_dev macro
isa: Implement the module_isa_driver macro
pnp: pnpbios: Add explicit X86_32 dependency to PNPBIOS
isa: Decouple X86_32 dependency from the ISA Kconfig option
driver-core: use 'dev' argument in dev_dbg_ratelimited stub
base: dd: don't remove driver_data in -EPROBE_DEFER case
kernfs: Move faulting copy_user operations outside of the mutex
devcoredump: add scatterlist support
debugfs: unproxify files created through debugfs_create_u32_array()
debugfs: unproxify files created through debugfs_create_blob()
debugfs: unproxify files created through debugfs_create_bool()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull parallel filesystem directory handling update from Al Viro.
This is the main parallel directory work by Al that makes the vfs layer
able to do lookup and readdir in parallel within a single directory.
That's a big change, since this used to be all protected by the
directory inode mutex.
The inode mutex is replaced by an rwsem, and serialization of lookups of
a single name is done by a "in-progress" dentry marker.
The series begins with xattr cleanups, and then ends with switching
filesystems over to actually doing the readdir in parallel (switching to
the "iterate_shared()" that only takes the read lock).
A more detailed explanation of the process from Al Viro:
"The xattr work starts with some acl fixes, then switches ->getxattr to
passing inode and dentry separately. This is the point where the
things start to get tricky - that got merged into the very beginning
of the -rc3-based #work.lookups, to allow untangling the
security_d_instantiate() mess. The xattr work itself proceeds to
switch a lot of filesystems to generic_...xattr(); no complications
there.
After that initial xattr work, the series then does the following:
- untangle security_d_instantiate()
- convert a bunch of open-coded lookup_one_len_unlocked() to calls of
that thing; one such place (in overlayfs) actually yields a trivial
conflict with overlayfs fixes later in the cycle - overlayfs ended
up switching to a variant of lookup_one_len_unlocked() sans the
permission checks. I would've dropped that commit (it gets
overridden on merge from #ovl-fixes in #for-next; proper resolution
is to use the variant in mainline fs/overlayfs/super.c), but I
didn't want to rebase the damn thing - it was fairly late in the
cycle...
- some filesystems had managed to depend on lookup/lookup exclusion
for *fs-internal* data structures in a way that would break if we
relaxed the VFS exclusion. Fixing hadn't been hard, fortunately.
- core of that series - parallel lookup machinery, replacing
->i_mutex with rwsem, making lookup_slow() take it only shared. At
that point lookups happen in parallel; lookups on the same name
wait for the in-progress one to be done with that dentry.
Surprisingly little code, at that - almost all of it is in
fs/dcache.c, with fs/namei.c changes limited to lookup_slow() -
making it use the new primitive and actually switching to locking
shared.
- parallel readdir stuff - first of all, we provide the exclusion on
per-struct file basis, same as we do for read() vs lseek() for
regular files. That takes care of most of the needed exclusion in
readdir/readdir; however, these guys are trickier than lookups, so
I went for switching them one-by-one. To do that, a new method
'->iterate_shared()' is added and filesystems are switched to it
as they are either confirmed to be OK with shared lock on directory
or fixed to be OK with that. I hope to kill the original method
come next cycle (almost all in-tree filesystems are switched
already), but it's still not quite finished.
- several filesystems get switched to parallel readdir. The
interesting part here is dealing with dcache preseeding by readdir;
that needs minor adjustment to be safe with directory locked only
shared.
Most of the filesystems doing that got switched to in those
commits. Important exception: NFS. Turns out that NFS folks, with
their, er, insistence on VFS getting the fuck out of the way of the
Smart Filesystem Code That Knows How And What To Lock(tm) have
grown the locking of their own. They had their own homegrown
rwsem, with lookup/readdir/atomic_open being *writers* (sillyunlink
is the reader there). Of course, with VFS getting the fuck out of
the way, as requested, the actual smarts of the smart filesystem
code etc. had become exposed...
- do_last/lookup_open/atomic_open cleanups. As the result, open()
without O_CREAT locks the directory only shared. Including the
->atomic_open() case. Backmerge from #for-linus in the middle of
that - atomic_open() fix got brought in.
- then comes NFS switch to saner (VFS-based ;-) locking, killing the
homegrown "lookup and readdir are writers" kinda-sorta rwsem. All
exclusion for sillyunlink/lookup is done by the parallel lookups
mechanism. Exclusion between sillyunlink and rmdir is a real rwsem
now - rmdir being the writer.
Result: NFS lookups/readdirs/O_CREAT-less opens happen in parallel
now.
- the rest of the series consists of switching a lot of filesystems
to parallel readdir; in a lot of cases ->llseek() gets simplified
as well. One backmerge in there (again, #for-linus - rockridge
fix)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (74 commits)
ext4: switch to ->iterate_shared()
hfs: switch to ->iterate_shared()
hfsplus: switch to ->iterate_shared()
hostfs: switch to ->iterate_shared()
hpfs: switch to ->iterate_shared()
hpfs: handle allocation failures in hpfs_add_pos()
gfs2: switch to ->iterate_shared()
f2fs: switch to ->iterate_shared()
afs: switch to ->iterate_shared()
befs: switch to ->iterate_shared()
befs: constify stuff a bit
isofs: switch to ->iterate_shared()
get_acorn_filename(): deobfuscate a bit
btrfs: switch to ->iterate_shared()
logfs: no need to lock directory in lseek
switch ecryptfs to ->iterate_shared
9p: switch to ->iterate_shared()
fat: switch to ->iterate_shared()
romfs, squashfs: switch to ->iterate_shared()
more trivial ->iterate_shared conversions
...
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
We've calculated @len to be the bytes we need for '/..' entries from
@kn_from to the common ancestor, and calculated @nlen to be the extra
bytes we need to get from the common ancestor to @kn_to. We use them
as such at the end. But in the loop copying the actual entries, we
overwrite @nlen. Use a temporary variable for that instead.
Without this, the return length, when the buffer is large enough, is
wrong. (When the buffer is NULL or too small, the returned value is
correct. The buffer contents are also correct.)
Interestingly, no callers of this function are affected by this as of
yet. However the upcoming cgroup_show_path() will be.
Signed-off-by: Serge Hallyn <serge.hallyn@ubuntu.com>
|
|
This is in preparation for the series that transitions
filesystem timestamps to use 64 bit time and hence make
them y2038 safe.
CURRENT_TIME macro will be deleted before merging the
aforementioned series.
Use current_fs_time() instead of CURRENT_TIME for inode
timestamps.
struct kernfs_node is associated with a sysfs file/ directory.
Truncate the values to appropriate time granularity when
writing to inode timestamps of the files.
ktime_get_real_ts() is used to obtain times for
struct kernfs_iattrs. Since these times are later assigned to
inode times using timespec_truncate() for all filesystem based
operations, we can save the supers list traversal time here by
using ktime_get_real_ts() directly.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup namespace support from Tejun Heo:
"These are changes to implement namespace support for cgroup which has
been pending for quite some time now. It is very straight-forward and
only affects what part of cgroup hierarchies are visible.
After unsharing, mounting a cgroup fs will be scoped to the cgroups
the task belonged to at the time of unsharing and the cgroup paths
exposed to userland would be adjusted accordingly"
* 'for-4.6-ns' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: fix and restructure error handling in copy_cgroup_ns()
cgroup: fix alloc_cgroup_ns() error handling in copy_cgroup_ns()
Add FS_USERNS_FLAG to cgroup fs
cgroup: Add documentation for cgroup namespaces
cgroup: mount cgroupns-root when inside non-init cgroupns
kernfs: define kernfs_node_dentry
cgroup: cgroup namespace setns support
cgroup: introduce cgroup namespaces
sched: new clone flag CLONE_NEWCGROUP for cgroup namespace
kernfs: Add API to generate relative kernfs path
|
|
The new function kernfs_path_from_node() generates and returns kernfs
path of a given kernfs_node relative to a given parent kernfs_node.
Signed-off-by: Aditya Kali <adityakali@google.com>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
kernfs_walk_ns() uses a static path_buf[PATH_MAX] to separate out path
components. Keeping around the 4k buffer just for kernfs_walk_ns() is
wasteful. This patch makes it piggyback on kernfs_pr_cont_buf[]
instead. This requires kernfs_walk_ns() to hold kernfs_rename_lock.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Currently, all kmem allocations (namely every kmem_cache_alloc, kmalloc,
alloc_kmem_pages call) are accounted to memory cgroup automatically.
Callers have to explicitly opt out if they don't want/need accounting
for some reason. Such a design decision leads to several problems:
- kmalloc users are highly sensitive to failures, many of them
implicitly rely on the fact that kmalloc never fails, while memcg
makes failures quite plausible.
- A lot of objects are shared among different containers by design.
Accounting such objects to one of containers is just unfair.
Moreover, it might lead to pinning a dead memcg along with its kmem
caches, which aren't tiny, which might result in noticeable increase
in memory consumption for no apparent reason in the long run.
- There are tons of short-lived objects. Accounting them to memcg will
only result in slight noise and won't change the overall picture, but
we still have to pay accounting overhead.
For more info, see
- http://lkml.kernel.org/r/20151105144002.GB15111%40dhcp22.suse.cz
- http://lkml.kernel.org/r/20151106090555.GK29259@esperanza
Therefore this patchset switches to the white list policy. Now kmalloc
users have to explicitly opt in by passing __GFP_ACCOUNT flag.
Currently, the list of accounted objects is quite limited and only
includes those allocations that (1) are known to be easily triggered
from userspace and (2) can fail gracefully (for the full list see patch
no. 6) and it still misses many object types. However, accounting only
those objects should be a satisfactory approximation of the behavior we
used to have for most sane workloads.
This patch (of 6):
Revert 499611ed451508a42d1d7d ("kernfs: do not account ino_ida allocations
to memcg").
Black-list kmem accounting policy (aka __GFP_NOACCOUNT) turned out to be
fragile and difficult to maintain, because there seem to be many more
allocations that should not be accounted than those that should be.
Besides, false accounting an allocation might result in much worse
consequences than not accounting at all, namely increased memory
consumption due to pinned dead kmem caches.
So it was decided to switch to the white-list policy. This patch reverts
bits introducing the black-list policy. The white-list policy will be
introduced later in the series.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Implement kernfs_walk_and_get() which is similar to
kernfs_find_and_get() but can walk a path instead of just a name.
v2: Use strlcpy() instead of strlen() + memcpy() as suggested by
David.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: David Miller <davem@davemloft.net>
|
|
Add a function to determine the path length of a kernfs node. This
for now will be used by writeback tracepoint updates.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace updates from Eric Biederman:
"Long ago and far away when user namespaces where young it was realized
that allowing fresh mounts of proc and sysfs with only user namespace
permissions could violate the basic rule that only root gets to decide
if proc or sysfs should be mounted at all.
Some hacks were put in place to reduce the worst of the damage could
be done, and the common sense rule was adopted that fresh mounts of
proc and sysfs should allow no more than bind mounts of proc and
sysfs. Unfortunately that rule has not been fully enforced.
There are two kinds of gaps in that enforcement. Only filesystems
mounted on empty directories of proc and sysfs should be ignored but
the test for empty directories was insufficient. So in my tree
directories on proc, sysctl and sysfs that will always be empty are
created specially. Every other technique is imperfect as an ordinary
directory can have entries added even after a readdir returns and
shows that the directory is empty. Special creation of directories
for mount points makes the code in the kernel a smidge clearer about
it's purpose. I asked container developers from the various container
projects to help test this and no holes were found in the set of mount
points on proc and sysfs that are created specially.
This set of changes also starts enforcing the mount flags of fresh
mounts of proc and sysfs are consistent with the existing mount of
proc and sysfs. I expected this to be the boring part of the work but
unfortunately unprivileged userspace winds up mounting fresh copies of
proc and sysfs with noexec and nosuid clear when root set those flags
on the previous mount of proc and sysfs. So for now only the atime,
read-only and nodev attributes which userspace happens to keep
consistent are enforced. Dealing with the noexec and nosuid
attributes remains for another time.
This set of changes also addresses an issue with how open file
descriptors from /proc/<pid>/ns/* are displayed. Recently readlink of
/proc/<pid>/fd has been triggering a WARN_ON that has not been
meaningful since it was added (as all of the code in the kernel was
converted) and is not now actively wrong.
There is also a short list of issues that have not been fixed yet that
I will mention briefly.
It is possible to rename a directory from below to above a bind mount.
At which point any directory pointers below the renamed directory can
be walked up to the root directory of the filesystem. With user
namespaces enabled a bind mount of the bind mount can be created
allowing the user to pick a directory whose children they can rename
to outside of the bind mount. This is challenging to fix and doubly
so because all obvious solutions must touch code that is in the
performance part of pathname resolution.
As mentioned above there is also a question of how to ensure that
developers by accident or with purpose do not introduce exectuable
files on sysfs and proc and in doing so introduce security regressions
in the current userspace that will not be immediately obvious and as
such are likely to require breaking userspace in painful ways once
they are recognized"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
vfs: Remove incorrect debugging WARN in prepend_path
mnt: Update fs_fully_visible to test for permanently empty directories
sysfs: Create mountpoints with sysfs_create_mount_point
sysfs: Add support for permanently empty directories to serve as mount points.
kernfs: Add support for always empty directories.
proc: Allow creating permanently empty directories that serve as mount points
sysctl: Allow creating permanently empty directories that serve as mountpoints.
fs: Add helper functions for permanently empty directories.
vfs: Ignore unlocked mounts in fs_fully_visible
mnt: Modify fs_fully_visible to deal with locked ro nodev and atime
mnt: Refactor the logic for mounting sysfs and proc in a user namespace
|
|
Add a new function kernfs_create_empty_dir that can be used to create
directory that can not be modified.
Update the code to use make_empty_dir_inode when reporting a
permanently empty directory to the vfs.
Update the code to not allow adding to permanently empty directories.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
root->ino_ida is used for kernfs inode number allocations. Since IDA has
a layered structure, different IDs can reside on the same layer, which
is currently accounted to some memory cgroup. The problem is that each
kmem cache of a memory cgroup has its own directory on sysfs (under
/sys/fs/kernel/<cache-name>/cgroup). If the inode number of such a
directory or any file in it gets allocated from a layer accounted to the
cgroup which the cache is created for, the cgroup will get pinned for
good, because one has to free all kmem allocations accounted to a cgroup
in order to release it and destroy all its kmem caches. That said we
must not account layers of ino_ida to any memory cgroup.
Since per net init operations may create new sysfs entries directly
(e.g. lo device) or indirectly (nf_conntrack creates a new kmem cache
per each namespace, which, in turn, creates new sysfs entries), an easy
way to reproduce this issue is by creating network namespace(s) from
inside a kmem-active memory cgroup.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org> [4.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
When a new kernfs node is created, KERNFS_STATIC_NAME is used to avoid
making a separate copy of its name. It's currently only used for sysfs
attributes whose filenames are required to stay accessible and unchanged.
There are rare exceptions where these names are allocated and formatted
dynamically but for the vast majority of cases they're consts in the
rodata section.
Now that kernfs is converted to use kstrdup_const() and kfree_const(),
there's little point in keeping KERNFS_STATIC_NAME around. Remove it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Andrzej Hajda <a.hajda@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
sysfs frequently performs duplication of strings located in read-only
memory section. Replacing kstrdup by kstrdup_const allows to avoid such
operations.
Signed-off-by: Andrzej Hajda <a.hajda@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mike Turquette <mturquette@linaro.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Greg KH <greg@kroah.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Returning a difference from a comparison functions is usually wrong
(see acbbe6fbb240 "kcmp: fix standard comparison bug" for the long
story). Here there is the additional twist that if the void pointers
ns and kn->ns happen to differ by a multiple of 2^32,
kernfs_name_compare returns 0, falsely reporting a match to the
caller.
Technically 'hash - kn->hash' is ok since the hashes are restricted to
31 bits, but it's better to avoid that subtlety.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Now that check_submounts_and_drop can not fail and is called from
d_invalidate there is no longer a need to call check_submounts_and_drom
from filesystem d_revalidate methods so remove it.
Reviewed-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
Currently kernfs_link_sibling() increates parent->dir.subdirs before
adding the node into parent's chidren rb tree.
Because it is possible that kernfs_link_sibling() couldn't find
a suitable slot and bail out, this leads to a mismatch between
elevated subdir count with actual children node numbers.
This patches fix this problem, by moving the subdir accouting
after the actual addtion happening.
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Currently, there's no way to find out which super_blocks are
associated with a given kernfs_root. Let's implement it - the planned
inotify extension to kernfs_notify() needs it.
Make kernfs_super_info point back to the super_block and chain it at
kernfs_root->supers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
"A lot updates for cgroup:
- The biggest one is cgroup's conversion to kernfs. cgroup took
after the long abandoned vfs-entangled sysfs implementation and
made it even more convoluted over time. cgroup's internal objects
were fused with vfs objects which also brought in vfs locking and
object lifetime rules. Naturally, there are places where vfs rules
don't fit and nasty hacks, such as credential switching or lock
dance interleaving inode mutex and cgroup_mutex with object serial
number comparison thrown in to decide whether the operation is
actually necessary, needed to be employed.
After conversion to kernfs, internal object lifetime and locking
rules are mostly isolated from vfs interactions allowing shedding
of several nasty hacks and overall simplification. This will also
allow implmentation of operations which may affect multiple cgroups
which weren't possible before as it would have required nesting
i_mutexes.
- Various simplifications including dropping of module support,
easier cgroup name/path handling, simplified cgroup file type
handling and task_cg_lists optimization.
- Prepatory changes for the planned unified hierarchy, which is still
a patchset away from being actually operational. The dummy
hierarchy is updated to serve as the default unified hierarchy.
Controllers which aren't claimed by other hierarchies are
associated with it, which BTW was what the dummy hierarchy was for
anyway.
- Various fixes from Li and others. This pull request includes some
patches to add missing slab.h to various subsystems. This was
triggered xattr.h include removal from cgroup.h. cgroup.h
indirectly got included a lot of files which brought in xattr.h
which brought in slab.h.
There are several merge commits - one to pull in kernfs updates
necessary for converting cgroup (already in upstream through
driver-core), others for interfering changes in the fixes branch"
* 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (74 commits)
cgroup: remove useless argument from cgroup_exit()
cgroup: fix spurious lockdep warning in cgroup_exit()
cgroup: Use RCU_INIT_POINTER(x, NULL) in cgroup.c
cgroup: break kernfs active_ref protection in cgroup directory operations
cgroup: fix cgroup_taskset walking order
cgroup: implement CFTYPE_ONLY_ON_DFL
cgroup: make cgrp_dfl_root mountable
cgroup: drop const from @buffer of cftype->write_string()
cgroup: rename cgroup_dummy_root and related names
cgroup: move ->subsys_mask from cgroupfs_root to cgroup
cgroup: treat cgroup_dummy_root as an equivalent hierarchy during rebinding
cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}()
cgroup: use cgroup_setup_root() to initialize cgroup_dummy_root
cgroup: reorganize cgroup bootstrapping
cgroup: relocate setting of CGRP_DEAD
cpuset: use rcu_read_lock() to protect task_cs()
cgroup_freezer: document freezer_fork() subtleties
cgroup: update cgroup_transfer_tasks() to either succeed or fail
cgroup: drop task_lock() protection around task->cgroups
cgroup: update how a newly forked task gets associated with css_set
...
|
|
The hash values 0 and 1 are reserved for magic directory entries, but
the code only prevents names hashing to 0. This patch fixes the test
to also prevent hash value 1.
Signed-off-by: Richard Cochran <richardcochran@gmail.com>
Cc: <stable@vger.kernel.org>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Currently kernfs_node_from_dentry() returns NULL for root dentry,
because root_dentry->d_op == NULL.
Due to this bug cgroupstats_build() returns -EINVAL for root cgroup.
# mount -t cgroup -o cpuacct /cgroup
# Documentation/accounting/getdelays -C /cgroup
fatal reply error, errno -22
With this fix:
# Documentation/accounting/getdelays -C /cgroup
sleeping 305, blocked 0, running 1, stopped 0, uninterruptible 1
Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
cgroup->name handling became quite complicated over time involving
dedicated struct cgroup_name for RCU protection. Now that cgroup is
on kernfs, we can drop all of it and simply use kernfs_name/path() and
friends. Replace cgroup->name and all related code with kernfs
name/path constructs.
* Reimplement cgroup_name() and cgroup_path() as thin wrappers on top
of kernfs counterparts, which involves semantic changes.
pr_cont_cgroup_name() and pr_cont_cgroup_path() added.
* cgroup->name handling dropped from cgroup_rename().
* All users of cgroup_name/path() updated to the new semantics. Users
which were formatting the string just to printk them are converted
to use pr_cont_cgroup_name/path() instead, which simplifies things
quite a bit. As cgroup_name() no longer requires RCU read lock
around it, RCU lockings which were protecting only cgroup_name() are
removed.
v2: Comment above oom_info_lock updated as suggested by Michal.
v3: dummy_top doesn't have a kn associated and
pr_cont_cgroup_name/path() ended up calling the matching kernfs
functions with NULL kn leading to oops. Test for NULL kn and
print "/" if so. This issue was reported by Fengguang Wu.
v4: Rebased on top of 0ab02ca8f887 ("cgroup: protect modifications to
cgroup_idr with cgroup_mutex").
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
|
|
3eef34ad7dc3 ("kernfs: implement kernfs_get_parent(),
kernfs_name/path() and friends") restructured kernfs_rename_ns() such
that new name assignment happens under kernfs_rename_lock;
unfortunately, it mistakenly passed NULL to kernfs_name_hash() to
calculate the new hash if the name hasn't changed, which can lead to
oops.
Fix it by using kn->name and kn->ns when calculating the new hash.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Dan Carpenter dan.carpenter@oracle.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
kernfs_node->parent and ->name are currently marked as "published"
indicating that kernfs users may access them directly; however, those
fields may get updated by kernfs_rename[_ns]() and unrestricted access
may lead to erroneous values or oops.
Protect ->parent and ->name updates with a irq-safe spinlock
kernfs_rename_lock and implement the following accessors for these
fields.
* kernfs_name() - format the node's name into the specified buffer
* kernfs_path() - format the node's path into the specified buffer
* pr_cont_kernfs_name() - pr_cont a node's name (doesn't need buffer)
* pr_cont_kernfs_path() - pr_cont a node's path (doesn't need buffer)
* kernfs_get_parent() - pin and return a node's parent
All can be called under any context. The recursive sysfs_pathname()
in fs/sysfs/dir.c is replaced with kernfs_path() and
sysfs_rename_dir_ns() is updated to use kernfs_get_parent() instead of
dereferencing parent directly.
v2: Dummy definition of kernfs_path() for !CONFIG_KERNFS was missing
static inline making it cause a lot of build warnings. Add it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
kernfs_rename()
Implement helpers to determine node from dentry and root from
super_block. Also add a kernfs_rename_ns() wrapper which assumes NULL
namespace. These generally make sense and will be used by cgroup.
v2: Some dummy implementations for !CONFIG_SYSFS was missing. Fixed.
Reported by kbuild test robot.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Currently, kernfs_nodes are made visible to userland on creation,
which makes it difficult for kernfs users to atomically succeed or
fail creation of multiple nodes. In addition, if something fails
after creating some nodes, the created nodes might already be in use
and their active refs need to be drained for removal, which has the
potential to introduce tricky reverse locking dependency on active_ref
depending on how the error path is synchronized.
This patch introduces per-root flag KERNFS_ROOT_CREATE_DEACTIVATED.
If set, all nodes under the root are created in the deactivated state
and stay invisible to userland until explicitly enabled by the new
kernfs_activate() API. Also, nodes which have never been activated
are guaranteed to bypass draining on removal thus allowing error paths
to not worry about lockding dependency on active_ref draining.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
kernfs_iop_lookup(), kernfs_dir_pos() and kernfs_dir_next_pos() were
missing kernfs_active() tests before using the found kernfs_node. As
deactivated state is currently visible only while a node is being
removed, this doesn't pose an actual problem. e.g. lookup succeeding
on a deactivated node doesn't harm anything as the eventual file
operations are gonna fail and those failures are indistinguishible
from the cases in which the lookups had happened before the node was
deactivated.
However, we're gonna allow new nodes to be created deactivated and
then activated explicitly by the kernfs user when it sees fit. This
is to support atomically making multiple nodes visible to userland and
thus those nodes must not be visible to userland before activated.
Let's plug the lookup and readdir holes so that deactivated nodes are
invisible to userland.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
We're gonna need non-dir syscall callbacks, which will make dir_ops a
misnomer. Let's rename kernfs_dir_ops to kernfs_syscall_ops.
This is pure rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
kernfs_dir_ops are currently being invoked without any active
reference, which makes it tricky for the invoked operations to
determine whether the objects associated those nodes are safe to
access and will remain that way for the duration of such operations.
kernfs already has active_ref mechanism to deal with this which makes
the removal of a given node the synchronization point for gating the
file operations. There's no reason for dir_ops to be any different.
Update the dir_ops handling so that active_ref is held while the
dir_ops are executing. This guarantees that while a dir_ops is
executing the target nodes stay alive.
As kernfs_dir_ops doesn't have any in-kernel user at this point, this
doesn't affect anybody.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Sometimes it's necessary to implement a node which wants to delete
nodes including itself. This isn't straightforward because of kernfs
active reference. While a file operation is in progress, an active
reference is held and kernfs_remove() waits for all such references to
drain before completing. For a self-deleting node, this is a deadlock
as kernfs_remove() ends up waiting for an active reference that itself
is sitting on top of.
This currently is worked around in the sysfs layer using
sysfs_schedule_callback() which makes such removals asynchronous.
While it works, it's rather cumbersome and inherently breaks
synchronicity of the operation - the file operation which triggered
the operation may complete before the removal is finished (or even
started) and the removal may fail asynchronously. If a removal
operation is immmediately followed by another operation which expects
the specific name to be available (e.g. removal followed by rename
onto the same name), there's no way to make the latter operation
reliable.
The thing is there's no inherent reason for this to be asynchrnous.
All that's necessary to do this synchronous is a dedicated operation
which drops its own active ref and deactivates self. This patch
implements kernfs_remove_self() and its wrappers in sysfs and driver
core. kernfs_remove_self() is to be called from one of the file
operations, drops the active ref the task is holding, removes the self
node, and restores active ref to the dead node so that the ref is
balanced afterwards. __kernfs_remove() is updated so that it takes an
early exit if the target node is already fully removed so that the
active ref restored by kernfs_remove_self() after removal doesn't
confuse the deactivation path.
This makes implementing self-deleting nodes very easy. The normal
removal path doesn't even need to be changed to use
kernfs_remove_self() for the self-deleting node. The method can
invoke kernfs_remove_self() on itself before proceeding the normal
removal path. kernfs_remove() invoked on the node by the normal
deletion path will simply be ignored.
This will replace sysfs_schedule_callback(). A subtle feature of
sysfs_schedule_callback() is that it collapses multiple invocations -
even if multiple removals are triggered, the removal callback is run
only once. An equivalent effect can be achieved by testing the return
value of kernfs_remove_self() - only the one which gets %true return
value should proceed with actual deletion. All other instances of
kernfs_remove_self() will wait till the enclosing kernfs operation
which invoked the winning instance of kernfs_remove_self() finishes
and then return %false. This trivially makes all users of
kernfs_remove_self() automatically show correct synchronous behavior
even when there are multiple concurrent operations - all "echo 1 >
delete" instances will finish only after the whole operation is
completed by one of the instances.
Note that manipulation of active ref is implemented in separate public
functions - kernfs_[un]break_active_protection().
kernfs_remove_self() is the only user at the moment but this will be
used to cater to more complex cases.
v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing
and sysfs_remove_file_self() had incorrect return type. Fix it.
Reported by kbuild test bot.
v3: kernfs_[un]break_active_protection() separated out from
kernfs_remove_self() and exposed as public API.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
KERNFS_REMOVED is used to mark half-initialized and dying nodes so
that they don't show up in lookups and deny adding new nodes under or
renaming it; however, its role overlaps that of deactivation.
It's necessary to deny addition of new children while removal is in
progress; however, this role considerably intersects with deactivation
- KERNFS_REMOVED prevents new children while deactivation prevents new
file operations. There's no reason to have them separate making
things more complex than necessary.
This patch removes KERNFS_REMOVED.
* Instead of KERNFS_REMOVED, each node now starts its life
deactivated. This means that we now use both atomic_add() and
atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler
generates an overflow warnings when negating INT_MIN as the negation
can't be represented as a positive number. Nothing is actually
broken but let's bump BIAS by one to avoid the warnings for archs
which negates the subtrahend..
* A new helper kernfs_active() which tests whether kn->active >= 0 is
added for convenience and lockdep annotation. All KERNFS_REMOVED
tests are replaced with negated kernfs_active() tests.
* __kernfs_remove() is updated to deactivate, but not drain, all nodes
in the subtree instead of setting KERNFS_REMOVED. This removes
deactivation from kernfs_deactivate(), which is now renamed to
kernfs_drain().
* Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with
checks on the active ref.
* Some comment style updates in the affected area.
v2: Reordered before removal path restructuring. kernfs_active()
dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE()
used in the lookup paths.
v3: Reverted most of v2 except for creating a new node with
KN_DEACTIVATED_BIAS.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
There currently are two mechanisms gating active ref lockdep
annotations - KERNFS_LOCKDEP flag and KERNFS_ACTIVE_REF type mask.
The former disables lockdep annotations in kernfs_get/put_active()
while the latter disables all of kernfs_deactivate().
While KERNFS_ACTIVE_REF also behaves as an optimization to skip the
deactivation step for non-file nodes, the benefit is marginal and it
needlessly diverges code paths. Let's drop KERNFS_ACTIVE_REF.
While at it, add a test helper kernfs_lockdep() to test KERNFS_LOCKDEP
flag so that it's more convenient and the related code can be compiled
out when not enabled.
v2: Refreshed on top of ("kernfs: make kernfs_deactivate() honor
KERNFS_LOCKDEP flag"). As the earlier patch already added
KERNFS_LOCKDEP tests to kernfs_deactivate(), those additions are
dropped from this patch and the existing ones are simply converted
to kernfs_lockdep().
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
kernfs_addrm_cxt and the accompanying kernfs_addrm_start/finish() were
added because there were operations which should be performed outside
kernfs_mutex after adding and removing kernfs_nodes. The necessary
operations were recorded in kernfs_addrm_cxt and performed by
kernfs_addrm_finish(); however, after the recent changes which
relocated deactivation and unmapping so that they're performed
directly during removal, the only operation kernfs_addrm_finish()
performs is kernfs_put(), which can be moved inside the removal path
too.
This patch moves the kernfs_put() of the base ref to __kernfs_remove()
and remove kernfs_addrm_cxt and kernfs_addrm_start/finish().
* kernfs_add_one() is updated to grab and release kernfs_mutex itself.
sysfs_addrm_start/finish() invocations around it are removed from
all users.
* __kernfs_remove() puts an unlinked node directly instead of chaining
it to kernfs_addrm_cxt. Its callers are updated to grab and release
kernfs_mutex instead of calling kernfs_addrm_start/finish() around
it.
v2: Rebased on top of "kernfs: associate a new kernfs_node with its
parent on creation" which dropped @parent from kernfs_add_one().
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
kernfs_unmap_bin_file() is supposed to unmap all memory mappings of
the target file before kernfs_remove() finishes; however, it currently
is being called from kernfs_addrm_finish() and has the same race
problem as the original implementation of deactivation when there are
multiple removers - only the remover which snatches the node to its
addrm_cxt->removed list is guaranteed to wait for its completion
before returning.
It can be easily fixed by moving kernfs_unmap_bin_file() invocation
from kernfs_addrm_finish() to kernfs_deactivated(). The function may
be called multiple times but that shouldn't do any harm.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The recursive nature of kernfs_remove() means that, even if
kernfs_remove() is not allowed to be called multiple times on the same
node, there may be race conditions between removal of parent and its
descendants. While we can claim that kernfs_remove() shouldn't be
called on one of the descendants while the removal of an ancestor is
in progress, such rule is unnecessarily restrictive and very difficult
to enforce. It's better to simply allow invoking kernfs_remove() as
the caller sees fit as long as the caller ensures that the node is
accessible.
The current behavior in such situations is broken. Whoever enters
removal path first takes the node off the hierarchy and then
deactivates. Following removers either return as soon as it notices
that it's not the first one or can't even find the target node as it
has already been removed from the hierarchy. In both cases, the
following removers may finish prematurely while the nodes which should
be removed and drained are still being processed by the first one.
This patch restructures so that multiple removers, whether through
recursion or direction invocation, always follow the following rules.
* When there are multiple concurrent removers, only one puts the base
ref.
* Regardless of which one puts the base ref, all removers are blocked
until the target node is fully deactivated and removed.
To achieve the above, removal path now first marks all descendants
including self REMOVED and then deactivates and unlinks leftmost
descendant one-by-one. kernfs_deactivate() is called directly from
__kernfs_removal() and drops and regrabs kernfs_mutex for each
descendant to drain active refs. As this means that multiple removers
can enter kernfs_deactivate() for the same node, the function is
updated so that it can handle multiple deactivators of the same node -
only one actually deactivates but all wait till drain completion.
The restructured removal path guarantees that a removed node gets
unlinked only after the node is deactivated and drained. Combined
with proper multiple deactivator handling, this guarantees that any
invocation of kernfs_remove() returns only after the node itself and
all its descendants are deactivated, drained and removed.
v2: Draining separated into a separate loop (used to be in the same
loop as unlink) and done from __kernfs_deactivate(). This is to
allow exposing deactivation as a separate interface later.
Root node removal was broken in v1 patch. Fixed.
v3: Revert most of v2 except for root node removal fix and
simplification of KERNFS_REMOVED setting loop.
v4: Refreshed on top of ("kernfs: make kernfs_deactivate() honor
KERNFS_LOCKDEP flag").
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
kernfs_node->u.completion is used to notify deactivation completion
from kernfs_put_active() to kernfs_deactivate(). We now allow
multiple racing removals of the same node and the current removal
scheme is no longer correct - kernfs_remove() invocation may return
before the node is properly deactivated if it races against another
removal. The removal path will be restructured to address the issue.
To help such restructure which requires supporting multiple waiters,
this patch replaces kernfs_node->u.completion with
kernfs_root->deactivate_waitq. This makes deactivation event
notifications share a per-root waitqueue_head; however, the wait path
is quite cold and this will also allow shaving one pointer off
kernfs_node.
v2: Refreshed on top of ("kernfs: make kernfs_deactivate() honor
KERNFS_LOCKDEP flag").
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
kernfs_deactivate() forgot to check whether KERNFS_LOCKDEP is set
before performing lockdep annotations and ends up feeding
uninitialized lockdep_map to lockdep triggering warning like the
following on USB stick hotunplug.
usb 1-2: USB disconnect, device number 2
INFO: trying to register non-static key.
the code is fine but needs lockdep annotation.
turning off the locking correctness validator.
CPU: 1 PID: 62 Comm: khubd Not tainted 3.13.0-work+ #82
Hardware name: empty empty/S3992, BIOS 080011 10/26/2007
ffff880065ca7f60 ffff88013a4ffa08 ffffffff81cfb6bd 0000000000000002
ffff88013a4ffac8 ffffffff810f8530 ffff88013a4fc710 0000000000000002
ffff880100000000 ffffffff82a3db50 0000000000000001 ffff88013a4fc710
Call Trace:
[<ffffffff81cfb6bd>] dump_stack+0x4e/0x7a
[<ffffffff810f8530>] __lock_acquire+0x1910/0x1e70
[<ffffffff810f931a>] lock_acquire+0x9a/0x1d0
[<ffffffff8127c75e>] kernfs_deactivate+0xee/0x130
[<ffffffff8127d4c8>] kernfs_addrm_finish+0x38/0x60
[<ffffffff8127d701>] kernfs_remove_by_name_ns+0x51/0xa0
[<ffffffff8127b4f1>] remove_files.isra.1+0x41/0x80
[<ffffffff8127b7e7>] sysfs_remove_group+0x47/0xa0
[<ffffffff8127b873>] sysfs_remove_groups+0x33/0x50
[<ffffffff8177d66d>] device_remove_attrs+0x4d/0x80
[<ffffffff8177e25e>] device_del+0x12e/0x1d0
[<ffffffff819722c2>] usb_disconnect+0x122/0x1a0
[<ffffffff819749b5>] hub_thread+0x3c5/0x1290
[<ffffffff810c6a6d>] kthread+0xed/0x110
[<ffffffff81d0a56c>] ret_from_fork+0x7c/0xb0
Fix it by making kernfs_deactivate() perform lockdep annotations only
if KERNFS_LOCKDEP is set.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fabio Estevam <festevam@gmail.com>
Reported-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Once created, a kernfs_node is always destroyed by kernfs_put().
Since ba7443bc656e ("sysfs, kernfs: implement
kernfs_create/destroy_root()"), kernfs_put() depends on kernfs_root()
to locate the ino_ida. kernfs_root() in turn depends on
kernfs_node->parent being set for !dir nodes. This means that
kernfs_put() of a !dir node requires its ->parent to be initialized.
This leads to oops when a newly created !dir node is destroyed without
going through kernfs_add_one() or after failing kernfs_add_one()
before ->parent is set. kernfs_root() invoked from kernfs_put() will
try to dereference NULL parent.
Fix it by moving parent association to kernfs_new_node() from
kernfs_add_one(). kernfs_new_node() now takes @parent instead of
@root and determines the root from the parent and also sets the new
node's parent properly. @parent parameter is removed from
kernfs_add_one(). As there's no parent when creating the root node,
__kernfs_new_node() which takes @root as before and doesn't set the
parent is used in that case.
This ensures that a kernfs_node in any stage in its life has its
parent associated and thus can be put.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
kernfs_root->deactivate_waitq"
This reverts commit ea1c472dfeada211a0100daa7976e8e8e779b858.
Tejun writes:
I'm sorry but can you please revert the whole series?
get_active() waiting while a node is deactivated has potential
to lead to deadlock and that deactivate/reactivate interface is
something fundamentally flawed and that cgroup will have to work
with the remove_self() like everybody else. IOW, I think the
first posting was correct.
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit a69d001cfc712b96ec9d7ba44d6285702a38dabf.
Tejun writes:
I'm sorry but can you please revert the whole series?
get_active() waiting while a node is deactivated has potential
to lead to deadlock and that deactivate/reactivate interface is
something fundamentally flawed and that cgroup will have to work
with the remove_self() like everybody else. IOW, I think the
first posting was correct.
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit ae34372eb8408b3d07e870f1939f99007a730d28.
Tejun writes:
I'm sorry but can you please revert the whole series?
get_active() waiting while a node is deactivated has potential
to lead to deadlock and that deactivate/reactivate interface is
something fundamentally flawed and that cgroup will have to work
with the remove_self() like everybody else. IOW, I think the
first posting was correct.
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit 45a140e587f3d32d8d424ed940dffb61e1739047.
Tejun writes:
I'm sorry but can you please revert the whole series?
get_active() waiting while a node is deactivated has potential
to lead to deadlock and that deactivate/reactivate interface is
something fundamentally flawed and that cgroup will have to work
with the remove_self() like everybody else. IOW, I think the
first posting was correct.
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit f601f9a2bf7dc1f7ee18feece4c4e2fc6845d6c4.
Tejun writes:
I'm sorry but can you please revert the whole series?
get_active() waiting while a node is deactivated has potential
to lead to deadlock and that deactivate/reactivate interface is
something fundamentally flawed and that cgroup will have to work
with the remove_self() like everybody else. IOW, I think the
first posting was correct.
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|